骨质疏松症和良性家族性成年人肌阵挛癫痫的基因定位和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对具有复杂遗传模式和常染色体显性遗传模式的两种疾病—骨质疏松症和良性家族性成年人肌阵挛癫痫—进行了基因定位与鉴定研究。
     关于骨质疏松症,我们运用遗传流行病学研究策略和蛋白质组学研究策略,从两个不同的层面,在中国汉族女性人群中定位和鉴定骨质疏松症的基因。
     1)首先,我们选用了RFLP标记MspI和MS遗传标记(GT)n,采用QTDT程序同时检测了COL1A2基因与中国人群骨密度和骨大小的关联和连锁。MspI位点和(GT)n位点存在紧密的连锁不平衡。检测到以下家庭内关联:MspI与腰椎(p=0.013)、全髋(p=0.053)、大转子(p=0.004)的骨密度,(GT)_(17)与腰椎(p=0.012)、股骨颈(p=0.032)、转子(p=0.023)的骨密度;(GT)_(12)与腰椎(p=0.009)的骨密度;M(GT)_(12)与腰椎(p=0.009)、髋部(p=0.017)、转子(p=0.001)的骨密度;(GT)_(18)与髋部(p=0.053)、股骨颈(p=0.024)的骨密度;m(GT)_(18)与股骨颈(p=0.013)的骨密度。MspI与转子间区(p=0.024)、全髋(p=0.043)的骨大小。除MspI与全髋(p>0.10)骨大小外,以上结果均得到排列检测验证。这些结果表明COL1A2是影响中国女性骨密度和骨大小的QTL。
     2)其次,运用二元方差分析检测了7对基因的14对相互作用对中国女性峰值骨密度的潜在影响。发现,ERP×IL6的相互作用对全髋部(p=0.019),转子间(p=0.016)和股骨颈(p=0.019)的PBM显著。AHSG×IL6对股骨颈PBM也有作用(p=0.046)。携有GGPp的个体,全髋部,转子间和股骨颈的BMD比GGpp的携带者平均要高18.0%,19.5%和14.8%。而GGSS携带者的BMD比GGSs携带者平均要高18.8%。
     3)最重要的是,我们将蛋白质组学研究策略应用于复杂疾病骨质疏松症的研究。应用通过双相电泳和质谱鉴定技术,首次对中国女性高、低峰值骨密度个体的血液单核细胞进行了蛋白表达谱分析和比较,共鉴定了6个差异表达蛋白(色氨酸-天冬氨酸重复蛋白1,肌凝乳蛋白,alpha微管蛋白,ras抑制蛋白1,蛋白酶复合体亚单位5,脯氨酸4-羟化酶),后面5个差异表达蛋白得到Western Blotting验证。蛋白酶复合体亚单位5,脯氨酸4-羟化酶对骨代谢的潜在作用机制有待进一步研究阐明。色氨酸-天冬氨酸重复蛋白1,肌凝乳蛋白,alpha微管蛋白,ras抑制蛋白1与破骨作用有关,它们可能影响穿壁过程(通过调节单核细胞的黏附、变形和迁移)、影响单核细胞分化、影响骨吸收功能(调节破骨细胞足细胞器的形成、黏附和运动),最终导致骨密度的变化。
     关于良性家族性成年人肌阵挛癫痫,我们首次对中国一个BFAME大家系进行了临床诊断和遗传分析。通过候选区域扫描排除了国际上报道的两个基因组区域,通过全基因组扫描鉴定了一个新的基因组区域10p15,并最终将致病基因缩小到6 Mb的区间。遗传学研究结果结合临床特征初步确立中国的该家系属于一个新的BFAME亚型。
     本文的主要创新之处在于,1)首次运用蛋白质组学研究策略对骨质疏松症进行基因表达研究,最终鉴定了6个差异表达蛋白,并初步提出了骨质疏松症的一个发病机制。2)首次对中国的良性家族性成年人肌阵挛癫痫综合征进行基因定位研究,找到了一个新的、不同于国际上已经报道的基因组区域,初步确立了一个新的BFAME亚型。
The present study aims to map and identify genes of two kinds of diseases, i.e. osteoporosis and benign familial adult myoclonus epilepey, the former with complex hetitable mode and the latter with autosomal dominant heritance mode.
     Regarding Osteoporosis, we utilized genetic epidemiology strategy and proteomics study strategy to map and identify the genes, on two levels i. e. DNA and protein levels, for osteoporosis in Chinese Han female populations.
     1) Firstly, we used a RFLP marker MspI and a microsatllite marker (GT) n in COL1A2 genes, and utilized QTDT programs to test association and linkage of this gene with bone mineral density and bone size in Chinese nuclear families. The two markers were in close linkage disequilibrium. We detected the following significant within-family association: MspI and BMD at spine (p = 0. 013), total hip(p = 0. 053), and intertrochanter(p = 0. 004), (GT) 17 and BMD at spine (p = 0. 012) , femoral neck (p = 0. 032) , and trochanter (p = 0. 023); (GT) 12 and BMD at spine (p = 0. 009); M(GT) 12and BMD at spine (p = 0. 009) , total hip (p = 0. 017) , and trochanter (p = 0. 001); (GT) 18 and BMD at total hip (p = 0. 053) , femoral neck (p = 0.024); m(GT)18 and BMD at femoral neck (p = 0. 013). MspI and bone size at intertrochanter (p = 0.024) and total hip (p = 0. 043) . Except MspI and total hip bone size, the above associations were all confirmed by permutation test. These indicated that C0L1A2 is in linkage disequilibrium with QTL underlying BMD and bone size in Chinese Han females.
     2) Secondly, we utilized two-way analysis of variation to test the relationship of 14 pairs of interaction among 7 genes with Chinese females' peak bone mass. We found significant interaction effect of ERP X IL6 on PBM at total hip(P = 0. 019), intertrochanter (P = 0. 016), and femoral neck(P = 0. 019), AHSG×IL6 on femeral neck PBM(P = 0. 046) . Carriers of GGPp have an average of 18. 0%,. 19. 5% and 14. 8% higher BMD at total hip, intertrochanter, and femoral neck than carriers of GGpp. GGSS carriers have an average of 18. 8% higher femoral neck BMD than GGSs carriers.
     3) Most importantly, we utilized the proteomics strategy into the study of complex, disease osteoporosis. Through two dimension electrophorosis combined mass spectrometry, we compared the protein expression profiles of circulating monocytes from Chinese Han females with high vs. low PBM. A total of 96 irredundant proteins were identified. Six of them were confirmed by western blotting for their differential expression in the two samples: WDR1, gelsolin, K-alpha-1 tubulin, RSU1, PSMA5, P4HB. They might be involved in monocytes' attachment, transendothelial movement, and differentiation into osteoclast, thus affect the osteoclastogenesis, and finally lead to BMD variation
     Regarding BFAME, we diagnosed and recruited a large pedigree affected with BFAME, for the first time in Chinese. Firstly, we excluded the two chromosomal.regions previously reported linked to BFAME in Japanese and Italy. Through whole geneome scan and genehunter analysis, we mapped the causative gene in a new chromosomal region 10pl5 and narrowed it within a region spanning 6.0 Mb. Combined the specific clinical features, our results indicated that the pedigree may belong to a new subtype of BFAME.
     The present study represents the first attempt to identify genes for osteoporosis using proteomics strategy, and we successfully identified six interesting proteins which might relative to osteoclastgeneiss, including two new factors, i.e. PSMA5 and P4HB. This study is also the first effort of exploring the specific genetic locus of BFAME in Chinese pedigree. The new genomic region identified in the Chinese pedigree indicates the existences of a third subtype of BFAME.
引文
[1] Kanis JA, Melton LJ, Ⅲ, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res 1994; 9(8): 1137-1141.
    [2] Mazess RB, Barden H, Mautalen C, Vega E. Normalization of spine densitometry. J Bone Miner Res 1994; 9(4):541-548.
    [3] Lotz JC, Hayes WC. The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg Am 1990; 72(5):689-700.
    [4] Vega E, GhiringheUi G, Mautalen C, Rey VG, Scaglia H, Zylberstein C. Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif Tissue Int 1998; 62(5): 465-469.
    [5] Cheng XG, Lowet G, Boonen S et al. Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 1997; 20(3): 213-218.
    [6] Cordey J, Schneider M, Belendez C, Ziegler WJ, Rahn BA, Perren SM. Effect of bone size, not density, on the stiffness of the proximal part of normal and osteoporotic human femora. J Bone Miner Res 1992; 7 Suppl 2:S437-S444.
    [7] Tabensky AD, Williams J, DeLuca V, Briganti E, Seeman E. Bone mass, areal, and volumetric bone density are equally accurate, sensitive, and specific surrogates of the breaking strength of the vertebral body: an in vitro study. J Bone Miner Res 1996; 11(12):1981-1988.
    [8] Edmondston SJ, Singer KP, Day RE, Price RI, Breidahl PD. Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int 1997; 7(2):142-148.
    [9] Sun X, Lei SF, Deng FY et al. Genetic and environmental correlations between bone geometric parameters and body compositions. Calcif Tissue Int 2006; 79(1):43-49.
    [10] Shen H, Long JR, Xiong DH et al. Mapping quantitative trait loci for cross-sectional geometry at the femoral neck. J Bone Miner Res 2005; 20(11):1973-1982.
    [11] Xiong DH, Liu YZ, Liu PY, Zhao LJ, Deng HW. Association analysis of estrogen receptor alpha gene polymorphisms with cross-sectional geometry of the femoral neck in Caucasian nuclear families. Osteoporos Int 2005; 16(12):2113-2122.
    [12] Xiong DH, Shen H, Xiao P et al. Genome-wide scan identified QTLs underlying femoral neck cross-sectional geometry that are novel studied risk factors of osteoporosis. J Bone Miner Res 2006; 21 (3):424-437.
    [13] Sowers MR, Boehnke M, Jannausch ML, Crutchfield M, Corton G, Burns TL. Familiality and partitioning the variability of femoral bone mineral density in women of child-bearing age. Calcif Tissue Int 1992; 50(2):110-114.
    [14] Deng HW, Chen WM, Conway T et al. Determination of bone mineral density of the hip and spine in human pedigrees by genetic and life-style factors. Genet Epidemiol 2000; 19(2): 160-177.
    [15] Deng HW, Livshits G, Yakovenko K et al. Evidence for a major gene for bone mineral density/content in human pedigrees identified via probands with extreme bone mineral density. Ann Hum Genet 2002; 66(Pt 1):61-74.
    [16] Livshits G, Karasik D, Pavlovsky O, Kobyliansky E. Segregation analysis reveals a major gene effect in compact and cancellous bone mineral density in 2 populations. Hum Biol 1999; 71 (2): 155-172.
    [17] Flicker L, Faulkner KG, Hopper JL et al. Determinants of hip axis length in women aged 10-89 years: a twin study. Bone 1996; 18(1): 41-45.
    [18] Heaney RP, Barger-Lux MJ, Davies KM, Ryan RA, Johnson ML, Gong G. Bone dimensional change with age: interactions of genetic, hormonal, and body size variables. Osteoporos Int 1997; 7(5):426-431.
    [19] Deng HW, Deng XT, Conway T, Xu FH, Heaney R, Recker RR. Determination of bone size of hip, spine, and wrist in human pedigrees by genetic and lifestyle factors. J Clin Densitom 2002; 5(1):45-56.
    [20] Shen H, Liu Y, Liu P, Recker RR, Deng HW. Nonreplication in genetic studies of complex diseases-lessons learned from studies of osteoporosis and tentative remedies. J Bone Miner Res 2005; 20(3): 365-376.
    [21] Liu YJ, Shen H, Xiao P et al. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21(10): 1511-1535.
    [22] Ezura Y, Nakajima T, Kajita M et al. Association of molecular variants, haplotypes, and linkage disequilibrium within the human vitamin D-binding protein (DBP) gene with postmenopausal bone mineral density. J Bone Miner Res 2003; 18(9): 1642-1649.
    [23] Dennison EM, Syddall HE, Rodriguez S, Voropanov A, Day IN, Cooper C. Polymorphism in the growth hormone gene, weight in infancy, and adult bone mass. J Clin Endocrinol Metab 2004; 89(10): 4898-4903.
    [24] Iwasaki H, Emi M, Ezura Y et al. Association of a Trp1GSer variation in the gonadotropin releasing hormone signal peptide with bone mineral density, revealed by SNP-dependent PCR typing. Bone 2003; 32(2):185-190.
    [25] Koh JM, Kim DJ, Hong JS et al. Estrogen receptor alpha gene polymorphisms Pvu Ⅱ and Xba Ⅰ influence association between leptin receptor gene polymorphism (Gln223Arg) and bone mineral density in young men. Eur J Endocrinol 2002; 147(6):777-783.
    [26] Bollerslev J, Wilson SG, Dick IM et al. LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 2005; 36(4):599-606.
    [27] Yamada Y, Ando F, Niino N, Shimokata H. Association of polymorphisms of interleukin-6, osteocalcin, and vitamin D receptor genes, alone or in combination, with bone mineral density in community-dwelling Japanese women and men. J Clin Endocrinol Metab 2003; 88(7):3372-3378.
    [28] Lorentzon M, Eriksson AL, Mellstrom D, Ohlsson C. The COMT val158met polymorphism is associated with peak BMD in men. J Bone Miner Res 2004; 19(12):2005-2011.
    [29] Giraudeau FS, McGinnis RE, Gray IC et al. Characterization of common genetic variants in cathepsin K and testing for association with bone mineral density in a large cohort of perimenopausal women from Scotland. J Bone Miner Res 2004; 19(1): 31-41.
    [30] Yamada Y, Ando F, Niino N, Shimokata H. Association of a polymorphism of the dopamine receptor D4 gene with bone mineral density in Japanese men. J Hum Genet 2003; 48(12): 629-633.
    [31] Enattah N, Valimaki VV, Valimaki MJ, Loyttyniemi E, Sahi T, Jarvela I. Molecularly defined lactose malabsorption, peak bone mass and bone turnover rate in young finnish men. Calcif Tissue Int 2004; 75(6): 488-493.
    [32] Yamada Y, Ando F, Niino N, Shimokata H. Association of a polymorphism of the matrix metalloproteinase-1 gene with bone mineral density. Matrix Biol 2002; 21(5):389-392.
    [33] Yamada Y, Ando F, Niino N, Shimokata H. Association of a polymorphism of the matrix metalloproteinase-9 gene with bone mineral density in Japanese men. Metabolism 2004; 53(2): 135-137.
    [34] Heikkinen AM, Niskanen LK, Salmi JA et al. Leucine7 to proline7 polymorphism in prepro-NPY gene and femoral neck bone mineral density in postmenopausal women. Bone 2004; 35(3): 589-594.
    [35] Weiss KM, Clark AG. Linkage disequilibrium and the mapping of complex human traits. Trends Genet 2002; 18(1): 19-24.
    [36] Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 2002; 3(4):299-309.
    [37] Cardon LR, Abecasis GR. Using haplotype blocks to map human complex trait loci. Trends Genet 2003; 19(3):135-140.
    [38] Shifman S, Kuypers J, Kokoris M, Yakir B, Darvasi A. Linkage disequilibrium patterns of the human genome across populations. Hum Mol Genet 2003; 12(7):771-776.
    [39] Neale BM, Sham PC. The future of association studies: gene-based analysis and replication. Am J Hum Genet 2004; 75(3):353-362.
    [40] Doerge RW, Churchill GA. Permutation tests for multiple loci affecting a quantitative character. Genetics 1996; 142(1):285-294.
    [41] McIntyre LM, Martin ER, Simonsen KL, Kaplan NL. Circumventing multiple testing: a multilocus Monte Carlo approach to testing for association. Genet Epidemiol 2000; 19(1):18-29.
    [42] Thomas DC, Witte JS. Point: population stratification: a problem for case-control studies Of candidate-gene associations? Cancer Epidemiol Biomarkers Prev 2002; 11(6): 505-512.
    [43] Wacholder S, Rothman N, Caporaso N. Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prey 2002; 11 (6):513-520.
    [44] Cardon LR, Palmer LJ. Population stratification and spurious allelic association. Lancet 2003; 361 (9357):598-604.
    [45] Freedman ML, Reich D, Penney KL et al. Assessing the impact of population stratification on genetic association studies. Nat Genet 2004; 36(4):388-393.
    [46] Marchini J, Cardon LR, Phillips MS, Donnelly P. The effects of human population structure on large genetic association studies. Nat Genet 2004; 36(5):512-517.
    [47] Helgason A, Yngvadottir B, Hrafnkelsson B, Gulcher J, Stefansson K. An Icelandic example of the impact of population structure on association studies. Nat Genet 2005; 37(1):90-95.
    [48] Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and association: Am J Hum Genet 1996; 59(5):983-989.
    [49] Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52(3):506-516.
    [50] Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55(4):997-1004.
    [51] Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 1999; 65(1):220-228.
    [52] Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265(5181):2037-2048.
    [53] Econs MJ, Koller DL, Hui SL et al. Confirmation of linkage to chromosome 1q for peak vertebral bone mineral density in premenopausal white women. Am J Hum Genet 2004; 74(2):223-228.
    [54] Shen H, Zhang YY, Long JR et al. A genome-wide linkage scan for bone mineral density in an extended sample: evidence for linkage on 11q23 and Ⅹq27. J Med Genet 2004; 41(10):743-751.
    [55] Xu FH, Liu YJ, Deng H et al. A follow-up linkage study for bone size variation in an extended sample. Bone 2004; 35(3):777-784.
    [56] Shultz KL, Donahue LR, Bouxsein ML, Baylink DJ, Rosen CJ, Beamer WG. Congenic strains of mice for verification and genetic decomposition of quantitative trait loci for femoral bone mineral density. J Bone Miner Res 2003; 18(2):175-185.
    [57] Klein RF, Allard J, Avnur Z et al. Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 2004; 303(5655):229-232.
    [58] Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature 2000; 405(6788):827-836.
    [59] Liu Z, Piao J, Pang L et al. The diagnostic criteria for primary osteoporosis and the incidence of osteoporosis in China. J Bone Miner Metab 2002; 20(4): 181-189.
    [60] Cummings SR, Nevitt MC, Browner WS et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1995; 332(12):767-773.
    [61] Deng HW, Xu FH, Davies KM, Heaney R, Recker RR. Differences in bone mineral density, bone mineral content, and bone areal size in fracturing and non-fracturing women, and their interrelationships at the spine and hip. J Bone Miner Metab 2002; 20(6):358-366.
    [62] Gueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G. Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 1995; 10(12):2017-2022.
    [63] Ferrari S, Rizzoli R, Slosman D, Bonjour JP. Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 1998; 83(2):358-361.
    [64] Recker RR, Deng HW. Role of genetics in osteoporosis. Endocrine 2002; 17(1):55-66.
    [65] Langdahl BL, Ralston SH, Grant SF, Eriksen EF. An Sp1 binding site polymorphism in the COLIA1 gene predicts osteoporotic fractures in both men and women. J Bone Miner Res 1998; 13(9):1384-1389.
    [66] MacDonald HM, McGuigan FA, New SA et al. COL1A1 Sp1 polymorphism predicts perimenopausal and early postmenopausal spinal bone loss. J Bone Miner Res 2001; 16(9): 1634-1641.
    [67] Braga V, Sangalli A, Malerba G et al. Relationship among VDR (BsmI and Fold), COLIA1, and CTR polymorphisms with bone mass, bone turnover markers, and sex hormones in men. Calcif Tissue Int 2002; 70(6):457-462.
    [68] Spotila LD, Colige A, Sereda L et al. Mutation analysis of coding sequences for type Ⅰ procollagen in individuals with low bone density. J Bone Miner Res 1994; 9(6):923-932.
    [69] Phillips CL, Bradley DA, Schlotzhauer CL et al. Oim mice exhibit altered femur and incisor mineral composition and decreased bone mineral density. Bone 2000; 27(2):219-226.
    [70] Dalgleish R. The human type Ⅰ collagen mutation database. Nucleic Acids Res 1997; 25(1):181-187.
    [71] Pepe G. A highly polymorphic (ACT)n VNTR (variable nucleotide of tandem repeats) locus inside intron 12 of COL1A2, one of the two genes involved in dominant osteogenesis imperfecta. Hum Mutat 1993; 2(4):300-305.
    [72] Pepe G, Rickards O, Bue C, Martinez-Labarga C, Tartaglia M, De Stefano GF. EcoRI, RsaI, and MspI RFLPs of the COL1A2 gene (type Ⅰ collagen) in the Cayapa, a Native American population of Ecuador. Hum Biol 1994; 66(6):979-989.
    [73] Akai J, Kimura A, Hata RI. Transcriptional regulation of the human type Ⅰ collagen alpha2 (COL1A2) gene bythe combination of two dinucleotide repeats. Gene 1999; 239(1):65-73.
    [74] Sokolov BP, Dzemelinski VV, Kalinin VN. Restriction fragment length polymorphisms of three collagen genes in Russians and Buryats. Hum Hered 1991; 41(1): 57-60.
    [75] Lu SD. Current Protocols for Molecular Biology. 2nd Ed. (in Chinese) ed. Xiehe Medical University Press. Beijing., 1999.
    [76] Abecasis GR, Cardon LR, Cookson WO. A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66(1):279-292.
    [77] Abecasis GR, Cookson WO, Cardon LR. Pedigree tests of transmission disequilibrium. Eur J Hum Genet 2000; 8(7):545-551.
    [78] Fulker DW, Cherny SS, Sham PC, Hewitt JK. Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet 1999; 64(1):259-267.
    [79] Ho NC, Jia L, Driscoll CC, Gutter EM, Francomano CA. A skeletal gene database. J Bone Miner Res 2000; 15(11):2095-2122.
    [80] Risch N, Teng J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 1998; 8(12):1273-1288.
    [81] Deng HW, Chen WM, Recker RR. Population admixture: detection by Hardy-Weinberg test and its quantitative effects on linkage-disequilibrium methods for localizing genes underlying complex traits. Genetics 2001; 157(2):885-897.
    [82] Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273(5281): 1516-1517.
    [83] Ewens WJ, Spielman RS. The transmission/disequilibrium test: history, subdivision, and admixture. Am J Hum Genet 1995; 57(2):455-464.
    [84] Allison DB. Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet 1997; 60(3):676-690.
    [85] Deng HW, Shen H, Xu FH et al. Tests of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res 2002; 17(4):678-686.
    [86] Andrew T, Mak YT, Reed P, MacGregor AJ, Spector TD. Linkage and association for bone mineral density and heel ultrasound measurements with a simple tandem repeat polymorphism near the osteocalcin gene in female dizygotic twins. Osteoporos Int 2002; 13(9):745-754.
    [87] Buckwalter JA, Cooper RR. Bone structure and function. Instr Course Lect 1987; 36:27-48.
    [88] Liu ZH. Osteoporosis. 1st Ed.(in Chinese) ed. Science Press. Beijing., 1998.
    [89] Weeks DE, Lathrop GM. Polygenic disease: methods for mapping complex disease traits. Trends Genet 1995; 11(12):513-519.
    [90] Duncan EL, Brown MA, Sinsheimer Jet al. Suggestive linkage of the parathyroid receptor type 1 to osteoporosis. J Bone Miner Res 1999; 14(12):1993-1999.
    [91] Devoto M, Shimoya K, Caminis J et al. First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet 1998; 6(2):151-157.
    [92] Liu YZ, Liu YJ, Recker RR, Deng HW. Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 2003; 177(2):147-196.
    [93] Deng HW, Li J, Recker RR. Effect of polygenes on Xiong's transmission disequilibrium test of a QTL in nuclear families with multiple children. Genet Epidemiol 2001; 21 (3): 243-265.
    [94] Deng HW, Li J. The effects of selected sampling on the transmission disequilibrium test of a quantitative trait locus. Genet Res 2002; 79(2):161-174.
    [95] Cummings SR, Kelsey JL, Nevitt MC, O'Dowd KJ. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 1985; 7:178-208.
    [96] Audi L, Garcia-Ramirez M, Carrascosa A. Genetic determinants of bone mass. Horm Res 1999; 51(3):105-123.
    [97] Deng FY, Liu MY, Li MX et al. Tests of linkage and association of the COL 1A2 gene with bone phenotypes' variation in Chinese nuclear families. Bone 2003; 33(4):614-619.
    [98] Liu XH, Liu YJ, Jiang DK et al. No evidence for linkage and/or association of human alpha2-HS glycoprotein gene with bone mineral density variation in Chinese nuclear families. CalcifTissue Int 2003; 73(3):244-250.
    [99] Qin YJ, Shen H, Huang QR et al. Estrogen receptor alpha gene polymorphisms and peak bone density in Chinese nuclear families. J Bone Miner Res 2003; 18(6): 1028-1035.
    [100] Cardon LR, Garner C, Bennett ST et al. Evidence for a major gene for bone mineral density in idiopathic osteoporotic families. J Bone Miner Res 2000; 15(6):1132-1137.
    [101] Flicker L, Hopper JL, Rodgers L, Kaymakci B, Green RM, Wark JD. Bone density determinants in elderly women: a twin study. J Bone Miner Res 1995; 10(11): 1607-1613.
    [102] Jian WX, Long JR, Deng HW. High heritability of bone size at the hip and spine in Chinese. J Hum Genet 2004; 49(2):87-91.
    [103] Liu YZ, Liu YJ, Recker RR, Deng HW. Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 2003; 177(2): 147-196.
    [104] Hansen MA, Overgaard K, Riis BJ, Christiansen C. Role of peak bone mass and bone loss in postmen opausal osteoporosis: 12 year study. BMJ 1991; 303(6808):961-964.
    [105] Cummings SR, Kelsey JL, Nevitt MC, O'Dowd KJ. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 1985; 7:178-208.
    [106] Li JL, Deng H, Lai DB et al. Toward high-throughput genotyping: dynamic and automatic software for manipulating large-scale genotype data using fluorescently labeled dinucleotide markers. Genome Res 2001; 11(7):1304-1314.
    [107] Lei SF, Deng FY, Li MX, Dvornyk V, Deng HW. Bone mineral density in elderly Chinese: effects of age, sex, weight, height, and body mass index. J Bone Miner Metab 2004; 22(1):71-78.
    [108] Zhou XG, Liu YZ, Li MX et al. Parathyroid hormone gene with bone phenotypes in Chinese. Biochem Biophys Res Commun 2003; 307(3):666-671.
    [109] Gebhardt F, Zanker KS, Brandt B. Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem 1999; 274(19): 13176-13180.
    [110] Okladnova O, Syagailo YV, Tranitz Met al. A promoter-associated polymorphic repeat modulates PAX-6 expression in human brain. Biochem Biophys Res Commun 1998; 248(2):402-405.
    [111] Suuriniemi M, Mahonen A, Kovanen V, Alen M, Cheng S. Relation of PvuⅡ site polymorphism in the COL 1A2 gene to the risk of fractures in prepubertal Finnish girls. Physiol Genomics 2003; 14(3):217-224.
    [112] Willing MC, Tomer JC, Burns TL et al. Gene polymorphisms, bone mineral density and bone mineral content in young children: the Iowa Bone Development Study. Osteoporos Int 2003; 14(8):650-658.
    [113] Qin YJ, Zhang ZL, Huang QR et al. Association of vitamin D receptor and estrogen receptor-alpha gene polymorphism with peak bone mass and bone size in Chinese women. Acta Pharmacol Sin 2004; 25(4):462-468.
    [114] van dS, I, de Muinck Keizer-Schrama SM, Pols HA, Lequin MH, Krenning EP, Uitterlinden AG. Collagen Ialphal polymorphism is associated with bone characteristics in Caucasian children and young adults. Calcif Tissue Int 2002; 71 (5): 393-399.
    [115] Long JR, Liu PY, Lu Y et al. Association between COL1A1 gene polymorphisms and bone size in Caucasians. Eur J Hum Genet 2004; 12(5): 383-388.
    [116] Dequeker J, Nijs J, Verstraeten A, Geusens P, Gevers G. Genetic determinants of bone mineral content at the spine and radius: a twin study. Bone 1987; 8(4): 207-209.
    [117] Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC, Jr. Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 1991; 6(6):561-567.
    [118] Rubin LA, Hawker GA, Peltekova VD, Fielding LJ, Ridout R, Cole DE. Determinants of peak bone mass: clinical and genetic analyses in a young female Canadian cohort. J Bone Miner Res 1999; 14(4):633-643.
    [119] Tanaka S, Haji M, Takayanagi R, Tanaka S, Sugioka Y, Nawata H. 1,25-Dihydroxyvitamin D3 enhances the enzymatic activity and expression of the messenger ribonucleic acid for aromatase cytochrome P450 synergistically with dexamethasone depending on the vitamin D receptor level in cultured human osteoblasts. Endocrinology 1996; 137(5):1860-1869.
    [120] Subramaniam M, Colvard D, Keeting PE, Rasmussen K, Riggs BL, Spelsberg TC. Glucocorticoid regulation of alkaline phosphatase, osteocalcin, and proto-oncogenes in normal human osteoblast-like cells. J Cell Biochem 1992; 50(4):411-424.
    [121] Rifas L, Kenney JS, Marcelli M et al. Production ofinterleukin-6 in human osteoblasts and human bone marrow stromal cells: evidence that induction by interleukin-1 and tumor necrosis factor-alpha is not regulated by ovarian steroids. Endocrinology 1995; 136(9): 4056-4067.
    [122] Willing M, Sowers M, Aron D et al. Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res 1998; 13(4):695-705.
    [123] Deng HW, Li J, Li JL et al. Change of bone mass in postmenopausal Caucasian women with and without hormone replacement therapy is associated with vitamin D receptorand estrogen receptor genotypes. Hum Genet 1998; 103(5):576-585.
    [124] Patel MS, Cole DE, Smith JD et al, Alleles of the estrogen receptor alpha-gene and an estrogen receptor cotranscriptional activator gene, amplified in breast cancer-1 (AIB1), are associated with quantitative calcaneal ultrasound. J Bone Miner Res 2000; 15 (11): 2231-2239.
    [125] Nasu M, Sugimoto T, Kaji H, Chihara K. Estrogen modulates osteoblast proliferation and function regulated by parathyroid hormone in osteoblastic SaOS-2 cells: role of insulin-like growth factor (IGF)-I and IGF-binding protein-5. J Endocrinol 2000; 167(2):305-313.
    [126] Uitterlinden AG, Weel AE, Burger H et al. Interaction between the vitamin D receptor gene and collagen type Ialphal gene in susceptibility for fracture. J Bone Miner Res 2001; 16(2):379-385.
    [127] Garcia-Giralt N, Nogues X, Enjuanes Aet al. Two new single-nucleotide polymorphisms in the COL1A1 upstream regulatory region and their relationship to bone mineral density. J Bone Miner Res 2002; 17(3): 384-393.
    [128] Chiba S, Un-No M, Neer RM, Okada K, Serge GV, Lee K. Parathyroid hormone induces interleukin-6 gene expression in bone stromal cells of young rats. J Vet Med Sci 2002; 64(7):641-644.
    [129] Turner RT, Colvard DS, Spelsberg TC. Estrogen inhibition of periosteal bone formation in rat long bones: down-regulation of gene expression for bone matrix proteins. Endocrinology 1990; 127(3): 1346-1351.
    [130] Kurebayashi S, Miyashita Y, Hirose T, Kasayama S, Akira S, Kishimoto T. Characterization of mechanisms of interleukin-6 generepression by estrogen receptor. J Steroid Biochem Mol Biol 1997; 60(1-2): 11-17.
    [131] Angeli A, Dovio A, Sartori ML et al. Interactions between glucocorticoids and cytokines in the bone microenvironment. Ann N Y Acad Sci 2002; 966:97-107.
    [132] Lei SF, Liu YZ, Deng FY, Li YM, Li MX, Deng HW. Association and linkage analyses of interleukin-6 gene 634C/G polymorphism and bone phenotypes in Chinese. J Bone Miner Metab 2005; 23(4):323-328.
    [133] Yao WJ, Wu CH, Wang ST, Chang CJ, Chiu NT, Yu CY. Differential changes in regional bone mineral density in healthy Chinese: age-related and sex-dependent. Calcif Tissue Int 2001; 68(6):330-336.
    [134] Jiang D K, CXD, Li M X et al. No evidence of association of the osteocalcin gene Hind Ⅲ polymorphism with bone mineral density in Chinese women. J Musculoskelet Neuronal Interact. In press.
    [135] Girasole G, Jilka RL, Passeri G et al. 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest 1992; 89(3): 883-891.
    [136] Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995; 332(5): 305-311.
    [137] Pacifici R. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 1996; 11(8): 1043-1051.
    [138] Abrahamsen B, Bonnevie-Nielsen V, Ebbesen EN, Gram J, Beck-Nielsen H. Cytokines and bone loss in a 5-year longitudinal study—hormone replacement therapy suppresses serum soluble interleukin-6 receptor and increases interleukin-1-receptor antagonist: the Danish Osteoporosis Prevention Study. J Bone Miner Res 2000; 15(8):1545-1554.
    [139] Stein B, Yang MX. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 1995; 15(9):4971-4979.
    [140] Pederson L, Kremer M, Foged NT et al. Evidence of a correlation of estrogen receptor level and avian osteoclast estrogen responsiveness. J Bone Miner Res 1997; 12(5):742-752.
    [141] Camp NJ, Farnham JM. Correcting for multiple analyses in genomewide linkage studies. Ann Hum Genet 2001; 65(Pt 6):577-582.
    [142] Black D, Cummings SR, Melton LJ. Appendicular bone mineral and a woman's lifetime risk of hip fracture. J Bone Miner Res 1992; 7: 639-646.
    [143] Cummings SR, Nevitt MC, Browner WS et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1995; 332(12):767-773.
    [144] Hui SL, Slemenda CW, Johnston CC, Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 1988; 81:1804-1809.
    [145] Nevitt MC, Johnell O, Black DM, Ensrud K, Genant HK, Cummings SR. Bone mineral density predicts non-spine-fractures in very elderly women. Study of Osteoporotic Fractures Research Group. Osteoporos Int 1994; 4(6):325-331.
    [146] Cooper C, Atkinson EJ, O'Fallon WM, Melton LJ, Ⅲ. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985-1989. J Bone Miner Res 1992; 7(2):221-227.
    [147] Cummings SR, Black DM, Rubin SM. Lifetime risks of hip, Colles', or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med 1989; 149(11):2445-2448.
    [148] Cummings SR, Rubin SM, Black D. The future of hip fractures in the United States-numbers, costs, and potential effects ofpostmenopausal estrogen. Clin Orthop 1990; 252:163-166.
    [149] Melton LJ, Ⅲ, Kan SH, Frye MA, Wahner HW, O'Fallon WM, Riggs BL. Epidemiology of vertebral fractures in women. Am J Epidemiol 1989; 129(5): 1000-1011.
    [150] Melton LJ, Ⅲ. How many women have osteoporosis now? J Bone Miner Res 1995; 10(2):175-177.
    [151] Ross PD, Norimatsu H, Davis JW et al. A comparison of hip fracture incidence among native Japanese, Japanese Americans, and American Caucasians. Am J Epidemiol 1991; 133(8):801-809.
    [152] Tylavsky FA, Bortz AD, Hancock RL, Anderson JJ. Familial resemblance of radial bone mass between premenopausal mothers and their college-age daughters. Calcif Tissue Int 1989; 45(5):265-272.
    [153] Seeman E, Hopper JL, Bach LA et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 1989; 320(9):554-558.
    [154] Peacock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determination of bone mass in adults. A twin study. J Clin Invest 80, 706-710. 1987.
    [155] Jilka RL. Cytokines, bone remodeling, and estrogen deficiency: a 1998 update. Bone 1998; 23(2):75-81.
    [156] Zambonin ZA, Teti A, Primavera MV. Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci 1984; 66:335-342.
    [157] Horton MA, Spragg JH, Bodary SC, Helfrich MH. Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone 1994; 15(6):639-646.
    [158] Zallone AZ, Teti A, Primavera MV. Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci 66, 335-342. 1984.
    [159] Fujikawa Y, Quinn JM, Sabokbar A, McGee JO, Athanasou NA. The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 1996; 137(9):4058-4060.
    [160] Higuchi S, Tabata N, Tajima M et al, Induction of human osteoclast-like cells by treatment of blood monocytes with anti-fusion regulatory protein-1/CD98 monoclonal antibodies. J Bone Miner Res 1998; 13(1): 44-49.
    [161] Matayoshi A, Brown C, DiPersio JF et al. Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci U S A 1996; 93(20):10785-10790.
    [162] Purton LE, Lee MY, Torok-Storb B. Normal human peripheral blood mononuclear cells mobilized with granulocyte colony-stimulating factor have increased osteoclastogenic potential compared to nonmobilized blood. Blood 1996; 87(5): 1802-1808.
    [163] Udagawa N, Takahashi N, Akatsu T et al. Origin ofosteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A 1990; 87(18):7260-7264.
    [164] Quinn JM, Neale S, Fujikawa Y, McGee JO, Athanasou NA. Human osteoclast formation from blood monocytes, peritoneal macrophages, and bone marrow cells. Calcif Tissue Int 1998; 62(6):527-531.
    [165] Nathan CF. Secretory products ofmacrophages. J Clin Invest 1987; 79(2):319-326.
    [166] Cohen-Solal ME, Graulet AM, Denne MA, Gueris J, Baylink D, de Vernejoul MC. Peripheral monocle culture supernatants of menopausal women can induce bone resorption: involvement of cytokines. J Clin Endocrinol Metab 1993; 77(6): 1648-1653.
    [167] Cohen-Solal ME, Boitte F, Bernard-Poenaru O et al. Increased bone resorbing activity of peripheral monocyte culture supernatants in elderly women. J Clin Endocrinol Metab 1998; 83(5): 1687-1690.
    [168] Liu YZ, Dvornyk V, Lu Y et al. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J Biol Chem 2005; 280(32):29011-29016.
    [169] Carrascosa A, Gussinye M, Yeste D, del Rio L, Audi L. Bone mass acquisition during infancy, childhood and adolescence. Acta Paediatr Suppl 1995; 411:18-23.
    [170] Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1991; 73(3):555-563.
    [171] Hellmann E. [Do aerobic sporers contain endotoxins which can be activated by trypsin digestion?]. Zentralbl Bakteriol [Orig A] 1972; 221(2):206-220.
    [172] Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999; 20(18):3551-3567.
    [173] Horton MA, Spragg JH, Bodary SC, Helfrich MH. Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone 1994; 15(6):639-646.
    [174] Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 1994; 55(3):273-286.
    [175] Fujikawa Y, Quinn JM, Sabokbar A, McGee JO, Athanasou NA. The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 1996; 137(9): 4058-4060.
    [176] Jevon M, Hirayama T, Brown MA et al. Osteoclast formation from circulating precursors in osteoporosis. Scand J Rheumatol 2003; 32(2):95-100.
    [177] Bernal SD, Stahel RA, Cytoskeleton-associated proteins: their role as cellular integrators in the neoplastic process. Crit Rev Oncol Hematol 1985; 3(3):191-204.
    [178] Stamenovic D, Ingber DE. Models of cytoskeletal mechanics of adherent cells. Biomech Model Mechanobiol 2002; 1(1):95-108.
    [179] Cassimeris LU, Wadsworth P, Salmon ED. Dynamics of microtubule depolymerization in monocytes. J Cell Biol 1986; 102(6):2023-2032.
    [180] Herblot S, Vekris A, Rouzaut A et al. Selection of down-regulated sequences along the monocytic differentiation of leukemic HL60 cells. FEBS Lett 1997; 414(1): 146-152.
    [181] Linder S, Hufner K, Wintergerst U, Aepfelbacher M. Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages. J Cell Sci 2000; 113 Pt 23:4165-4176.
    [182] Babb SG, Matsudaira P, Sato M, Correia I, Lira SS. Fimbrin in podosomes of monocyte-derived osteoclasts. Cell Motil Cytoskeleton 1997; 37(4):308-325.
    [183] Lakkakorpi PT, Vaananen HK. Kinetics of the osteoclast cytoskeleton during the resorption cycle in vitro. J Bone Miner Res 1991; 6(8):817-826.
    [184] Yin HL. Gelsolin: calcium-and polyphosphoinositide-regulated actin-modulating protein. Bioessays 1987; 7(4):176-179.
    [185] Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin HL, Hayoz D. Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 2004; 61(19-20):2614-2623.
    [186] Chaponnier C, Yin HL, Stossel TR Reversibility of gelsolin/actin interaction in macrophages. Evidence of Ca2+-dependent and Ca2+-independent pathways. J Exp Med 1987; 165(1):97-106.
    [187] Yin HL, Albrecht JH, Fattoum A. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol 1981; 91(3 Pt 1): 901-906.
    [188] Stossel TP, Hartwig JH, Yin HL, Southwick FS, Zaner KS. The motor of leukocytes. Fed Proc 1984; 43 (12):2760-2763.
    [189] Hartwig JH. Actin filament architecture and movements in macrophage cytoplasm. Ciba Found Symp 1986; 118:42-53.
    [190] Hartwig JH, Chambers KA, Stossel TP. Association of gelsolin with actin filaments and cell membranes of macrophages and platelets. J Cell Biol 1989; 108(2):467-479.
    [191] Chaponnier C, Gabbiani G. Gelsolin modulation in epithelial and stromal cells of mammary carcinoma. Am J Pathol 1989; 134(3):597-603.
    [192] Chaponnier C, Kocher O, Gabbiani G. Modulation of gelsolin content in rat aortic smooth muscle cells during development, experimental intimal thickening and culture. An immunohistochemical and biochemical study. Eur J Biochem 1990; 190(3):559-565.
    [193] Arora PD, McCulloch CA. Dependence of fibroblast migration on actin severing activity of gelsolin. J Biol Chem 1996; 271 (34):20516-20523.
    [194] Brady ST, Lasek RJ, Allen RD, Yin HL, Stossel TE Gelsolin inhibition of fast axonal transport indicates a requirement for actin micro filaments. Nature 1984; 310(5972):56-58.
    [195] Arora PD, Chan MW, Anderson RA, Janmey PA, McCulloch CA. Separate functions of gelsolin mediate sequential steps of collagen phagocytosis. Mol Biol Cell 2005; 16(11):5175-5190.
    [196] Cunningham CC, Stossel TP, Kwiatkowski DJ. Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 1991; 251 (4998): 1233-1236.
    [197] Kwiatkowski DJ. Predominant induction of gelsolin and actin-binding protein during myeloid differentiation. J Biol Chem 1988; 263(27): 13857-13862.
    [198] Chellaiah M, Kizer N, Silva M, Alvarez U, Kwiatkowski D, Hruska KA. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. J Cell Biol 2000; 148(4):665-678.
    [199] Akisaka T, Yoshida H, Inoue S, Shimizu K. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast. J Bone Miner Res 2001; 16(7): 1248-1255.
    [200] Chellaiah MA. Regulation of actin ring formation by rho GTPases in osteoclasts. J Biol Chem 2005; 280(38):32930-32943.
    [201] Duong LT, Lakkakorpi P, Nakamura I, Rodan GA. Integrins and signaling in osteoclast function. Matrix Biol 2000; 19(2):97-105.
    [202] Chellaiah MA, Biswas RS, Yuen D, Alvarez UM, Hruska KA. Phosphatidylinositol 3,4,5-trisphosphate directs association of Src homology 2-containing signaling proteins with gelsolin. J Biol Chem 2001; 276(50):47434-47444.
    [203] Fujibuchi T, Abe Y, Takeuchi T et al. AIP1/WDR1 supports mitotic cell rounding. Biochem Biophys Res Commun 2005; 327(1):268-275.
    [204] Oh SH, Adler HJ, Raphael Y, Lomax MI. WDR1 colocalizes with ADF and actin in the normal and noise-damaged chick cochlea. J Comp Neurol 2002; 448(4):399-409.
    [205] Horton MA, Spragg JH, Bodary SC, Helfrich MH. Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone 1994; 15(6):639-646.
    [206] Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 1994; 55(3):273-286.
    [207] Parfitt AM. Osteoclast precursors as leukocytes: Importance of the area code. Bone 1998; 23(6):491-494.
    [208] Perez Castrillon JL, Garcia Palomo JD, Perez Arellano JL, Jimenez LA. Leukocyte chemotaxis. Allergol Immunopathol (Madr) 1988; 16(4):279-283.
    [209] Tsuda T, Cutler ML. Human RSU1 is highly homologous to mouse Rsu-1 and localizes to human chromosome 10. Genomics 1993; 18(2):461-462.
    [210] Chunduru S, Kawami H, Gullick R, Monacci WJ, Dougherty G, Cutler ML. Identification of an alternatively spliced RNA for the Ras suppressor RSU-1 in human gliomas. J Neurooncol 2002; 60(3):201-211.
    [211] Masuelli L, Ettenberg S, Vasaturo F, Vestergaard-Sykes K, Cutler ML. The ras suppressor, RSU-1, enhances nerve growth factor-induced differentiation of PC 12 cells and induces p21CIP expression. Cell Growth Differ 1999; 10(8):555-564.
    [212] Vasaturo F, Dougherty GW, Cutler ML. Ectopic expression of Rsu-1 results in elevation of p21CIP and inhibits anchorage-independent growth of MCF7 breast cancer cells. Breast Cancer Res Treat 2000; 61(1):69-78.
    [213] Dougherty GW, Chopp T, Qi SM, Cutler ML. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions. Exp Cell Res 2005; 306(1):168-179.
    [214] Helaakoski T, Annunen P, Vuori K, MacNeil IA, Pihlajaniemi T, Kivirikko KI. Cloning, baculovirus expression, and characterization of a second mouse prolyl 4-hydroxylase alpha-subunit isoform: formation of an alpha 2 beta 2 tetramer with the protein disulfide-isomerase/beta subunit. Proc Natl Acad Sci U S A 1995; 92(10):4427-4431.
    [215] Kukkola L, Hieta R, Kivirikko KI, Myllyharju J. Identification and characterization of a third human, rat, and mouse collagen prolyl 4-hydroxylase isoenzyme. J Biol Chem 2003; 278(48):47685-47693.
    [216] Sliskovic I, Raturi A, Mutus B. Characterization of the S-denitrosation activity of protein disulfide isomerase. J Biol Chem 2005; 280(10):8733-8741.
    [217] Tian R, Li SJ, Wang DL, Zhao Z, Liu Y, He RQ. The acidic C-terminal domain stabilizes the chaperone function of protein disulfide isomerase. J Biol Chem 2004; 279(47):48830-48835
    [218] Zhao TJ, Ou WB, Xie Q, Liu Y, Yan YB, Zhou HM. Catalysis of creatine kinase refolding by protein disulfide isomerase involves disulfide cross-link and dimer to tetramer switch. J Biol Chem 2005; 280(14):13470-13476.
    [219] Wilson R, Lees JF, Bulleid NJ. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J Biol Chem 1998; 273(16):9637-9643.
    [220] Chessler SD, Byers PH. Defective folding and stable association with protein disulfide isomerase/prolyl hydroxylase of type Ⅰ procollagen with a deletion in the pro alpha 2(Ⅰ) chain that preserves the Gly-X-Y repeat pattern. J Biol Chem 1992; 267(11):7751-7757.
    [221] Walmsley AR, Batten MR, Lad U, Bulleid NJ. Intracellular retention of procollagen within the endoplasmic reticulum is mediated by prolyl 4-hydroxylase. J Biol Chem 1999; 274(21):14884-14892.
    [222] Mezghrani A, Courageot J, Mani JC, Pugniere M, Bastiani P, Miquelis R. Protein-disulfide isomerase (PDI) in FRTL5 cells, pH-dependent thyroglobulin/PDI interactions determine a novel PDI function in the post-endoplasmic reticulum of thyrocytes. J Biol Chem 2000; 275(3): 1920-1929.
    [223] Wetterau JR, Combs KA, McLean LR, Spinner SN, Aggerbeck LP. Protein disulfide isomerase appears necessary to maintain the catalytically active structure of the microsomal triglyceride transfer protein. Biochemistry 1991; 30(40):9728-9735.
    [224] Ko HS, Uehara T, Nomura Y. Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. J Biol Chem 2002; 277(38):35386-35392.
    [225] Dalton WS. The proteasome. Semin Oncol 2004; 31(6 Suppl 16):3-9.
    [226] Wu X. Neurology. (in Chinese). ed. Beijing: The People's Military Medical Press, 2001.
    [227] Saka E, Saygi S. Familial adult onset myoclonic epilepsy associated with migraine. Seizure 2000; 9(5):344-346.
    [228] Manabe Y, Narai H, Warita Het al. Benign adult familial myoclonic epilepsy (BAFME) with night blindness. Seizure 2002; 11(4):266-268.
    [229] Ikeda A, Kakigi R, Funai N, Neshige R, Kuroda Y, Shibasaki H. Cortical tremor: a variant of cortical reflex myoclonus. Neurology 1990; 40(10): 1561-1565.
    [230] Sano A. [Benign adult familial myoclonic epilepsy(BAFME)]. Ryoikibetsu Shokogun Shirizu 2002;(37 Pt 6):300-302.
    [231] Okino S. Familial benign myoclonus epilepsy of adult onset: a previously unrecognized myoclonic disorder. J Neurol Sci 1997; 145(1):113-118.
    [232] Elia M, Musumeci SA, Ferri R et al. Familial cortical tremor, epilepsy, and mental retardation: a distinct clinical entity? Arch Neurol 1998; 55(12): 1569-1573.
    [233] Guerrini R, Bonanni P, Patrignani A et al. Autosomal dominant cortical myoclonus and epilepsy (ADCME) with complex partial and generalized seizures: A newly recognized epilepsy syndrome with linkage to chromosome 2p11.1-q12.2. Brain 2001; 124(Pt 12):2459-2475.
    [234] de Falco FA, Striano P, de FA et al. Benign adult familial myoclonic epilepsy: genetic heterogeneity and allelism with ADCME. Neurology 2003; 60(8):1381-1385.
    [235] Kuwano A, Takakubo F, Morimoto Yet al. Benign adult familial myoclonus epilepsy (BAFME): an autosomal dominant form not linked to the dentatorubral pallidoluysian atrophy (DRPLA) gene. J Med Genet 1996; 33(1):80-81.
    [236] Plaster NM, Uyama E, Uchino Met al. Genetic localization of the familial adult myoclonic epilepsy (FAME) gene to chromosome 8q24. Neurology 1999; 53(6): 1180-1183.
    [237] Mikami M, Yasuda T, Terao A et al. Localization of a gene for benign adult familial myoclonic epilepsy to chromosome 8q23.3-q24.1. Am J Hum Genet 1999; 65(3):745-751.
    [238] Labauge P, Amer LO, Simonetta-Moreau Met al. Absence of linkage to 8q24 in a European family with familial adult myoclonic epilepsy (FAME). Neurology 2002; 58(6):941-944.
    [239] Shimizu A, Asakawa S, Sasald T et al. A novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains: a candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3-q24.1. Biochem Biophys Res Commun 2003; 309(1):143-154.
    [240] Sano A, Mikami M, Nakamura M, Ueno S, Tanabe H, Kaneko S. Positional candidate approach for the gene responsible for benign adult familial myoclonic epilepsy. Epilepsia 2002; 43 Suppl 9:26-31.
    [241] Blandfort M, Tsuboi T, Vogel F. Genetic counseling in the epilepsies. I. Genetic risks. Hum Genet 1987; 76(4):303-331.
    [242] Berkovic SF, Howell RA, Hay DA, Hopper JL. Epilepsies in twins: genetics of the major epilepsy syndromes. Ann Neurol 1998; 43(4):435-445.
    [243] Steinlein OK. Channelopathies can cause epilepsy in man. Eur J Pain 2002; 6 Suppl A:27-34.
    [244] DiMauro S, Andreu AL, De V. Mitochondrial disorders. J Child Neurol 2002; 17 Suppl 3:3S35-3S45.
    [245] Singh R, Gardner RJ, Crossland KM, Scheffer IE, Berkovic SF. Chromosomal abnormalities and epilepsy: a review for clinicians and gene hunters. Epilepsia 2002; 43 (2): 127-140.
    [246] Lerche H, Jurkat-Rott K, Lehmann-Horn F. Ion channels and epilepsy. Am J Med Genet 2001; 106(2): 146-159.
    [247] Campos-Castello J, Canelon de LM, Briceno-Cuadros S, Villalibre-Valderrey I. [Epileptic channelopathies]. Rev Neurol 2002; 34(2):145-149.
    [248] Moulard B, Picard F, le HS et al. Ion channel variation causes epilepsies. Brain Res Brain Res Rev 2001; 36(2-3):275-284.
    [249] Kohling R. Voltage-gated sodium channels in epilepsy. Epilepsia 2002; 43(11): 1278-1295.
    [250] Scheffer IE, Berkovic SF. Genetics of the epilepsies. Curr Opin Pediatr 2000; 12(6):536-542.
    [251] Sugawara T, Tsurubuchi Y, Fujiwara T et al. Navl.1 channels with mutations of severe myoclonic epilepsy in infancy display attenuated currents. Epilepsy Res 2003; 54(2-3):201-207.
    [252] Sugawara T, Tsurubuchi Y, Agarwala KL et al. A missense mutation of the Na+ channel alpha Ⅱ subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A 2001; 98(11):6384-6389.
    [253] Gerard F, Pereira S, Robaglia-Schlupp A, Genton P, Szepetowski P. Clinical and genetic analysis of a new multigenerational pedigree with GEFS+ (Generalized Epilepsy with Febrile Seizures Plus). Epilepsia 2002; 43(6):581-586.
    [254] Wallace RH, Scheffer IE, Parasivam G et al. Generalized epilepsy with febrile seizures plus: mutation of the sodium channel subunit SCN1B. Neurology 2002; 58(9): 1426-1429.
    [255] Wallace RH, Scheffer IE, Barnett S et al. Neuronal sodium-channel alphal-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet 2001; 68(4):859-865.
    [256] Heilstedt HA, Burgess DL, Anderson AE et al. Loss of the potassium channel beta-subunit gene, KCNAB2, is associated with epilepsy in patients with 1p36 deletion syndrome. Epilepsia 2001; 42(9): 1103-1111.
    [257] Lee WL, Biervert C, Hallmann K, Tay A, Dean JC, Steinlein OK. A KCNQ2 splice site mutation causing benign neonatal convulsions in a Scottish family. Neuropediatrics 2000; 31(1): 9-12.
    [258] Vijai J, Kapoor A, Ravishankar HM et al. Genetic association analysis of KCNQ3 and juvenile myoclonic epilepsy in a South Indian population. Hum Genet 2003; 113(5):461-463.
    [259] Chioza B, Osei-Lah A, Wilkie H et al. Suggestive evidence for association of two potassium channel genes with different idiopathic generalised epilepsy syndromes. Epilepsy Res 2002; 52(2): 107-116.
    [260] Chioza B, Osei-Lah A, Nashef Let al. Haplotype and linkage disequilibrium analysis to characterise a region in the calcium channel gene CACNA 1A associated with idiopathic generalised epilepsy. Eur J Hum Genet 2002; 10(12):857-864.
    [261] Escayg A, De WM, Lee DD et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66(5): 1531-1539.
    [262] Haug K, Warnstedt M, Alekov AK et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat Genet 2003; 33(4):527-532.
    [263] Cossette P, Liu L, Brisebois K et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 2002; 31(2): 184-189.
    [264] Gambardella A, Manna I, Labate A et al. GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy. Neurology 2003; 60(4):560-563.
    [265] Baulac S, Huberfeld G, Gourfinkel-An Iet al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 2001; 28(1):46-48.
    [266] Feucht M, Fuchs K, Pichlbauer E et al. Possible association between childhood absence epilepsy andthe gene encoding GABRB3. Biol Psychiatry 1999; 46(7):997-1002.
    [267] Chou IC, Lee CC, Huang CC et al. Association of the neuronal nicotinic acetylcholine receptor subunit alpha4 polymorphisms with febrile convulsions. Epilepsia 2003; 44(8): 1089-1093.
    [268] Phillips HA, Favre I, Kirkpatrick M et al. CHRNB2 is the second acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Am J Hum Genet 2001; 68(1):225-231.
    [269] Charlier C, Singh NA, Ryan SG et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998; 18(1):53-55.
    [270] Arcos-Burgos M, Palacio LG, Mora O, Sanchez JL, Jimenez M, Jimenez I. [Molecular genetic aspects of the susceptibility to develop idiopathic epilepsy]. Rev Neurol 2000; 30(2):173-177.
    [271] Barrantes FJ, Aztiria E, Rauschemberger MB, Vasconsuelo A. The neuronal nicotinic acetylcholine receptor in some hereditary epilepsies. Neurochem Res 2000; 25(5):583-590.
    [272] Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1981; 22(4): 489-501.
    [273] Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989; 30(4):389-399.
    [274] Engel J, Jr. Classifications of the International League Against Epilepsy: time for reappraisal. Epilepsia 1998; 39(9):1014-1017.
    [275] Zhang YC, Zhang LL. An Investigation of a Pedigree Affected with Myoclonus Epilepsy. Transaction of Anhui Medical University 1996; 31(6):582-583.
    [276] Boehnke M. Limits of resolution of genetic linkage studies: implications for the positional cloning of human disease genes. Am J Hum Genet 1994; 55(2):379-390.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.