RNA干扰白介素-23基因表达对小鼠支气管哮喘影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支气管哮喘病因极其复杂,炎症、气道重塑和气道神经控制的变化是引起哮喘反复恶化及持久气流阻塞的根本原因。免疫异常及变态反应是哮喘发病中的关键因素。IL-23是新近发现的一种维持慢性炎症和抵抗胞内细菌感染的重要的促炎因子,研究证实,IL-23可刺激CD4+T细胞的一个新型亚群-Th17亚群,特征性产生前炎症细胞因子IL-17。IL-17在支气管哮喘中促炎作用得到认同,IL-23作为上游调控因子是否也参与支气管哮喘的发病呢?本实验通过pSRZSi-IL-23p19表达质粒进行体外、体内转染,采用RT-PCR、Western blot、酶联免疫反应、组织形态学观察等方法,于观察pSRZSi-IL-23p19对哮喘模型相关炎症因子的影响,探讨IL-23与哮喘模型的关系。本研究证实IL-23参与了支气管哮喘的发病,并通过IL-23/IL-17途径起作用;特异性抑制IL-23异常表达,可减轻肺组织的炎症、中性粒细胞募集及嗜酸性粒细胞浸润;提出应用RNA干扰技术,通过阳离子脂质体介导可有效行呼吸道转染;证实呼吸道转染pSRZSi-IL-23p19可减轻哮喘肺部炎症。该研究为支气管哮喘发病机制的研究提供了新的思路,并可能为今后哮喘的治疗开辟新的途径。
Objective
     The etiopathogenisis of bronchial asthma is complex. Asthma is chronic airway inflammation with the characteristics of intermittent and reversible airway obstruction, bronchial hyperresponsiveness, lymphocytes, eosinophil infiltration of airway submucosal. Asthma is also a kind of abnormal immune allergic diseases with Th1/Th2 imbalance and Th2 cells in advantages. However, a study shows that Th1/Th2 imbalance reverse can not to reduce asthma attack, so this will be a challenge to Th2 advantage theory.
     IL-23 discovered in 2000 was a new type of cytokine. IL-23 becomes one of the hot spots research in recent years because of its complex biological characteristics and important role in the biological field. IL-23 was researched deeply in autoimmune disease, tumor, infection and so on. IL-23 can enhance the role of Th1 immune response, and the role of promotion pro-inflammatory cytokine secretion, such as IL-17.So there are contradictions for IL-23 in the pathogenesis of asthma.
     RNA interference is a kind of highly conserved gene silencing technology. Elbashir Studied and founded that 21nt double-stranded RNA fragment can reduce the expression of targeting gene in different mammalian cell lines such as T lymphocytes, epithelial cells, liver cells and so on. RNAi technology is the same as gene knockout and gene silencing in functions, and more convenient than Gene knockout technology.
     We established animal model of asthma, and detected the expression of IL-23 in the peripheral blood and lung tissue of asthmatic mice. pSRZsi-IL-23p19 expression plasmid was established With RNAi technology, cationic lipid-mediated transfected T lymphocytes and respiratory tract of mice, then we observed the expression changes of IL-23 and the impact of the airway inflammation and cytokine secretion in vitro and in vivo to explain the role of IL-23 in the pathogenesis of asthma and the impact of airway inflammation in asthma using IL-23siRNA technology.
     Method
     1、pSRZsi-IL-23p19 expression plasmid was constructed, amplificated and identificated.
     2、Mouse model of asthma were established per literature improvement, observation changes of ethology、leves of IL-4/IFN-γ、Count of eosinophil and neu neutrophil in BALF and Structural changes in lung tissue of mouse.
     3、pSRZsi-IL-23p19 expression plasmid and Lipofectamine 2000cationic transfected T lymphocytes of asthma murine in different proportions to determination IL-23p19/IL-17 mRNA expression level with RT-PCR semi-quantitative method and IL-23 protein content changes with western blot in T lymphocytes, IL-4、IFN-γchanges of culture supernatants with ELISA.
     4、The experimental anima randomly divided into control group, asthma model group, hormone therapy group, the empty vector intervention group, and recombinant plasmid intervention. Asthma model were constructed using intraperitoneal injection of 100μl OVA suspension in the days of 3、9、16 , and excited by air compressed pump in the days of 17、19、21、23、25 by 30 minutes each time and five days. Control group were constructed using intraperitoneal injection of 100μl PBS containing 0.2 mg aluminum hydroxide in the days of 3、6、9, stimulation was the same as model group. Allergy and excitation of recombinant plasmid intervention was the same as asthma model. Recombinant plasmid was transfected through nasal cavity in the day of 16、18、20、22、24,and the mousse was killed in a specified time after the last excitation. IL-23, IL-17, IL-4 and IFN-γlevels in serum were detected in ELISA; IL-23p19/IL-17mRNA levels were detected in RT-PCR; Expression features of IL-23 in lung tissue were detected in immunohistochemistry; Structural changes in lung tissue were observed by HE; Count of eosinophil and neu neutrophil in BALF.
     Resurt
     1、pSRZsi-IL-23p19 expression plasmid was requirement for our contrive via develop pSRZsi-IL-23p19 and appraisement amplification production with .
     2、Eosinophil cells in BALF was increased. Massive infiltration of inflamma-tory cells , goblet cell hyperplasia, mucosal wall damage, mucus suppository form were saw in pulmonary histologically, so the model successfully established.
     3、Effect of pSRZsi-IL-23p19 expression plasmid transfection in vitro on T ymphocyte cells of asthma of mouse:
     ①After lipofectamine 2000 cationic liposome-mediated pSRZsi-IL- 23p19 expression plasmid was transfected to T lymphocyte, we found that the highest transfection efficiency is in 1:2 proportion.
     ②IL-23p19/IL-17mRA and IL-23 protein content of T lymphocyte cells in asthma group was higher than control group, and interference group has lower than asthma group.There was no significant difference between intervention group and control group.
     ③IFN-γlevel of T lymphocyte supernatant in asthma group was lower than co-ntrol group, no significant difference between intervention group and asthma group. IL-4 level of T lymphocyte supernatant in asthma group was higher than control group, after n the treatment of intervention was lower.
     4、Effect of pSRZsi-IL-23p19 expression plasmid transfection in vivo on asthma model:
     ①Lipofectamine 2000 cationic liposome-mediated pSRZsi-IL-23p19 expression plasmid transfection in vivo was succssfull because we can see the green fluorescent protein around bronchial under fluorescence microscopy.
     ②The levels of IL-23p19/IL-17 mRNA of lung tissue in asthma group was hig her than control group, and lower after hormone therapy. After 24-hour of transfection was lower,after 48-hour of transfection was lower than after hormone therapy.There was no significant difference between vacancy intervention group and asthma group .The level of IL-23/IL-17 in serum and the result of immunohis-tochemistry are the same as expression levels in lung tissue. IL-23 and IL-17 was positively correlated.
     ③The levels of IL-4 in serum in asthma group was higher than control group,and higher than in the treatment of hormone,there was no significant difference between vacancy intervention group and asthma group.In the treatment of inter-vention the leves of IL-4 in serum was lower,but extent was inferior to in group of hormone-treated group.
     ④The levels of IFN-γin serum in asthma group was lower than control group,and in the treatment of hormone higher than asthma group. Treatment of inter-vention no significant effect on IFN-γ. there was no significant difference bet-ween vacancy intervention group and asthma group.
     Conclusion
     1、IL-23 participates in and contributes to the occurrence of asthma, and Associa-ted with IL-17,this pathway is different from Th1/Th2 Disequilibriump pathway.
     2、pSRZsi-IL-23p19 expression plasmid transfection in vitro can reduced IL-23 expression in T lymphocyte cells, thus abaissement IL-17 expression in T lymphocyte cells.
     3、pSRZsi-IL-23p19 expression plasmid transfection in vivo via nose ,this may abaissement IL-23/IL-17 expression in pulmorary tissue and reduced IL-23/IL-17 leves in blood serum.
     4、Via inhibit IL-23 gene expression,can abaissement Neu count in pulmorary tissue, depress leve of IgE in blood serum , abatement inflammation condition ,these effccts is implement may via abaissement IL-17 expression and transform humoral immunity.
     5、RNA interfere technique is application in athma, may implement target gene silencing.
引文
1. 全国儿童哮喘协作组.2000 年与 1990 年儿童支气管哮喘患病率的调查比较.中华结核和呼吸杂志, 2004,27(2):112-116.
    2. Ruaidhr? JC, Qingguo R, Liou HC, et al. Essential Roles of c-Rel in TLR-Induced IL-23 p19Gene Expression in Dendritic Cells1.The Journal of Immunology, 2007, 178: 186-191.
    3. Oppmann BR, Lesley B, Blom JC, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000, 13: 715-725.
    4. Frucht DM. IL-23:A cytokine that acts on memory T cells. Sci Stke, 2002 (114) : 1-3.
    5. Eijnden VS, Goriely S, de Wit D, et al . IL-23 up-regulates IL-10 and induces IL-17 synthesis by polyclonally activated naive T cells in human. Eur J Immunol, 2005, 35 (2):469-475.
    6. Parham C , Timans J , Vaisberg E , et al . A receptor for the heterodimetric cytokine receptor subunit IL-23R. J Immunuol, 2002,168 (11):5699-5708.
    7. Belladonna ML , Renauld JC , Bianchi R , et al . IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol, 2002,168 (11) : 5448-5454.
    8. Wiekowski MT, Leach MW, Evans EW, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting,infertility, and premature death. Jimmunol, 2001,166 (12):7563- 7570.
    9. Ugai S, Shimozato O, Yu L, et al . Transduction of the IL-21 and IL-23 genes in human pancreatic carcinoma cells produces natural killer celldependent and -independent antitumor effects. Cancer Gene Ther, 2003 , 10 (10):771-778.
    10. Ha SJ, Kim DJ, Baek KH, et al. IL-23 induces stronger sustained CTL andTh1 immune responses than IL-12 in hepatitis C virus envelope protein 2 DNA immunization. J Immunol, 2004,172 (1) : 525-531.
    11. Hochrein H, Shortman K, Vremec D, et al. Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol, 2001,166: 5448-5455.
    12. Frank AW Verreck, Tjitske de Boer, Dennis ML Langenberg, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci , 2004, 101:4560-4565.
    13. Stober D, Schirmbeck R, Reimann J. IL-12/IL-18-dependent IFN-gamma release by murine dendritic cells. J Immunol, 2001,167:957-965.
    14. Schuetze N, Schoeneberger S, Mueller U, et al. IL-12 family members: differential kinetics of their TLR4-mediated induction by Salmonella enteritidis and the impact of IL-10 in bone marrow-derived macrophages. Int Immunol, 2005,17(5): 649-659.
    15. Jefford M, Schnurr M, Toy T, et al. Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood, 2003,102(5):1753-1763.
    16. Smits HH, Beelen AJ, Hessle C, et al. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development. Eur J Immunol, 2004,34(5):1371-1380.
    17. Schnurr M, Toy T, Shin A, et al. Extracellular nucleotide signaling byP2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood, 2005, 105(4):1582-1589.
    18. Sheibanie AF, Tadmori I, Jing H, et al. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J, 2004,18:1318-1320.
    19. Fedele G, Stefanelli P, Spensieri F, et al. Bordetella pertussis-infectedhuman monocyte-derived dendritic cells undergo maturation and induce Th1 polarization and interleukin-23 expression. Infect Immun, 2005, 73(3):1590-1597.
    20. Cua DJ,Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 2003,421(6924):744-748.
    21. Lee E, Trepicchio WL, Oestreicher JL, et al. Increased Expression of Interleukin-23p19 and p40 in Lesional Skin of Patients with Psoriasis Vulgaris. J Exp Med, 2004,199(1):125-130.
    22. Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4T cell activation state characterized by the production of interleukin-17. J Biol Chem, 2003,278(3):1910-1914.
    23. Yen D, Cheung J, Scheerens H, et al . IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest , 2006,116 (5):1310-1316.
    24. Sugihara A , Okamoto H , Horio T. Effect s of UVB on fascin expression in dendritic cells and Langerhans cell s. J Dermatol Sci, 2005, 40 (3) : 177-185.
    25. Becher B , Durell BG, Noelle RJ . IL-23 produced by CNS- resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest, 2003,112(8) : 1186-1191.
    26. Zhang GX, Gran B, Yu S, et al. Induction of experimental autoimmune encephalomy elitis in IL-12 receptor-beta2-deficient mice:IL-12 responsiveness is not required in the pathogenesis of inflammatory demy- elination in the central nervous system. J Immunol, 2003, 170(4): 2153- 2160.
    27. Murphy CA, Langrish CL, Chen Y, et al. Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med, 2003 , 198(12) : 1 951-1957.
    28. Elson CO, Cong Y, Weaver CT, et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology, 2007,132(7):2359-2370.
    29. Verreck FA, de Boer T , Langenberg DM, et al . Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2macrophages subvert immunity to (myco) bacteria. Proc Natl Acad Sci, 2004 , 101 (13) : 4560-4565.
    30. Pirhonen J, Matikainen S, Julkunen I. Regulation of virus-induced IL-12 and IL-23 expression in human macrophages. J Immunol, 2002, 169 (10) : 5673-5678.
    31. Cantell K, Pirhonen J . IFN-γ enhances production of IFN-α in human macrophages but not in monocytes. J Interferon Cytokine Res, 1996 ,16(6) : 461-463.
    32. Broberg EK, Setala N, Eralinna JP, et al. Herpes simplex virus type 1 infection induces upregulation of interleukin-23p19mRNA expression in trigeminal ganglia of BALB/c mice. J Interferon Cytokine Res, 2002, 22(6):641-651.
    33. Cooper AM, Kipnis A, Turner J, et al. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12p40 subunit is present. J Immunol, 2002, 168(3):1322-1327.
    34. Scott P, Natovitz P, Coffman RL, et al. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med, 1988,168(5):1675-1684.
    35. Wierenga EA, Snoek M, Jansen HM, et al. Human atopen-specific types 1 and 2 T helper cell clones. J Immunol, 1991,147(9):2942-2949.
    36. Gavett SH, O'Hearn DJ, Li X, et al. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression inmice. J Exp Med, 1995,182(5):1527-1536.
    37. Walter DM, Wong CP, de Kruyff RH, et al. IL-18 gene transfer by adenovirus prevents the development of and reverses established allergen-induced airway hyperreactivity. J Immunol, 2001,166(10):6392- 6398.
    38. Tang ML, Kemp AS, Thorburn J, et al. Reduced interferon-gamma secretion in neonates and subsequent atopy. Lancet, 1994, 344(8928): 983-985.
    39. Hansen G, Berry G, DeKruyff RH, et al. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest, 1999, 103(2): 175–183.
    40. Cui J, Pazdziorko S, Miyashiro JS, et al. TH1-mediated airway hyperrespo- nsiveness independent of neutrophilic inflammation. J Allergy Clin Immunol, 2005, 115(2):309-315.
    41. Dahl ME, Dabbagh K, Liggitt D, et al. Viral-induced T helper type 1 responses enhance allergic disease by effects on lung dendritic cells. Nat Immunol, 2004, 5(3): 337-343.
    42. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 2005,201(2): 233-240.
    43. Wong CK, Ho CY, Ko FW, et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol, 2001,125(2):177-183.
    44. Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol, 2003, 111 (6):1293-1298.
    45. Kelly EA, Busse WW, Jarjour NN. Increased matrix metalloproteinase-9 in the airway after allergen challenge. Am Jrespir Crit Care Med,2000,162(3):1157-1161.
    46. Rijt LS, Kuipers H, Vos N, et al. A rapid flow cytometric method for determining the cellular composition of bronchoalveolar lavage fluid cells in mouse models of asthma. J Immunol Methods, 2004, 288(1-2): 111-121.
    47. Lambrecht BN, Peleman RA, Bullock GR, et al. Sensitization to inhaled antigen by intratracheal instillation of dendritic cells. Clin Exp Allergy, 2000, 30(2): 214-224.
    48. Lambrecht BN, Pauwels RA, Fazekas De St, et al. Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model. J Immunol, 2000, 164(6): 2937-2946.
    49. Lambrecht BN, de Veerman M, Coyle AJ, et al. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest, 2000, 106: 551-559.
    50. Belladonna ML, Renauld JC, Bianchi R, et al. IL-23 and IL-12 have over-lapping, but distinct, effects on murine dendritic cells. J Immunol, 2002, 168(11): 5448-5454.
    51. Chung KF, Barnes PJ. Cytokines in asthma. Thorax, 1999,54(9): 825 -857.
    52. Hakonarson H, Herrick DJ, Serrano PG, et al. Autocrine role of interleukin 1beta in altered responsiveness of atopic asthmatic sensitized airway smooth muscle. J Clin Invest, 1997,99(1):117-124.
    53. Naseer T, Minshall EM, Leung DY, et al. Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. Am J Respir Crit Care Med, 1997, 155(3): 845-851.
    54. Ghilardi N, Kljavin N, Chen Q, et al. Compromised humoral and delayed-type hypersensitivity response in IL-23-deficient mice. J Immunol, 2004,172(5):2827-2833.
    55. Ha SJ, Kim DJ, Baek KH, et al. IL-23 induces stronger sustained CTL and Th1 immune responses than IL-12 in hepatitis C virus envelope protein 2 DNA immunization . J Immunol, 2004, 171(2):600-607.
    56. Finotto S, Neurath MF, Glickman JN, et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science, 2002, 295(5553): 336-338.
    57. Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature, 2007, 445(7128): 648-651.
    58. Harrington LE, HaLton RD, Mangan PR, et al. Interleukin 17-producing CD4+effector T cells develop via a lineage disLinct from the T helper Lype 1 and 2 lineages . Nat Imnmunol, 2005, 6(1l):1123-1132.
    59. Harrington LE, Mangan PR, Weaver CT. Expanding the effector CD4T-cell repertoire: the Thl7 lineage. Curr Opin Immunol, 2006, 18(3): 349-356.
    60. Schnyder B, Candrian SS, Pansky A, et al. IL-17 reduces TNF-induced Rantes and VCAM-1 expression. Cytokine, 2005,31(3): 191- 202.
    61. McA1lister F, Henry A, Kreindler JL, et al. Role of IL-17A, IL-1 7F and the IL-17 receptor in regulating grow threlated oncogene-alpha and granulocyte colony-stimulating factor in bronchialepithe1ium:implications for airevay inflammation in cystic fibrosis. J Immunol, 2005, 175(1): 404- 412.
    62. KomiyamaY, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoinmune encephalom yelitis. J Immunol, 2006,177(1): 566-573.
    63. Khader SA, Pear JE, Sakamoto K, et al. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antiger-specific IFN-gamma responses if IL-12p70 is available. J Immunol, 2005, 175(2): 788-795.
    64. Iwakura Y, Ishigame H.The IL-23/IL-17 axis in inflammation. J Clin Invest, 2006, 116(5): 1218-1222.
    65. Chen Z, Laurence A, KannoY, et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. PNAS, 2006, 103(21):8137-8142.
    66. Kamiya S, Owaki T, Morishiima N, et al. An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of na?ve CD4+Tcells. J Immunol, 2004, 173(6): 3871-3877.
    67. Reinhardt RL, Kang SJ, Liang HE, et al. T helper cell effector fates-who, how and where? Curr Opin Immunol, 2006, 18(3): 271-277.
    68. Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med, 1996,183:2593-2603.
    69. Ye P, Rodriguez FH, Kanaly S, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med, 2001, 194(4): 519-528.
    70. Chabaud M, Fossiez F, Taupin JL, et al. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol, 1998,161:409-414.
    71. Schwarzenberger P, Russa VL, Miller A, et al. IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J Immunol, 1998,161:6383.
    72. Kooten CV, Boonstra JG, Paape ME, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol, 1998,9:1526-1534.
    73. Linden A. Role of interleukin-17 and the neutrophil in asthma. Int Arch Allergy Immunol, 2001,126(3):179-184.
    74. Benchetrit F, Ciree A, Vives V, et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood, 2002, 99 (6):2114-2121.
    75. Shin HC, Benbernou N, Fekkar H, et al. Regulation of IL-17, IFN-γ andIL-10 in human CD8+T cells by cyclic AMP-dependent signal transduction pathway. Cytokine, 1998,10(11):841-850.
    76. Ye P, Garvey PB, Zhang P, et al. Interleukin-17 and lung host defense against K. pneumoniae infection. Am J Respir Cell Mol Biol, 2001,25(3):335-340.
    77. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 2005, 6(11):1133–1141.
    78. Nakae S, Saijo S, Horai R, et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonis. Proc Natl Acad Sci, 2003, 100: 5986-5990.
    79. Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity, 2002, 17(3):375-387.
    80. Nakae S, Nambu A, Sudo K, et al. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol, 2003, 171:6173-6177.
    81. Chen Y, Claire L, Langrish CL, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest, 2006, 116:1317-1326.
    82. Afkarian M, Sedy JR, Yang J, et al. T-bet is a STAT1-induced regulator of IL-12R expression in naiveCD4+T cells. Nat Immunol, 2002,3(6):549-557.
    83. Bettelli E, Sullivan B, Szabo SJ, et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med, 2004, 200:79-87.
    84. Kollias G, Kontoyiannis D. Role of TNF/TNFR in autoimmunity: specific TNF receptor blockade may be advantageous to anti-TNF treatments. Cytokine Growth Factor Rev, 2002, 13(4-5):315-321.
    85. Matsuki T, Nakae S, Sudo K, et al. Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. Int Immunol, 2006,18:399-407.
    86. Samoilova EB, Horton JL, Hilliard B, et al. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol, 1998, 161:6480-6486.
    87. Ziolkowska M, Koc A, Luszczykiewicz G, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol, 2000,164:2832-2838.
    88. Chabaud M, Durand JM, Buchs N, et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum, 1999, 42:963-970.
    89. Schmidt C, Giese T, Ludwig B, et al. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease:elevated interleukin- 23p19 and interleukin-27p28 in Crohn’sdisease but not in ulcerative colitis. Inflamm Bowel Dis, 2005,11:16-23.
    90. Stallmach A, Giese T, Schmidt C, et al. Cytokine/chemokine transcript profiles reflectmucosal inflammation in Crohn’s disease. Int J Colorectal Dis, 2004,19:308-315.
    91. Gately MK, Renzetti LM, Magram J, et al. The interleukin-12/interleukin- 12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol, 1998,16:495-521.
    92. Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol, 2005, 5(7):521–531.
    93. McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol, 2006, 27(1):17-23.
    94. Shtrichman R, Samuel CE. The role of gamma interferon in antimicrobialimmunity. Curr Opin Microbiol, 2001,4(3):251-259.
    95. Happel KI, Dubin PJ, Zheng M, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med, 2005, 202: 761-769.
    96. Stark MA, Huo Y, Burcin TL, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, 22(3):285-294.
    97. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411(6836):494-498.
    98. Zhou X, Murphy FR, Gehdu N, et al. Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J Biol Chem, 2004,279:23996-24006.
    99. Iyer S, Ferreri DM, DeCocco NC, et al.VE-cadherinp120 interaction is required for maintenance of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol, 2004, 286:1143-1153.
    100. McManus MT, Haines BB, Dillon CP, et al. Small interfering RNA-mediated gene silencing in T lymphocytes. J Immunol, 2002,169: 5754-5760
    101. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs theATP-dependent cleavage of mRNA at 21to 23nt intervals. Cell, 2000, 101: 25-33.
    102. Tabara H, Sarkissian M, Kelly WG, et al. The rde-1 gene, RNA interference, and transposon silencing in C elegans. Cell, 1999, 99(2): 123- 32.
    103. Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363-366.
    104. Hammond SM, Bernstein E, Beach D, et al . An RNA-directed nucleasemediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000, 404 (6775): 293-296.
    105. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002 , 296 (5567) : 502-553.
    106. Saunders LR, Barber GN. The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J, 2003,17: 961-83.
    107. Heijink IH, Oosterhout AJ.Targeting T cells for asthma. Curr Opin Pharmacol, 2005, 5(3):227-231.
    108. Gavett SH, Chen X, Finkelman F, et al. Depletion of murine CD4+T lymphocytes prevents antigen induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol,1994,10(6):587-593.
    109. Nakae S, Iwakura Y, Suto H, et al. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol, 2007, 81:1258-1268.
    110. McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23–IL-17 immune pathway. Trends Immunol, 2006, 27(1):17-23.
    111. Ivanov S, Bozinovski S, Bossios A, et al. Functional Relevance of the IL-23–IL-17 Axis in Lungs In Vivo.Am J Respir Cell Mol Biol, 2007, 36: 442-451.
    112. Herrick CA, Bottomly K. To respond or not to respond:T cells in allergic asthma. Nat Rev Immunol, 2003, 3(5):405-412.
    113. Meye A, Wurl P, Lohn M, et al. Liposomal DNA transfection of human sarcoma cells with p53 alterations.Verh Dtsch Ges Pthol, l998, 82: 220-225.
    114. Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. PNAS, 1987, 84: 7413-7417.
    115. Reimer DL, Kong S,Bally MB. Analysis of Cationic Liposome-mediated Interactions of Plasmid DNA with Murine and Human Melanoma Cells in Vitro. J Biol Chem, 1997, 272:19480-19487.
    116. Natali F, Castellano C, Pozzi D, et al. Dynamic properties of an oriented Lipid/DNA complex studied by neutron scattering. Biophysical Journal, 2005,88:1081-1090.
    117. Dodds E, Dunckley MG, Naujoks K, et al. Lipofection of cultured mouse muscle cells:a direct comparison of lipofectamine and DOSPEI. Gene Ther, 1998,5(4): 542-551.
    118. Lee YL,Ye YL,Yu CI,et al. Construction of single-chain interleukin-12 DNA plasmid to treat airway hyperresponsiveness in an animal model of asthma. Hum Gene Ther, 2001, 12(17): 2065-2079.
    119. Densmore CL,Giddings TH, Waldrep JC, et al. Gene transfer by guanidinium-cholesterol:dioleoylphosphatidyl ethanolamine liposome- DNA complexes in aerosol. J Gene Med, 1999,1(4):251-264.
    120. Henderson WR Jr, Tang LO, Chu SJ, et al. A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med, 2002,165:108-116.
    121. 刘传合, 薛全福, 陈育智, 等. 支气管哮喘动物模型的研究状况. 中华结核和呼吸杂志, 2000, 23(11): 647-649.
    122. Constant S, Pfeiffer C, Woodard A, et al. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+T cells.J Exp Med, 1995, 182(5):1591-1596.
    123. 商艳.不同剂量致敏原对小鼠过敏性哮喘模型的影响.第二军医大学学报, 2002,23(1):69-71.
    124. Elias JA, Lee CG, Zheng T, et al. New insights into the pathogenesis of asthma. J Clin Invest, 2003,111(3):291-297.
    125. Eastman SJ, Lukason MJ., Tousignant JD, et al. A concentrated and stable aerosol formulation of cationic lipid:DNA complexes giving high-level gene expression in mouse lung. Hum Gene Ther, 1997, 8(6):765–773.
    126. 张阳德, 蔡素娜, 廖允军. 阳离子脂质体及其在基因转移和基因治疗中的应用.中国现代医学杂志, 2001, 11(7): 28-30。
    127. Dow SW, Fradkin LG, Liggitt DH, et al. Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol, 1999,163:1552-1561.
    128. Iwakura Y, Ishigamae H. The IL-23/IL-17 axis in inflammation. J Clin Invest, 2006,116(5):1218- 1222.
    129. Koo GC, Shah K, Ding GJF, et al. A small molecule very late antigen-4 antagonist can inhibit ovalbumin-induced lung inflammation. Am J Respir Crit Care Med, 2003,167(10):1400-1409.
    130. Peachell P.Targeting the mast cell in asthma.Current Opinion in Pharmacology, 2005, 5(3):251-256.
    131. Popescu FD. Antisense- and RNA interference-based therapeutic strategies in allergy. J Cell Mol Med, 2005,9(4):840-853.
    132. Veldhoen M, Stockinger B. TGFbeta1, a“Jack of all trades”: the link with pro-inflammatory IL-17-producing T cells. Trends Immunol, 2006, 27(8): 358-361.
    133. 朱立, 范宏宇, 陈德昌. 阳离子脂质体及其在体内基因转染中的应用. 国外医学分子生物学分册, 1999, 21(3):148-151.
    134. Happel KI, Zheng M, Young E, et al. Cutting Edge: Roles of Toll-Like Receptor 4 and IL-23 in IL-17 Expression in Response to Klebsiella pneumoniaeInfection1. J Immunology, 2003, 170: 4432-4436.
    135. Zhu N, Liggitt D, Debs R,et al. Systemic gene expression after intravenous DNA delivery into adult mice. Science,1993,261(5118):209-211.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.