妊娠高血压相关金属蛋白酶表达和甲基化调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
妊娠高血压综合征是一种复杂的疾病,主要临床表现为妊娠20周后出现高血压和蛋白尿。目前疾病的病因学仍然不清楚,推测妊娠高血压患者胎盘绒毛组织中金属蛋白酶的表达异常,造成细胞外基质水解发生障碍,影响胎盘滋养层正常侵袭,可能是造成疾病发生重要原因。
     研究目的:
     研究金属蛋白酶MMP-9和ADAMTS家族(ADAMTS-1、-4、-5)表达与妊娠高血压的相关性,以及启动子区DNA甲基化状态调控的作用。
     研究方法:
     选取末期妊娠的妊娠高血压患者(20例)和正常孕产妇(18例)的胎盘组织,利用石蜡包埋切片.免疫组化染色、荧光实时定量PCR技术,研究病例组和对照的金属蛋白酶在蛋白水平和mRNA水平的表达差异。同时,利用限制性内切酶-PCR检测技术,检测基因启动子区的甲基化状态,利用生物信息学分析特异位点结合的转录因子,分析DNA甲基化状态调控金属蛋白酶的异常表达。
     研究结果:
     1)免疫组化结果:
     病例组的MMP-9在滋养层细胞和绒毛间质细胞高表达,而对照组只有少量表达;病例组的ADAMTS-4在合体滋养层细胞高表达,在细胞滋养层细胞也有少量表达,而对照组表达水平很低;病例组的ADAMTS-5在滋养层细胞中高表达,明显高于对照组。
     2)荧光实时定量PCR结果:
     MMP-9、ADAMTS-1、-4、-5在病例组中的表达高于在对照组的表达。
     3)启动子区甲基化状态检测:
     病例组和对照组MMP-9的整体甲基化水平没有差异,但是在-712位点差异显著,去甲基化的比例分别为90%对44%(p<0.05);病例组中ADAMTS-1的整体甲基化水平显著降低,去甲基化的比例为48.8%对30.6%(p<0.05),并且-944位病例组与对照组去甲基化的比例为55%对22.2%(p<0.05);ADAMTS-4的整体甲基化水平在病例组中也有显著性降低,去甲基化的比例分别20%对4.4%(p<0.05),并且-323位病例组与对照组去甲基化的比例为25%对0(p<0.05);病例组ADAMTS-5的整体甲基化水平相对对照组降低了一半,去甲基化的比例为40%对20.8%(p<0.05),并且+72位病例组与对照组去甲基化的比例为30%对0(p<0.05)。
     结论:
     1)首次证实了ADAMTS家族(ADAMTS-1、-4、-5)与妊娠高血压疾病发生相关;
     2)首次检测金属蛋白酶MMP-9和ADAMTS家族(ADAMTS-1、-4、-5)在妊娠高血压患者胎盘中的甲基化状态,证实了表观遗传甲基化状态的改变造成基因表达量升高,可能是疾病发生的原因。
     3)筛选出基因启动子区的特异位点,推测可能单个位点的甲基化状态起着关键作用,为产前妊娠高血压的早期诊断与药物研发提供了特异的分子标记。
Pregnancy-induced hypertension syndrome(PIH) is a multisystem disease classically defined on the basis of hypertension and proteinuria after 20 weeks gestation.The etiology of the disease remains poorly understood but it is known that altered expression of some metalloproteinases resulted extracellular matrix degrading disorder may be responsible for the abnormal trophoblast invasion.
     Objective:To perform a systematic expression analysis of MMP-9 and ADAMTS family (ADAAMTS-1,-4,-5) genes in normal and pathological placentas and to pinpoint epigenetic alterations inside promoter regions of genes.
     Methods:Placentas were obtained from 20 patients with PIH and 18 normal pregnancies in the third trimester.Immunohistochemistry of paraffin wax-embedded slices and Quantitative Real-Time PCR methods were used to detect the protein and mRNA expression level of different genes.The methylation status of the promoter regions was analyzed with methylation-sensitive restriction enzymes,followed by PCR amplification in order to study the association between demethylation of specific CpG sitesand abnormal expression.
     Results:
     1) Immunohistochemistry:MMP-9 was highly expressed in trophoblast and Villous stromal cells in PIH samples,while much lower in normal controls;ADAMTS-4 was highly expressed syncytiotrophoblast cells and lower in cytotrophoblast cells,while there was almost no diction in normal controls;ADAMTS-5 expressed highly in trophoblast cells,apparently higher than normal controls.There was no suitable antibody for ADAMTS-1.
     2) Quantitative Real-Time PCR results showed MMP-9,ADAMTS-1,-4,-5 were expressed higher in PIH samples than normal controls.
     3) The methylation status of the promoter regions:There was no significant higher level of MMP-9 demethylation between PIH samples and normal controls.But the percentage of unmethylated-712 site was higher in preeclampsia patients(90%) comparing with controls 44%(p<0.05);ADAMTS-1 was significant higher demethylation in PIH samples than normal controls,the percentage was 48.8%vs. 30.6%(p<0.05),with the specific site-944 which the unmethylation percentage was 55%vs.22.2%(p<0.05);ADAMTS-4 was significant higher demethylation in PIH samples than normal controls,the percentage was 20%vs.4.4%(p<0.05),with the specific site -323 which the unmethylation percentage was 25%vs.0(p<0.05); ADAMTS-5 was significant higher demethylation in PIH samples than normal controls,the percentage was 40%vs.20.8%(p<0.05).with the specific site +72 which the unmethylation percentage was 33%vs.0(p<0.05).
     Conclusion:
     1) Demonstrated the association between the altered synthesis of ADAMTS-1,-4,-5 and PIH etiology for the first time;
     2) For the first time to study the expression of MMP-9,ADAMTS-1,-4,-5 may result from epigenetic changes of the methylation status of CpG sites in the promoter region and was responsible for PIH happens.
     3) Screened out specific sites of promoter regions may play key roles in gene regulation. This study provided new biomarkers for early diagnose and drug investigations.
引文
1. Redman CW, Bodmer JG, Bodmer WF, Beilin LJ, Bonnar J. HLA antigens in severe pre-eclampsia. Lancet 1978; 2:397-9.
    2. Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet 2001; 357:53-6.
    3. Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J, Busato F, Gut I, Rebourcet R, Laissue P, Tsatsaris V, Goffinet F, Rigourd V, Carbonne B, Ferre F, Vaiman D. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension 2007; 49:76-83.
    4. Kobashi G. Genetic and environmental factors associated with the development of hypertension in pregnancy. J Epidemiol 2006; 16:1-8.
    5. Lim KH, Zhou Y, Janatpour M, McMaster M, Bass K, Chun SH, Fisher SJ. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am J Pathol 1997; 151:1809-18.
    6. Polette M, Nawrocki B, Pintiaux A, Massenat C, Maquoi E, Volders L, Schaaps JP, Birembaut P, Foidart JM. Expression of gelatinases A and B and their tissue inhibitors by cells of early and term human placenta and gestational endometrium. Lab Invest 1994; 71:838-46.
    7. Reister F, Kingdom JC, Ruck P, Marzusch K, Heyl W, Pauer U, Kaufmann P, Rath W, Huppertz B. Altered protease expression by periarterial trophoblast cells in severe early-onset preeclampsia with IUGR. J Perinat Med 2006; 34:272-9.
    8. Tang BL. ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol 2001; 33:33-44.
    9. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14:1296-302.
    10. Rodriguez-Manzaneque JC, Westling J, Thai SN, Luque A, Knauper V, Murphy G, Sandy JD, Iruela-Arispe ML. ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem Biophys Res Commun 2002; 293:501-8.
    11. Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, Little CB, Last K, Farmer PJ, Campbell IK, Fourie AM, Fosang AJ. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 2005; 434:648-52.
    12. Held-Feindt J, Paredes EB, Blomer U, Seidenbecher C, Stark AM, Mehdorn HM, Mentlein R. Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int J Cancer 2006; 118:55-61.
    13. Singal R, Ginder GD. DNA methylation. Blood 1999; 93:4059-70.
    14. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21:5400-13.
    15. Wang JX, Knottnerus AM, Schuit G, Norman RJ, Chan A, Dekker GA. Surgically obtained sperm, and risk of gestational hypertension and pre-eclampsia. Lancet 2002; 359:673-4.
    16. van Dijk M, Mulders J, Poutsma A, Konst AA, Lachmeijer AM, Dekker GA, Blankenstein MA, Oudejans CB. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 2005; 37:514-9.
    17. Kanayama N, Takahashi K, Matsuura T, Sugimura M, Kobayashi T, Moniwa N, Tomita M, Nakayama K. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol Hum Reprod 2002; 8:1129-35.
    18. Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J, Busato F, Gut I, Rebourcet R, Laissue P, Tsatsaris V, Goffinet F, Rigourd V, Carbonne B, Ferre F, Vaiman D. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension 2007; 49:76-83.
    19. Fisher SJ, Cui TY, Zhang L, Hartman L, Grahl K, Zhang GY, Tarpey J, Damsky CH. Adhesive and degradative properties of human placental cytotrophoblast cells in vitro. J Cell Biol 1989; 109:891-902.
    20. Kolben M, Lopens A, Blaser J, Ulm K, Schmitt M, Schneider KT, Tschesche H. Proteases and their inhibitors are indicative in gestational disease. Eur J Obstet Gynecol Reprod Biol 1996; 68:59-65.
    21. Xu P, Wang Y, Piao Y, Bai S, Xiao Z, Jia Y, Luo S, Zhuang L. Effects of matrix proteins on the expression of matrix metalloproteinase-2, -9, and -14 and tissue inhibitors of metalloproteinases in human cytotrophoblast cells during the first trimester. Biol Reprod 2001; 65:240-6.
    22. Graham CH, Lala PK. Mechanisms of placental invasion of the uterus and their control. Biochem Cell Biol 1992; 70:867-74.
    23. Graham CH, McCrae KR. Altered expression of gelatinase and surface-associated plasminogen activator activity by trophoblast cells isolated from placentas of preeclamptic patients. Am J Obstet Gynecol 1996; 175:555-62.
    24. Shimonovitz S, Hurwitz A, Dushnik M, Anteby E, Geva-Eldar T, Yagel S. Developmental regulation of the expression of 72 and 92 kd type IV collagenases in human trophoblasts: a possible mechanism for control of trophoblast invasion. Am J Obstet Gynecol 1994; 171:832-8.
    25. Lockwood CJ, Oner C, Uz YH, Kayisli UA, Huang SJ, Buchwalder LF, Murk W, Funai EF, Schatz F. Matrix metalloproteinase 9 (MMP9) expression in preeclamptic decidua and MMP9 induction by tumor necrosis factor alpha and interleukin 1 beta in human first trimester decidual cells. Biol Reprod 2008; 78:1064-72.
    26. Colige A, Sieron AL, Li SW, Schwarze U, Petty E, Wertelecki W, Wilcox W, Krakow D, Cohn DH, Reardon W, Byers PH, Lapiere CM, Prockop DJ, Nusgens BV. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet 1999; 65:308-17.
    27. Sandy JD, Westling J, Kenagy RD, Iruela-Arispe ML, Verscharen C, Rodriguez-Mazaneque JC, Zimmermann DR, Lemire JM, Fischer JW, Wight TN, Clowes AW. Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem 2001; 276:13372-8.
    28. Robker RL, Russell DL, Espey LL, Lydon JP, O'Malley BW, Richards JS. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci U S A 2000; 97:4689-94.
    29. Hurskainen TL, Hirohata S, Seldin MF, Apte SS. ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family. J Biol Chem 1999; 274:25555-63.
    30. Held-Feindt J, Paredes EB, Blomer U, Seidenbecher C, Stark AM, Mehdorn HM, Mentlein R. Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int J Cancer 2006; 118:55-61.
    31. Chicoine E, Esteve PO, Robledo O, Van Themsche C, Potworowski EF, St-Pierre Y. Evidence for the role of promoter methylation in the regulation of MMP-9 gene expression. Biochem Biophys Res Commun 2002; 297:765-72.
    32. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31:89-97.
    33. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33 Suppl:245-54.
    34. Meehan RR, Pennings S, Stancheva I. Lashings of DNA methylation, forkfuls of chromatin remodeling. Genes Dev 2001; 15:3231-6.
    35. Campanero MR, Armstrong MI, Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A 2000; 97:6481-6.
    36. Prendergast GC, Ziff EB. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 1991; 251:186-9.
    37. Iguchi-Ariga SM, Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 1989; 3:612-9.
    38. Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell 1999; 99:451-4.
    39. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393:386-9.
    40. Wade PA. Methyl CpG-binding proteins and transcriptional repression. Bioessays 2001; 23:1131-7.
    41. Bird A. The essentials of DNA methylation. Cell 1992; 70:5-8.
    42. Singer-Sam J, Goldstein L, Dai A, Gartler SM, Riggs AD. A potentially critical Hpa II site of the X chromosome-linked PGK1 gene is unmethylated prior to the onset of meiosis of human oogenic cells. Proc Natl Acad Sci U S A 1992; 89:1413-7.
    43. Robertson KD, Hayward SD, Ling PD, Samid D, Ambinder RF. Transcriptional activation of the Epstein-Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial. Mol Cell Biol 1995; 15:6150-9.
    44. Korba BE, Wilson VL, Yoakum GH. Induction of hepatitis B virus core gene in human cells by cytosine demethylation in the promoter. Science 1985; 228:1103-6.
    45. Pogribny IP, Pogribna M, Christman JK, James SJ. Single-site methylation within the p53 promoter region reduces gene expression in a reporter gene construct: possible in vivo relevance during tumorigenesis. Cancer Res 2000; 60:588-94.
    46. Gum R, Lengyel E, Juarez J, Chen JH, Sato H, Seiki M, Boyd D. Stimulation of 92-kDa gelatinase B promoter activity by ras is mitogen-activated protein kinase kinase 1-independent and requires multiple transcription factor binding sites including closely spaced PEA3/ets and AP-1 sequences. J Biol Chem 1996; 271:10672-80.
    47. Sato H, Seiki M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 1993; 8:395-405.
    48. Sato H, Kita M, Seiki M. v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. J Biol Chem 1993; 268:23460-8.
    49. steve PO, Tremblay P, Houde M, St-Pierre Y, Mandeville R. In vitro expression of MMP-2 and MMP-9 in glioma cells following exposure to inflammatory mediators. Biochim Biophys Acta 1998; 1403:85-96.
    50. Clark SJ, Harrison J, Molloy PL. Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene 1997; 195:67-71.
    51. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393:386-9.
    52. Graves BJ, Johnson PF, McKnight SL. Homologous recognition of a promoter domain common to the MSV LTR and the HSV tk gene. Cell 1986; 44:565-76.
    53. Birkenmeier EH, Gwynn B, Howard S, Jerry J, Gordon JI, Landschulz WH, McKnight SL. Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein. Genes Dev 1989; 3:1146-56.
    54. Xanthopoulos KG, Mirkovitch J, Decker T, Kuo CF, Darnell JE, Jr. Cell-specific transcriptional control of the mouse DNA-binding protein mC/EBP. Proc Natl Acad Sci U S A 1989; 86:4117-21.
    55. Wang CY, Lei HJ, Huang CY, Zhang Z, Mukherjee AB, Yuan CJ. Induction of cyclooxygenase-2 by staurosporine through the activation of nuclear factor for IL-6 (NF-IL6) and activator protein 2 (AP2) in an osteoblast-like cell line. Biochem Pharmacol 2002; 64:177-84.
    56. Lekstrom-Himes JA. The role of C/EBP(epsilon) in the terminal stages of granulocyte differentiation. Stem Cells 2001; 19:125-33.
    57. Naito S, Shimizu S, Maeda S, Wang J, Paul R, Fagin JA. Ets-1 is an early response gene activated by ET-1 and PDGF-BB in vascular smooth muscle cells. Am J Physiol 1998; 274:C472-80.
    58. Kitange G, Kishikawa M, Nakayama T, Naito S, Iseki M, Shibata S. Expression of the Ets-1 proto-oncogene correlates with malignant potential in human astrocytic tumors. Mod Pathol 1999; 12:618-26.
    59. Trojanowska M. Ets factors and regulation of the extracellular matrix. Oncogene 2000; 19:6464-71.
    60. Fujimoto J, Aoki I, Toyoki H, Khatun S, Sato E, Tamaya T. Expression of ETS-1 related to angiogenesis in uterine endometrium during the menstrual cycle. J Biomed Sci 2003; 10:320-7.
    61. Kilpatrick LM, Kola I, Salamonsen LA. Transcription factors Ets1, Ets2, and Elf1 exhibit differential localization in human endometrium across the menstrual cycle and alternate isoforms in cultured endometrial cells. Biol Reprod 1999; 61:120-6.
    62. Onodera K, Yomogida K, Suwabe N, Takahashi S, Muraosa Y, Hayashi N, Ito E, Gu L, Rassoulzadegan M, Engel JD, Yamamoto M. Conserved structure, regulatory elements, and transcriptional regulation from the GATA-1 gene testis promoter. J Biochem 1997; 121:251-63.
    63. Shimizu R, Trainor CD, Nishikawa K, Kobayashi M, Ohneda K, Yamamoto M. GATA-1 self-association controls erythroid development in vivo. J Biol Chem 2007; 282:15862-71.
    64. Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC, Blobel GA, Chodosh LA, Weiss MJ. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 2004; 104:3136-47.
    65. Ikonomi P, Noguchi CT, Miller W, Kassahun H, Hardison R, Schechter AN. Levels of GATA-1/GATA-2 transcription factors modulate expression of embryonic and fetal hemoglobins. Gene 2000; 261:277-87.
    66.Sharrocks AD.Complexities in ETS-domain transcription factor function and regulation:lessons from the TCF(ternary complex factor) subfamily.The Colworth Medal Lecture.Biochem Soc Trans 2002;30:1-9.
    67.Chai Y,Chipitsyna G,Cui J,Liao B,Liu S,Aysola K,Yezdani M,Reddy ES,Rao VN.c-Fos oncogene regulator Elk-1 interacts with BRCA1 splice variants BRCA1a/1b and enhances BRCA1a/1b-mediated growth suppression in breast cancer cells.Oncogene 2001;20:1357-67.
    68.Shao N,Chai Y,Cui JQ,Wang N,Aysola K,Reddy ES,Rao VN.Induction of apoptosis by Elk-1and deltaElk-1 proteins.Oncogene 1998;17:527-32.
    69.Sharrocks AD.The ETS-domain transcription factor family.Nat Rev Mol Cell Biol 2001;2:827-37.
    70.朱玉贤。现代分子生物遗传学。高等教育出版社。1997
    1. Genbacev O, Miller RK. Post-implantation differentiation and proliferation of cytotrophoblast cells: in vitro models-a review. Placenta 2000; 21 Suppl A:S45-9.
    2. Lyall F, Simpson H, Bulmer JN, Barber A, Robson SC. Transforming growth factor-beta expression in human placenta and placental bed in third trimester normal pregnancy, preeclampsia, and fetal growth restriction. Am J Pathol 2001; 159:1827-38.
    3. Genbacev O, Zhou Y, Ludlow JW, Fisher SJ. Regulation of human placental development by oxygen tension. Science 1997; 277:1669-72.
    4. Graham CH, Postovit LM, Park H, Canning MT, Fitzpatrick TE. Adriana and Luisa Castellucci award lecture 1999: role of oxygen in the regulation of trophoblast gene expression and invasion. Placenta 2000; 21:443-50.
    5. Meisser A, Chardonnens D, Campana A, Bischof P. Effects of tumour necrosis factor-alpha, interleukin-1 alpha, macrophage colony stimulating factor and transforming growth factor beta on trophoblastic matrix metalloproteinases. Mol Hum Reprod 1999; 5:252-60.
    6. King A, Burrows T, Verma S, Hiby S, Loke YW. Human uterine lymphocytes. Hum Reprod Update 1998; 4:480-5.
    7. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13:1899-911.
    8. Morgan T, Craven C, Nelson L, Lalouel JM, Ward K. Angiotensinogen T235 expression is elevated in decidual spiral arteries. J Clin Invest 1997; 100:1406-15.
    9. Kahn SR. Severe preeclampsia associated with coinheritance of factor V Leiden mutation and protein S deficiency. Obstet Gynecol 1998; 91:812-4.
    10. Grandone E, Margaglione M, Colaizzo D, Cappucci G, Paladini D, Martinelli P, Montanaro S, Pavone G, Di Minno G. Factor V Leiden, C > T MTHFR polymorphism and genetic susceptibility to preeclampsia. Thromb Haemost 1997;77:1052-4.
    11. Kupferminc MJ, Eldor A, Steinman N, Many A, Bar-Am A, Jaffa A, Fait G, Lessing JB. Increased frequency of genetic thrombophilia in women with complications of pregnancy. N Engl J Med 1999; 340:9-13.
    12. Nakabayashi M, Yamamoto S, Suzuki K. Analysis of thrombomodulin gene polymorphism in women with severe early-onset preeclampsia. Semin Thromb Hemost 1999; 25:473-9.
    13. Arngrimsson R, Hayward C, Nadaud S, Baldursdottir A, Walker JJ, Liston WA, Bjarnadottir RI, Brock DJ, Geirsson RT, Connor JM, Soubrier F. Evidence for a familial pregnancy-induced hypertension locus in the eNOS-gene region. Am J Hum Genet 1997; 61:354-62.
    14. Aldrich C, Verp MS, Walker MA, Ober C. A null mutation in HLA-G is not associated with preeclampsia or intrauterine growth retardation. J Reprod Immunol 2000; 47:41-8.
    15. Dizon-Townson DS, Major H, Ward K. A promoter mutation in the tumor necrosis factor alpha gene is not associated with preeclampsia. J Reprod Immunol 1998; 38:55-61.
    16. Denis LJ, Verweij J. Matrix metalloproteinase inhibitors: present achievements and future prospects. Invest New Drugs 1997; 15:175-85.
    17. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem 1999; 274:21491-4.
    18. Celentano DC, Frishman WH. Matrix metalloproteinases and coronary artery disease: a novel therapeutic target. J Clin Pharmacol 1997; 37:991-1000.
    19. Leco KJ, Khokha R, Pavloff N, Hawkes SP, Edwards DR. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem 1994; 269:9352-60.
    20. Stetler-Stevenson WG, Krutzsch HC, Liotta LA. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem 1989; 264:17374-8.
    21. Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 1992; 267:4583-91.
    22. Kolkenbrock H, Orgel D, Hecker-Kia A, Zimmermann J, Ulbrich N. Generation and activity of the ternary gelatinase B/TIMP-1/LMW-stromelysin-1 complex. Biol Chem Hoppe Seyler 1995; 376:495-500.
    23. Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, Knauper V, Docherty AJ, Murphy G. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 2000; 473:275-9.
    24. Liu YE, Wang M, Greene J, Su J, Ullrich S, Li H, Sheng S, Alexander P, Sang QA, Shi YE. Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J Biol Chem 1997; 272:20479-83.
    25. Lim KH, Zhou Y, Janatpour M, McMaster M, Bass K, Chun SH, Fisher SJ. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am J Pathol 1997; 151:1809-18.
    26. Xu P, Wang YL, Zhu SJ, Luo SY, Piao YS, Zhuang LZ. Expression of matrix metalloproteinase-2, -9, and -14, tissue inhibitors of metalloproteinase-1, and matrix proteins in human placenta during the first trimester. Biol Reprod 2000; 62:988-94.
    27. Tanaka SS, Togooka Y, Sato H, Seiki M, Tojo H, Tachi C. Expression and localization of membrane type matrix metalloproteinase-1 (MT1-MMP) in trophoblast cells of cultured mouse blastocysts and ectoplacental cones. Placenta 1998; 19:41-8.
    28. Hurskainen T, Seiki M, Apte SS, Syrjakallio-Ylitalo M, Sorsa T, Oikarinen A, Autio-Harmainen H. Production of membrane-type matrix metalloproteinase-1 (MT-MMP-1) in early human placenta. A possible role in placental implantation? J Histochem Cytochem 1998;46:221-9.
    29.Oh J,Takahashi R,Kondo S,Mizoguchi A,Adachi E,Sasahara RM,Nishimura S,Imamura Y,Kitayama H,Alexander DB,lde C,Horan TP,Arakawa T,Yoshida H,Nishikawa S,Itoh Y,Seiki M,Itohara S,Takahashi C,Noda M.The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis.Cell 2001;107:789-800.
    30.Polette M,Nawrocki B,Pintiaux A,Massenat C,Maquoi E,Volders L,Schaaps JP,Birembaut P,Foidart JM.Expression of gelatinases A and B and their tissue inhibitors by cells of early and term human placenta and gestational endometrium.Lab Invest 1994;71:838-46.
    31.高进主编 癌的侵袭与转移一临床研究与基础.北京医科大学中国协和医科大学联合出版社.第一版 1996年.64
    32.Huisman MA,Timmer A,Zeinstra M,Serlier EK,Hanemaaijer R,Goor H,Erwich JJ.Matrix-metalloproteinase activity in first trimester placental bed biopsies in further complicated and uncomplicated pregnancies.Placenta 2004;25:253-8.
    32.Murray M J,Lessey BA.Embryo implantation and tumor metastasis:common pathways of invasion and angiogenesis.Semin Reprod Endocrinol 1999;17:275-90.
    33.Vazquez F,Hastings G,Ortega MA,Lane TF,Oikemus S,Lombardo M,Iruela-Arispe ML.METH-1,a human ortholog of ADAMTS-1,and METH-2 are members of a new family of proteins with angio-inhibitory activity.J Biol Chem 1999;274:23349-57.
    34.Kuno K,Bannai K,Hakozaki M,Matsushima K,Hirose K.The carboxyl-terminal half region of ADAMTS-1 suppresses both tumorigenicity and experimental tumor metastatic potential.Biochem Biophys Res Commun 2004;319:1327-33.
    35.Salazar-Onfray F.Interleukin-10:a cytokine used by tumors to escape immunosurveillance.Med Oncol 1999;16:86-94.
    36.Yi XJ,Jiang HY,Lee KK,O WS,Tang PL,Chow PH.Expression of vascular endothelial growth factor(VEGF) and its receptors during embryonic implantation in the golden hamster(Mesocricetus auratus).Cell Tissue Res 1999;296:339-49.
    37.Porter S,Clark IM,Kevorkian L,Edwards DR.The ADAMTS metalloproteinases.Biochem J 2005;386:15-27.
    38.Kashiwagi M,Tortorella M,Nagase H,Brew K.TIMP-3 is a potent inhibitor of aggrecanase 1(ADAM-TS4) and aggrecanase 2(ADAM-TS5).J Biol Chem 2001;276:12501-4.
    39.Kuno K,Matsushima K.ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type Ⅰ motifs and its spacing region.J Biol Chem 1998;273:13912-7.
    40.Wei P,Zhao YG,Zhuang L,Hurst DR,Ruben S,Sang QX.Protein engineering and properties of human metalloproteinase and thrombospondin 1.Biochem Biophys Res Commun 2002;293:478-88.
    41.Kuno K,Okada Y,Kawashima H,Nakamura H,Miyasaka M,Ohno H,Matsushima K. ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett 2000; 478:241-5.
    42. Sandy JD, Westling J, Kenagy RD, Iruela-Arispe ML, Verscharen C, Rodriguez-Mazaneque JC, Zimmermann DR, Lemire JM, Fischer JW, Wight TN, Clowes AW. Versican V1 proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-l and ADAMTS-4. J Biol Chem 2001; 276:13372-8.
    43. Rodriguez-Manzaneque JC, Westling J, Thai SN, Luque A, Knauper V, Murphy G, Sandy JD, Iruela-Arispe ML. ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem Biophys Res Commun 2002; 293:501-8.
    44. Robker RL, Russell DL, Espey LL, Lydon JP, O'Malley BW, Richards JS. Progesterone-regulated genes in the ovulation process: ADAMTS-l and cathepsin L proteases. Proc Natl Acad Sci U S A 2000; 97:4689-94.
    45. Sandy JD, Neame PJ, Boynton RE, Flannery CR. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J Biol Chem 1991; 266:8683-5.
    46. Plaas AH, Sandy JD. A cartilage explant system for studies on aggrecan structure, biosynthesis and catabolism in discrete zones of the mammalian growth plate. Matrix 1993; 13:135-47.
    47. Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R, Rockwell A, Yang F, Duke JL, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis DM, Ross H, Wiswall BH, Murphy K, Hillman MC, Jr., Hollis GF, Newton RC, Magolda RL, Trzaskos JM, Arner EC. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 1999; 284:1664-6.
    48. Rodriguez-Manzaneque JC, Westling J, Thai SN, Luque A, Knauper V, Murphy G, Sandy JD, Iruela-Arispe ML. ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem Biophys Res Commun 2002; 293:501-8.
    49. Matthews RT, Gary SC, Zerillo C, Pratta M, Solomon K, Arner EC, Hockfield S. Brain-enriched hyaluronan binding (BEHAB)/brevican cleavage in a glioma cell line is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family member. J Biol Chem 2000; 275:22695-703.
    50. Held-Feindt J, Paredes EB, Blomer U, Seidenbecher C, Stark AM, Mehdorn HM, Mentlein R. Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int J Cancer 2006; 118:55-61.
    51. Hurskainen TL, Hirohata S, Seldin MF, Apte SS. ADAM-TS5, ADAM-TS6, and ADAM-TS7, novel members of a new family of zinc metalloproteases. General features and genomic distribution of the ADAM-TS family. J Biol Chem 1999; 274:25555-63.
    1. Cochi SL, Edmonds LE, Dyer K, Greaves WL, Marks JS, Rovira EZ, Preblud SR, Orenstein WA. Congenital rubella syndrome in the United States, 1970-1985. On the verge of elimination. Am J Epidemiol 1989; 129:349-61.
    1. Jenuwein T. The epigenetic magic of histone lysine methylation. Febs J 2006; 273:3121-35.
    2. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99:247-57.
    4. Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, MacLeod AR. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 2003; 33:61-5.
    5. Trinh BN, Long TI, Nickel AE, Shibata D, Laird PW. DNA methyltransferase deficiency modifies cancer susceptibility in mice lacking DNA mismatch repair. Mol Cell Biol 2002; 22:2906-17.
    6. Cooper DN, Krawczak M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum Genet 1989; 83:181-8.
    7. Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol 1987; 196:261-82.
    8. Cottrell SE. Molecular diagnostic applications of DNA methylation technology. Clin Biochem 2004; 37:595-604.
    9. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31:89-97.
    10. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 1997; 13:335-40.
    11. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 2000; 16:168-74.
    12. Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 1999; 80:1312-21.
    13. Bender J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci 1998; 23:252-6.
    14. Singal R, Ginder GD. DNA methylation. Blood 1999; 93:4059-70.
    15. Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 1993; 3:226-31.
    16. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393:386-9.
    17. Strathdee G, Brown R. Aberrant DNA methylation in cancer: potential clinical interventions. Expert Rev Mol Med 2002; 4:1-17.
    18. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet 1988; 78:151-5.
    19. Holliday R, Grigg GW. DNA methylation and mutation. Mutat Res 1993; 285:61-7.
    20. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21:5400-13.
    21. Chan AO, Rashid A. CpG island methylation in precursors of gastrointestinal malignancies. Curr Mol Med 2006; 6:401-8.
    22. Anupam K, Tusharkant C, Gupta SD, Ranju R. Loss of disabled-2 expression is an early event in esophageal squamous tumorigenesis. World J Gastroenterol 2006; 12:6041-5.
    23. Wang JX, Knottnerus AM, Schuit G, Norman RJ, Chan A, Dekker GA. Surgically obtained sperm, and risk of gestational hypertension and pre-eclampsia. Lancet 2002; 359:673-4.
    24. van Dijk M, Mulders J, Poutsma A, Konst AA, Lachmeijer AM, Dekker GA, Blankenstein MA, Oudejans CB. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 2005; 37:514-9.
    25. Kanayama N, Takahashi K, Matsuura T, Sugimura M, Kobayashi T, Moniwa N, Tomita M, Nakayama K. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol Hum Reprod 2002; 8:1129-35.
    26. Knox KS, Baker JC. Genome-wide expression profiling of placentas in the p57Kip2 model of pre-eclampsia. Mol Hum Reprod 2007; 13:251-63.
    27. Chim SS, Tong YK, Chiu RW, Lau TK, Leung TN, Chan LY, Oudejans CB, Ding C, Lo YM. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci U S A 2005; 102:14753-8.
    28. Chelbi ST, Mondon F, Jammes H, Buffat C, Mignot TM, Tost J, Busato F, Gut I, Rebourcet R, Laissue P, Tsatsaris V, Goffinet F, Rigourd V, Carbonne B, Ferre F, Vaiman D. Expressional and epigenetic alterations of placental serine protease inhibitors: SERPINA3 is a potential marker of preeclampsia. Hypertension 2007; 49:76-83.
    29. Thompson RC, Ohlsson K. Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc Natl Acad Sci U S A 1986; 83:6692-6.
    30. Vogelmeier C, Hubbard RC, Fells GA, Schnebli HP, Thompson RC, Fritz H, Crystal RG. Anti-neutrophil elastase defense of the normal human respiratory epithelial surface provided by the secretory leukoprotease inhibitor. J Clin Invest 1991; 87:482-8.
    31. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 1999; 96:8681-6.
    32. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998; 19:187-91.
    33. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996; 93:9821-6.
    34. Colella S, Shen L, Baggerly KA, Issa JP, Krahe R. Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 2003; 35:146-50.
    35. Dupont JM, Tost J, Jammes H, Gut IG. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 2004; 333:119-27.
    36. Deng D, Deng G, Smith MF, Zhou J, Xin H, Powell SM, Lu Y. Simultaneous detection of CpG methylation and single nucleotide polymorphism by denaturing high performance liquid chromatography. Nucleic Acids Res 2002; 30:E13.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.