大豆遗传图谱加密及磷效率相关性状基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是植物生长、发育所必须的一种营养元素。但土壤中的有效磷含量往往较低,不能满足植物正常生长需求。在农业生产中,磷缺乏问题可以通过施加化肥的方法解决。但是这样不但会增加农业成本,还可能会带来环境问题。而培育磷高效率品种,开发作物自身吸收利用磷元素的能力,是一种既经济又环保的途径。培育大豆高磷效率品种,需要了解大豆磷效率的遗传基础。而QTL定位是了解性状遗传基础的一种有效途径。
     本研究以大豆波高×南农94-156衍生的重组自交系群体为材料,对本实验室以前所构建的SSR分子遗传图谱进行了加密,并对大豆磷效率的七个相关性状:茎干重、根干重,磷利用效率、磷吸收效率、株高、叶绿素含量、酸性磷酸酶活性进行了QTL定位研究。主要结果如下:
     1、在本实验室以前构建的遗传图谱的基础上,增加了256对SSR引物,共971对标记对由波高×南农94-156衍生的RIL群体的遗传结构进行分析。结果表明,有376对标记在亲本中表现多态,其中包括373对SSR标记,3对形态标记。对群体遗传结构分析的结果表明,母本波高和父本南农94-156对群体的遗传贡献分别为0.493和0.507,群体各家系基因型组成符合正态分布:通过UPGMA法对154个家系聚类分析表明,群体中很少存在代表性重复现象,分离情况良好,遗传结构合理,适合于遗传作图和QTL定位分析。
     2、应用波高×南农94-156衍生的RIL群体构建了一张包含22个连锁群,总长度3212.3cM,标记平均距离为11.5cM的遗传图谱。该图谱共有306对标记,其中包括303对SSR标记,3对形态标记(花色W1,茸毛色T,结荚习性Dt1)。图谱上的主要标记为SSR标记,与Song等的公共遗传图谱(2004)具有很好的可比性。标记的顺序和距离都较好的符合Song等(2004)的公共遗传图谱。
     3、利用构建的遗传图谱,采用Cartographer V.1.17的多性状复合区间定位方法,对两种磷环境下七个磷效率相关的性状进行了定位。在给定的LOD下,共定位到20个QTL,其中低磷条件下有14个QTL,高磷务件下有6个QTL。共有两个QTL的贡献率大于15%,其中一个影响低磷条件下株高,qlphE.1。另一个影响低磷条件下叶绿素含量,glccN.1。另外,根据20个QTL的定位结果,共找到三个影响多个性状的连锁群区段.其中位于E连锁群上,Satt273标记附近,存在着四个共位的QTL(qlsdwE.1,qlrdwE.1,qlphE.1,qhsdwE.1),因此推测Satt273标记附近存在着大豆生长所必须的基因。
Phosphorus is an essential macro-nutriment required for plant growth and development. Although total P content in soil may be high, it is often present in unavailable forms or in forms that are only available outside of rhizosphere. This results in low availability to plants in many soils. In modern agricultural systems, P deficiency can be alleviated by fertilizer application, but there is a financial difficulty with increasing fertilizer costs for farmers, in addition inadequate practices will cause environmental problems. Release of P-efficient genotypes in crop production systems would reduce the production costs associated with P fertilizer applications, minimize environmental pollution and contribute to maintenance of world P resources globally.
     In this study, we used a RIL [NJ (SP) BN] population derived from an F_2, crossed between two soybean varieties, Bogao and Nanong94-156, to construct a genetic map. This map was a complement of our previous genetic map. Based on the constructed map, genetic factors contributing to P-efficiency related traits: Shoot dry weight, Root dry weight, Plant height, P use efficiency, P absorb efficiency, Chlorophyll content and Acid phosphatease activity were identified.
     1. Based on our previous study, we complemented 256 pairs of SSR, with total 971 pairs of markers to analyze the RIL population NJ (SP) BN. Evaluation showed that a total of 376 markers were identified as having polymorphisms between the two parents, Bogao and Nannong94-156, including 373 SSRs, and 3 phenotypic loci. The content of Bogao and Nannong94-156 contributed to the 154 lines population was about 0.493 and 0.507, respectively. The distribution of genotypic composition of the population fitted well. Genetic distances of each pair of lines were calculated by Dice's method. The result of cluster by method UPGMA showed that the population had less over presentation. In a word, the population was suit to genetic mapping and other genetic research for its well-dispersed genetic structure.
     2. A genetic map based on SSR markers was constructed with this population. It covered 22 linage groups and contained 306 loci including 303 SSR markers, 3 phenotypic markers. The length of the map was 3212.3cM and the average distance of loci was 11.5cM. It was easy to compare this map to soybean integrated genetic map for most markers in this map were SSRs and it fitted the integrated genetic map well both in the locations and the distances of markers.
     3. Twenty QTLs associated with those traits were detected, fourteen under low P condition, six under high P condition. Among those, contribution of two QTLs were high than 15%. One affected plant height under low P condition, and it was located on linkage group E. The other affected chlorophyll content under low P condition, and it was located on linkage group N. We found two colocalized QTL. One colocalized QTL located on linkage group E, and it controled shoot dry weight, root dry weight, plant height under low P condition. It also affected shoot dry weight under high P condition. Thus, we infer it may be an essential QTL for soybean growth. The other colocalized QTL was also located on linkage group E, controlling root dry weight and chlorophyll content under low P condition.
引文
1.曹卫东,贾继增,金继运。小麦磷素利用效率的基因位点及其交互作用[J]。植物营养与肥料学报,2001,7(3):285-292。
    2.崔世友。与产量有关的大豆株型、光合生理及耐低磷性状的基因定位(南京农业大学博士论文)[D]。2006。
    3.丁洪,李生秀,郭庆元等。酸性磷酸酶活性与大豆耐低磷能力的研究[J]。植物营养与肥料学报。1997,3(2):123-128。
    4.丁玉川,陈明昌,程滨等。作物磷营养效率生理生化基础研究进展[J]。山西农业科学,2004,32(3):25-29。
    5.方宣钧,吴为人,唐纪良。作物DNA标记辅助育种[M]。科学出版社,2001。
    6.孔繁玲。植物数量遗传学[M]。中国农业大学出版社。2006。
    7.梁泉,廖红,梅曼彤等。作物磷效率相关性状的OTL分析研究进展[J]。分子植物育种,2006,4(4):453-463。
    8.林启美,黄德明。应用酸性磷酸酶进行番茄磷素诊断[J]。华北农学报,1991,6(2):78-83。
    9.刘峰,庄炳昌,张劲松等。大豆遗传图谱的构建和分析[J]。遗传学报,2000,27(11):1018-1026。
    10.孟庆长。大豆GmNAC和GmLFY转录因子编码基因的克隆、鉴定和种子性状的QTL 定位研究(南京农业大学博士论文)[D]。2006。
    11.莫惠栋。数量遗传学的新发展-数量性状基因图谱的构建和应用[J]。中国农业科学,199629(2):8-16。
    12.明凤,米国华,张福锁等。发育时期对水稻耐低磷胁迫有关性状QTLs检测的影响[J]。中国水稻科学,2001,15(4):248-252。
    13.南京农业大学主编。土壤农化分析[M]。农业出版社,1996。
    14.邱化蛟,许秀美,冷寿慈等。植物磷素利用效率[J]。莱阳农学院学报,2001,18(2):116-120。
    15.童学军,严小龙,李惠珍等。大豆磷效率与形态生理性状的关系[J]。福建师范大学学报(自然科学版)。2000,16(1):84-88。
    16.吴晓雷,贺超英,王永军等。大豆遗传图谱的构建和分析[J]。遗传学报,2001,28(11):1051-1061。
    17.许占友,常汝镇,邱丽娟等。大豆遗传图谱研究进展及对应的几个问题[J]。大豆科学,2001,20(5):133-137。
    18.邢宏燕,李滨,李继云等。小麦品种磷营养特性的类分析及其年度间稳定性的研究[J]。西北植物学报,1999,19(2):219-228。
    19.徐青萍,罗超云,廖红 等。大豆不同品种对磷胁迫反应的研究[J]。大豆科学,2003,22(2): 108-115。
    20.徐云碧,朱立煌。分子数量遗传学[M]。中国农业出版社,1994。
    21.严小龙,廖红,戈振扬 等,植物根构型特性与磷吸收效率[J]。植物学通报,2000,17(6):511-519。
    22.杨存义,刘灵,沈宏 等。植物Pht1家族磷转运子的分子生物学研究进展[J]。分子植物育种,2006,4(2):153-159。
    23.袁清华,年海,陈达刚 等,大豆根系性状和磷效率的遗传规律研究[J]。大豆科学,2004,25(2):158-163。
    24.张德水,董伟,惠东威。栽培大豆与半野生大豆间的杂种F_2群体构建基因组分子标记连锁框架图[J]。科学通报,1997,42(12):1326-1330。
    25.Abel S,Ticconi C A,Dehtorre D A.Phosphate sensing in higher plants.[J]Physiol Plant,2002,115:1-8.
    26.Abbas A H,Barber S A.Soil test for phosphorous based upon fractionation of soil phosphorous:I Correlation of soil phosphorous fraction with plant available phosphorous.[J]Soil Sci Soc Am Proc,1964,28:218-221.
    27.Adams M A,Pate J S.Availability of organic and inorganic forms of phosphorus to lupines (Lupinus spp.).[J]Plant Soil,1992,145:107-113.
    28.Akkaya M S,Shoemaker R C,Specht J E,et al.Integration of simple sequence repeat DNA markers into a soybean linkage map[J]Crop Sci,1995,35:1439-1445
    29.Alain G,Felix M,Carlos D,et al.Low-P tolerance by maize(ZeamaysL.) genotypes:Significance of root growth,and organic acids and acid phosphatase root exudation.Plant and Soil,2001,228:253-264.
    30.Alonso-Blanco C & Koornneef M.Naturally occurring variation in Arabidopsis:an underexploited resource for plant genetics[J].Trends Plant Sci,2000,5:22-29.
    31.Anghinoni I,Barber S A.Phosphorous influx and growth characteristics of corn roots influenced by phosphorous supply.[J]Agron J,1980,72:685-680.
    32.Anne L,Maryse B,Emmanuel H,et al.Estimation of genetic parameters of a DH wheat population grown at different N stress levels characterized by probe genotypes.[J]Theor Appl Genet,2006,112:797-807.
    33.Aono T,Kanada N,Ijima A,et al.The response of the phosphate uptake system and organic acid exudation system to phosphate starvation in Sesbania rostrata[J].Plant Cell Physiol,2001;42:1253-1264.
    34.Apuya N R.Restriction fragment length polymorphism as genetic marker in soybean[J].Theor Appl Genet,1988,75:889-901.
    35.Bacbev B.Genetic basis of mineral nutrition in Triticum L:Effect of the cytoplasm on the absorption of nutrient elements.In:Ssric M R.Loughman B C eds.Genetics Aspects of Plant Nutrition.[R]The Hague:Martinns Nijhoff Publishers,1983:429-433.
    36.Baligur V C,Fageria N K,He Z L.Nutrient use efficiency in plants[J].Soil Sci Plant Anal,2001,32:921-950.
    37.Basten C,Weir B S,Zeng Z B.QTL Cartographer.Department of Statistics,North Carolina State University,Raleigh,NC(http://statgen.ncsu.edu/qtlcart/cartographer.html).1995-2004.
    38.Bates T R,Lynch J P.Root hairs confer a competitive advantage under low phosphorus availability[J].Plant Soil,2001,236:243-250.
    39.Bieleski R L,Ferguson I B.Physiology and metabolism of phosphate and its compounds.Encyclopedia of Plant Physiology,New Series,Springer-Verlag,1983 15:422-449.
    40.Branm S M.Mobilization of phosphorus and other mineral nutrients by citrate in the rhizosphere of Lupinusalbus L[D].PhD thesis,University of Wisconsin,Madison,1995.
    41.Broadley M R,Bums A,Bums I G.Relationships between phosphorus forms and plant growth.[J]Plant Nutr,2002,25:1075-1088.
    42.Cregan,Jarvik P B J.An integrated genetic linkage map of the soybean genome[J].Crop Sci.1999,39:1464-1490.
    43.Churchill G A & Deerge R W.Empirical threshold values for quantitative trait mapping[J].Genetics,1994,138:963-971.
    44.Clark R B & Brown J C.Differential posphorus uptake by phosphorus stressed cron inbred[J].Crop sci,1974,14:505-508.
    45.Duff S M G,Moorthead C B G,Lefebvre D D,et al.Phosphate starvation inducible bypasses of adenylate and phosphate dependent glycolytic enzymes in Brassicanigra suspension cells [J].Plant Physiol,1989,90:1275-1284.
    46.Duff S M G,Sarath G,Plaxton W C.The role of acid phosphatases in plant phosphorus metabolism[J].Physiol Plant,1994,90:791-800.
    47.Fageria N K & Baligar V C.Phosphorus-use efficiency in wheat genotypes[J].Plant Nutr,1999,22:331-340.
    48.Falconer D S.Introduction to quantitative genetics[M].Longman,New York,1981.
    49.Fox R H.Selection for phosphorus efficiency in corn[J].Commun Soil Sci Plant Anal,1978,13-37.
    50.Furlani S M,Fudeni P R,Tarmka R T,et al.Variability of soybean germpleam in relation to phosphorus uptake and use efficiency[J].Sci Agric(Piracicaba,Braz),2002,59(3):529-536.
    51.Galton F.Regression towards mediocrity in hereditary stature[J].Journal of Anthropoplogical Institute.1885,15:246-263.
    52.Gardner W K,Parbery D G,Barber D A.The acquisition of phosphorus by Lupinus albus L:Ⅰ.some characteristics of the soil/root interface[J].Plant Soil,1982,68:19-32.
    53.Gardner W K,Barber D A,Parbery D G.The acquisition of phosphorous by Lupinusalbus L:Ⅲ.The probable mechanism by which phosphorous movement in the soil/root interface is enhanced[J].Plant Soft,1983,70:107-24.
    54.Gerry P Q & Michael J K,2002.Experiment design and data analysis for biologists[M].2ed.United Kingdom at the University Press,Cambridge.
    55.Gerke J,Romer W,Jungk A.The excretion of citric acid and malic acid by proteoid roots of Lupinus albus L.Effects on soil solution concentrations of phosphate,iron,and aluminium in the proteoid rhizosphere in samples of an oxisol and a luvisol[J].Z Pflanzenernahr Bodenkd 1994,157:289-94.
    56.Gerloff S.Plant efficiencies in use of N,P and K.Plant adaptation to mineral stress in problem soils[M].New York:Cornell Univ Press;1977.P.161-174.
    57.Gonzalez-Meler M A,Giles L,Thomas R B,et al.Metabolic regulation of leaf respiration and alternative pathway activity in response to phosphate supply[J].Plant Cell Environ,2001,24:205-215.
    58.Greenwood D J,Karpinets T V,Stone D A.Dynamic model for the effects of soft P and fertilizer P on crop growth,P uptake and soil P in arable cropping:model description[J].Ann Bot,2001,88:279-291.
    59.Goldstein A H,Baertlein A D,Mcdaniel R G.Phosphate Starvation Inducible Metabolism in Lycopersicon esculentumr[J].Plant Physiol,1988,87:716-720.
    60.Goldstein A H.Phosphate starvation-inducible enzymes and proteins in higher plants.In:Wray JL,editor.Inducible plant proteins.Society for experimental biology seminar series[J].Cambridge:Cambridge University Press,1992,49:25-44.
    61.Hamburger D,Rezzonico E,Somerville C,et al.Identification and characterisation of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem[J].Plant Cell,2002,14:889-902.
    62.Harrison M J.Molecular and cellular aspects of arbuscular mycorrhizal symbiosis[J].Annu Rev:Plant Physiol and Plant Mol Biol,1999,50:361-689.
    63.Haran S,Logendra S,Seskar M,et al.Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression[J].Plant Physiol,2000,124:615-626.
    64.Hash C T,Schaffert R E,Peacock J M.Prospects for using conventional techniques and molecular biological tools to enhance performance of 'orphan' crop plants on soils low in available phosphorus[J].Plant Soil,2002,245:135-146.
    65.Helentjaris T,Slocum M,Wright S,et al.Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms[J].Theor Appl Genet,1986,72:761-769.
    66.Hinsinger P.Bio-availability of soil inorganic P in the rhizosphere as affected by root induced chemical changes:a review[J].Plant Soil,2001,237:173-95.
    67.Holford I C R.Soil phosphorus:its measurement,and its uptake by plants[J].Aust J Soil Res,1997,35:227-239.
    68.Hospital F,Charcosset A.Marker-assisted introgression of quantitative trait loci[J].Genetics,1997,147:1469-1485.
    69.Hoffland E.Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape[J].Plant Soil,1992,140:279-89.
    70.Hu B,Wu P,Liao C Y,ctal.QTLs and cpistasis underlying activity of acidphosphatase under phosphorus sufficicnt and deficient condition in rice(OryzasativaL.)[J].Plant Soil,2001,230:99-105.
    71.Hund A,Frachcboud Y,Soldati A,ctal.QTL controlling root and shoot traits of maize seedlings under cold stress.[J]Theor Appl Genet,2004,109:618-629.
    72.Jansen R C,Van J W O,Stare P,et al.Genotype by environment interaction in genetic mapping for multiple quantitative trait loci[J].Thcor Appl Genet,1995,91:33-37.
    73.Jiang C J,Zeng Z B.Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Loci [J].Genetics,1995,140:1111-1127.
    74.John P,Hammond M,Bennett J,ctal.Changes in gcne expression in arabidopsis shoots during phosphate starvation and the potential for developing smart plants[J].Plant Physiol,2003,132:578-596.
    75.Jansen R C,Stare P.High resolution of quantitative traits into multiple loci via interval mapping[J].Genetics,1994,136:1447-1455.
    76.John P,Hammond M,Boadlcy R,et al.Genetic Responses to Phosphorus Deficiency[J].Annals of Botany,2004,94:323-332.
    77.Johan W,Van O.LOD significancc thresholds for QTL analysis in experimental populations of diploid species[J].Heredity,1999,83:613-624.
    78.Juszczuk I M,Rychtcr A M.Changes in pyridine nucleotidc levels in leaves and roots of bean plants(Phaseolus vulgaris L) during phosphate deficiency[J].Plant Physiol,1997,151:399-404.
    79.Kao C H,Zeng Z B,Teasdale R.Multiple interval mapping for quantitative trait loci [J].Genetics, 1999,152:10:13-1216.
    80. Keim P, Janes M S. A high density soybean genetic map based on AFLP markers [J]. Crop Sci, 1997, 37:537-543.
    81. Keim P, Shoemaker R C, Panner R G. Restriction fragment length polymorphism diversity in soybean [J]. Theor Appl Grenet, 1989,77:786-792.
    82. Korol A B, Ronin Y I, Kirzhner V M. Linkage between loci of quantitative traits and marker loci. Resolution power of three statistical approaches in single marker analysis [J]. Biometrics, 1996b, 52:426-441.
    83. Kosambi D D, 1944. The estimation of map distances from recombination values [J]. Ann Eugen, 12:172-175.
    84. Lander E S, Green P, Abrahamson J, et al. Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics, 1987,1:174-181.
    85. Lark K G. A genetic map of soybean using intra specific cross of two cultivars: "Minsoy" and "Noir1" [J]. Theor. Appl. Genet., 1993, 86:901-906.
    86. Lance C, Rustin P. The central role of malate in plant metabolism [J]. Physiol Veg 1984, 22:625-641.
    87. Levent O, Selim E, Bulent T, et al. Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil [J]. Plant Soil, 2005, 269:69-80.
    88. Li Y D, Wang Y J, Tong Y P, et al. QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L.Merr.) [J]. Euphytica, 2005,142:137-142.
    89. Liao H, Wan H Y, Shaff J, et al. Phosphorus and Aluminum Interactions in Soybean in Relation to Aluminum Tolerance. Exudation of Specific Organic Acids from Different Regions of the Intact Root System [J]. Plant Physiol, 2006,141:674-684.
    90. Under E S, Green P, Abrahamson J, et al. Mapmaker: an interactive computer package for constructing genetic linkage maps of experimental and natural populations [J]. Genomics, 1987,1:174-181.
    91. Lin S, Cianzio S, Shoemaker R. Mapping genetic loci for iron deficiency chlorosis in soybean [J]. Molecular Breeding, 1997,3:219-229.
    92. Lin S F, James S B, Drew I, et al. Field and nutrient solution tests measure similar mechanisms controlling iron deficiency chlorosis in Soybean [J]. Crop Sci, 1998,38:254-259.
    93. Lincoln S E, Lander E S. Systematic detection of errors in genetic linkage data [J]. Genomics, 1992,14:604-610.
    94.Liu J Z,Li YJ,Tong Y P,et al.Chromosomal location of genes conferring the tolerance to Pi starvation stress and acid phosphatase(APase) secretion in the genome of rye(Secale L.)[J].Plant Soil,2001,237:267-274.
    95.Majumder N D,Borthakur D N,Rakshit S C.Heterosis in rice under phosphorous stress.[J].India J.Genet.,1989,49:231-235.
    96.Manske G G B,Ortiz-Monasterio J I,Van G M,et al.Traits associated with improved P-uptake efficiency in CIMMYT's semi dwarf spring bread wheat grown on an acid soil in Mexico[J].Plant Soil,2000,221:189-204.
    97.Manske G G B,Ortiz-Monasterio J I,Van G M,et al.Phosphorus use efficiency in tall,semi-dwarf and dwarf near-isogenic lines of spring wheat[J].Euphytica,2002,125:113-119.
    98.Mansur L M,Orf J H,Chase K,et al.Genetic mapping of agronomic traits using recombinant inbred Lines of soybean[J].Crop Sci,1996,36:1327-1336.
    99.Mauricio R.Mapping quantitative trait loci in plants:uses and caveats for evolutionary biology[J].Nature Reviews,2001,2:370-381.
    100.McCouch S R,Cho Y G,Yang M,et al.Report on QtL nomenclature[J].Rice Genetic Newsletter,1997,14:11-13.
    101.Mchlan K D,Mirco D D.Acid phosphatase activity of intact roots and phosphorus nutrition in plants.Ⅲ.Its relation to phosphorus garnering by wheat and its comparison with leaf activity as measure of phosphorus status[J].Aust.J.Agdc.Res.,1982,33:1-11.
    102.Mode C F,Robinson H F.Pleiotropism and the genetic variance and covariance[J].Biometrics,1959,15:518-537.
    103.Murray M G,Thompson W F.The isolation of high molecular weight plant DNA[J].Nucleic Acids Res.,1980,8:4321-4325.
    104.Muchhal U S,Pardo J M,Raghothama K G.Phosphate transporters from the higher plant arabidopsis thaliana[J].Proc Natl Acad Sci,1996,93:10519-10523.
    105.Mukatira U T,Liu C,Varadarajan D K,et al.Negative regulation of phosphate starvation-inducible genes[J].Plant Physiol,2001,127:1854-1862.
    106.Ni J J,Wu P,Senadhira D,Huang N.Mapping OTLs for phosphorus deficiency tolerance in rice(Oryza sativa L.)[J].Theor Appl Genet,1998,97:1361-1369.
    107.Pearson K.Skew variation in homogeneous material[M].Philosophical Transactions of the Royal Society of London.1895,A:186-343
    108.Paran I,Zamir D.Quantitative traits in plants:beyond the QTL[J].Trends in Genetics,2003,19(6):303-306.
    109.Quartin V L,Azinheira H G,Nunes M A.Phosphorus deficiency is respousible for biomass reduction of Triticale in nutrient solution with aluminum.[J]Journal of plant nutrition,2001,24(12):1901-1911.
    110.Raghothama K G.Phosphate acquisition[J].Aunu Rev Plant Physiol and Plant Mol Biol,1999,50:665-693.
    111.Raghothama K G.Phosphate transport and signaling.[J]Curr Opin Plant Biol,2000,3:182-187.
    112.Reiter R S,Coors J G,Sussman M R,et al.Genetics analysis of tolerance to low phosphorus stress in maize using RFLP[J].Theor Appl Genet,1991,82:561-568.
    113.Rao I M,Fredeen A L,Teay N.Leaf phosphate status,photosynthesis,and carbon petitioning in sugar beet:Ⅲ.Diurnal changes in carbon partitioning and carbon export[J].Plant Physiol,1990,92(2):29-36.
    114.Rao N N,Wang E,Yashphe J,et al.Nucleotide pool in Pho regulon mutants and alkaline Phosphatase systhesis in Escherichia coli.[J].Bacteriol.1986,165:205-211.
    115.Rengel Z.Physiological mechanisms underlying differential nutrient efficiency of crop genotypes[M].In Mineral Nutrition of Crops:Fundamental Mechanisms and Implications,Ed.,1999,227-265,Haworth Press,New York.
    116.Schachtman D P,Reid R J,Ayling S M.Phosphorus uptake by plants from soil to cell[J].Plant Physiol,1998,116:447-453.
    117.Shenoy V V,Kalagudi G M.Enhancing plant phosphorus use efficiency for sustainable cropping.[J]Biotech Adv,2005,23:501-513.
    118.Shimizu A,Seiji Y,Shinji K,et al.Phosphorus deficiency-induced root elongation and its QTL in rice(Oryza sativa L.).[J]Theor Appl Genet,2004,109:1361-1368.
    119.Shoemaker R C,Specht J E.Integration of the soybean molecular and classical genetic linkage groups[J].Crop Sci.1995,35:436-446.
    120.Song Q J,Marek L F,Shoemaker R C,et al.A new integrated genetic linkage map of the soybean.[J]Theor Appl Genet,2004,109:122-128.
    121.Soybase.A USDA-ARS Plant Genome Program soybean database.[Online]Available at http://www.soybase.org.
    122.Su J Y,Xiao Y M,Li M,et al.Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage.[J]Plant Soil,2006,281:25-36.
    123.Tanksley S D.Mapping poly-genes[J].Ann.Rev.of Genet,1993,27:205-233.
    124.Tarafdar J C,Jungk A.Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorous[J].Biol Fertil Soils,1987 3:199-204.
    125.Tarafdar J C,Claassen N.Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatase produced by plant roots and microorganisms[J].Biol Fertil Soils,1988,5:308-312.
    126.Theodoru M E,Plaxton W C.Metabolic adaptations of plant respiration to nutritional phosphate deprivation[J].Plant Physiol,1993,101:339-344.
    127.Tian J,Liao H,Wang X R,et al.Phosphorus Starvation-induced Expression of Leaf Acid Phosphatase Isoforms in Soybean[J].Acta Bot.Sinica 2003,45(9):1037-1042.
    128.Tuberosa R,Sanguineti M C,Landi P,et al.Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes[J].Plant Mol.Bio.2002,48:697-712.
    129.Utz H F,Melchinger A E.PlabQTL:a program for composite interval mapping of QTL[J].Journal of Quantitative Trait Loci,1999,2(1)(http://www.ncgr.org/research/jag/).
    130.Uhde-Stone C,Zinn K E,Ramirez-Yanez M,et al.Nylon filter arrays reveal differential gene expression in proteoid roots of white lupine in response to phosphorous deficiency[J].Plant Physiol,2003,131:1064-1079.
    131.Vance C P,Uhde-Stone C,Allan D L.Phosphorus acquisition and use:critical adaptations by plants for securing a nonrenewable resource[J].New Phytol,2003,157:423-447.
    132.Wang L D,Liao H,Yah X L,et al.Genetic variability for root hair traits as related to phosphorous status in soybean[J].Plant soil,2004,261:77-84.
    133.Weller J I,Song J Z,Ronin Y I,et al.Experimental designs and solutions to multiple trait comparisons[J].Animal Biotechnology,1997,8:107-122.
    134.Wissuwa M,Yano M,Ae N.Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.)[J].Theor Appl Genet,1998,97:777-783.
    135.Wissuwa M,Ae N.Further characterizationof two QTLs that increase phosphorus uptake of rice(OryzasativaL.) under phosphorus deficiency[J].Plant Soil,2001,237:275-286.
    136.Wissuwa M,Wegner J,Ae N,et al.Substitution mapping of Pupl:a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil[J].Theor Appl Genet,2002,105:890-897.
    137.Wu P,Ma L G,Hou X L,et al.Phosphate starvation triggers distinct alterations of genome expression in arabidopsis roots and leaves[J].Plant Physiol,2003,132:1260-1271.
    138.Wu P,Ni J J.Detecting QTLs for phosphorus uptake and use efficiency in rice using AFLP and RFLP markers[J].Acta Bot Sinica,2000,42:229-233.
    139.Williamson L C,Ribrioux S P,Fitter A H,et al.Phosphate availability regulates root system architecture in arabidopsis[J].Plant Physiol,2001,126:875-882.
    140.Yan X L,Liao H,Beebe S E,et al.QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean[J].Plant Soil.2004
    141.Yan X L,Liao H,Trull M C,et al.Induction of a major leaf acid phosphatase dose not confer adaptation to low P availability in common bean[J].Plant Physiol,2001,125:1901-1911.
    142.Yang G H,Su J Y,Li B,et al.Identification and characterization of phosphorus use efficiency in a doubled haploid population of Chinese Spring×Lovrin No.10[J].Acta Bot.Sinica,2004,46(3):302-310.
    143.Zeng Z B.QTL mapping and the genetic basis of adaptation:recent developments.Genetica [J],2005,123:25-37.
    144.Zhang M A,Walk T C,Lynch J P,et al.Morphological synergism in root hair length,density,initiation and geometry for phosphorous acquisition in Arabidopsis thaliana:a modeling approach[J].Plant Soil,2001,236:221-35.
    145.Zhang W K,Wang Y J,Luo G Z,et al.QTL mapping of ten agronomic traits on the soybean (Glycine max(L.) Merr.) genetic map and their association with EST markers[J].Theor Appl Genet,2004,108:1131-1139.
    146.Zhu J M,Shawn M,Kaeppler J,Lynch P.Mapping of QTLs for lateral root branching and length in maize(Zea mays L.) under differential phosphorus supply[J].Theor Appl Genet,2005,111:688-695.
    147.Zhu J M,Kaeppler S M,Lynch J P.Detection of quantitative trait loci for seminal root traits in maize(Zea mays L.) seedlings grown under differential phosphorus levels.[J]Theor Appl Genet,2006,113:1-10.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.