油桐种子EST文库构建及FAD2等重要基因全长cDNA克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油桐是我国特有的木本油料树种,所产桐油经济价值特高,广泛应用于高级油漆、涂料、油墨等制造业,又可供制生物柴油、树脂、人造橡胶、皮革、塑料、颜料及医药等。油桐种质资源是我国特有的基因资源,在基因表达水平开展对油桐品质及产量形成相关基因的研究,对油桐分子育种具有重要的理论意义和实践价值。本文以油桐对年桐品种为试材,构建种子cDNA文库、EST文库,并对EST序列进行全面分析,对重要基因全长cDNA克隆等方面进行了研究,主要结果有:
     (1)油桐近成熟种子cDNA文库的构建。采用Unizol方法提取总RNA,经Oligotex mRNA kit分离并纯化得到mRNA,在SuperSciptTM ⅡRnaseH-Reverse Transcriptase等的作用下合成cDNA,与pBluescriptⅡSK(+)XR载体连接重组并转化感受态细胞DH10B,成功地构建了油桐对年桐近成熟种子的cDNA文库。文库总容量为8.53×106,重组率为88.95%,插入片段长度500-1500bp。构建的文库质量高,为进一步建立油桐EST文库、开展基因分离鉴定、制作油桐基因芯片和基因表达检测等奠定了良好基础。
     (2)油桐近成熟种子EST文库的构建。以构建的油桐对年桐近成熟种子cDNA文库为材料,随机挑选3203个阳性克隆进行5’端测序,获得了具代表性的表达序列标签(EST)。经分析、整理,获得3202有效EST序列,平均长度554bp,500-700bp的ESTs占73.6%;在线CAP3拼接,共获得876个非冗余基因序列,其中重叠群202,单一EST序列674。重叠群的EST拷贝数从2个到106个不等,拷贝数为2的最多,达81个;拷贝数为3的有29个;拷贝数7个以上的出现频率多为1或2。油桐对年桐品种的EST文库系国内首次构建,为油桐功能基因组及遗传改良等的进一步研究提供了资源基础。
     (3)油桐EST序列功能注释。3202个有效EST序列中,1954个为功能已知基因序列,423个为功能未明确的基因序列,760个为相似性较低的基因序列,44个为没有重要相似性的基因序列,21个非植物类基因序列。1954个功能已知的基因序列中,非冗余基因序列467个,包括重叠群序列176个,单一序列291个,涉及379种功能基因;其中与油桐本种同源的序列133个,与同属千年桐同源的序列349个;与大戟科变叶木等11种植物同源的序列1347个。与其他科属植物同源的序列125个。
     (4)油桐种子EST文库已知功能基因表达分析。油桐近成熟种子表达的379个已知功能基因归为物质代谢、能量代谢、细胞生长发育、转录、蛋白质合成、蛋白质定位与贮藏、载体、细胞结构、信号转导、抗病与防卫、次生代谢及未分类基因等12大类,蛋白质合成相关基因的表达最丰富,占49.6%,蛋白质定位与贮藏蛋白相关基因占21.9%,抗病和防卫相关基因占8.1%;其他各类的相关基因表达量均不足5%。说明材料采集时油桐种子正处蛋白质合成与贮藏高峰期。其中与脂肪酸代谢相关的功能基因有Δ12油酸脱饱酶(FAD2)、B-酮脂酰ACP合成酶(KASI)、烯脂酰基酰基载体蛋白还原酶(EAR)、参与柠檬酸穿梭的苹果酸脱氢酶、2,4-二烯脂酰CoA还原酶、3-酮脂酰辅酶A硫解酶、脂肪酸β一氧化多功能蛋白等,其中Δ12油酸脱饱酶(FAD2)基因属高丰度表达。与油脂贮藏相关的油体蛋白Oleosin基因高丰度表达。与贮藏蛋白相关的基因有蛋白A3前体、豆球蛋白B前体、11S球蛋白β亚基前体、豆球蛋白类蛋白、种子贮藏蛋白等,多为高丰度表达。与抗性相关的基因35种,主要有金属硫蛋白、热激蛋白、亲环素、脱水素、翻译控制肿瘤蛋白、富含脯氨酸蛋白、谷胱甘肽过氧化物酶等高丰度表达的基因。与能量代谢相关的基因主要有果糖二磷酸醛缩酶、磷酸甘油酸激酶、磷酸葡萄糖变位酶、二氢硫辛酰胺脱氢酶、丙酮酸脱氢酶、琥珀酸脱氢酶等低丰度表达的基因。与蛋白质合成相关基因64种,主要有18S核糖体RNA、26S核糖体RNA、小亚基核糖体RNA、30S核糖体蛋白、40S核糖体蛋白、50S核糖体蛋白、60S核糖体蛋白、翻译起始因子等;与氨基酸代谢相关的序列4条。与蛋白质结构相关基因17条,主要有前折叠素相关蛋白、蛋白质二硫键异构酶、泛素等。与信号转导相关的基因序列32条,涉及23种功能基因。与基因转录相关的基因序列36条,涉及24种功能基因。与次生代谢相关基因23种44条序列。与物质转运相关基因序列23条。
     (5)油桐FAD2基因的全长cDNA克隆。所克隆的FAD2基因序列长1537bp,含长度为1146bp的完整编码序列,编码383个氨基酸。其氨基酸序列有3个多变区,N端的起始段6个氨基酸为信号肽序列,3个组氨酸簇高度保守。酶蛋白分子量44144.4Da,等电点p18.57,有5个跨膜结构域,说明FAD2为膜结合酶,在N端、C端及中间各有一强亲水区,为膜外结构区;中间若干区段为疏水区,为膜内结构区,组氨酸簇位膜表面,二级结构中α螺旋主要位于肽链C端,β折叠链较短,卷曲主要位于肽链N端。
     (6)油桐核糖体蛋白及rRNA基因的全长cDNA克隆。60S核糖体蛋白L8的基因序列长1086bp,含有长783bp的完整编码序列,编码261个氨基酸。氨基酸序列近N端和近C端高度保守,C端尾部变化较大。酶蛋白分子量28175.3Da,pI11.44,为碱性蛋白。N端、C端各具强亲水性,中间则亲水区与疏水区相间。二级结构上,卷曲主要位于肽链的中部,β折叠链较短,α螺旋较少,主要位于N端和C端。18SrRNA基因序列全长2523bp,26SrRNA基因序列长2933bp。不同产地和不同生存环境的物种,其rRNA基因有不同的碱基组成,亲缘关系越近的物种间碱基相似性越大,构建rRNA基因进化树是检测物种基因同源性和鉴别物种有力的辅助工具。26SrRNA和18SrRNA分别参与到核糖体大小亚基的自组装形成中,rRNA分子内有大量的反向互补序列,形成大量局部双链区并自卷曲和折叠而形成稳定的“茎环状”结构。rRNA分子结构有大量链内双链区,双链间有较小的内凸环,侧凸环成链的拐点,较大环则成为双链定向的环岛,双链末端为发夹结构,呈长臂状的“吸臂”,这有利于rRNA分子与核糖体蛋白结合形成结构稳定的核糖体亚基。
Vernicia fordii is peculiar arboreal oil tree in China, its product the tung oil has high economic value, widely applies in high-quality paint, coating, printing, ink and otherwise in manufacturing industries, and supplys to produce biology diesel oil, resin, synthetic rubber, leather, plastic, pigment and medicine etc. The germplasm resource of V. fordii is a unique genetic resource in China, carrying out the relate genes reseach about the quality and yield formation in gene expression level, it has important theoretical significance and practical value on molecular breeding of V. fordii. Taking the seeds of'Duinian tung' oil tree as the experiments material in this thesis, had constructed cDNA library and EST library of seeds, and carried on the overall analysis about the EST sequences, and reseached the full-length cDNA clone of the important gene. The main result includes:
     (1) Construction of the cDNA library with near-mature seeds of V. fordii. Using the Unizol method to extract total RNA, obtaining the mRNA after separation and purification by Oligotex mRNA kit, synthesize cDNA under the SuperSciptTM Ⅱ RnaseH-Reverse Transcriptase, then recombination with the vector pBluescript Ⅱ SK (+)XR and transformation competent cell DH10B, have successfully constructed the cDNA library of near-mature seeds of'Duinian tung' oil tree. The capacity of cDNA library has8.53×10clones, the recombination rate is88.95%, the size of insertion segment between500-1500bp. Constructing the high quality library has laid a good foundation to further construct the EST library, separate and identify the gene, make the gene chip and detect the gene expression of V. fordii.
     (2) Construction the EST library with near-mature seeds of V. fordii. Taking the cDNA library of near-mature seeds of V. fordii as material, choosing3203positive clones randomly to sequence at5'end, have obtained the representative expression sequence tags(EST). After analysis and classification, obtaining3202effective EST sequences, the average length is554bp, the ratio of ESTs between500and700bp was73.6%; Carrying on CAP3online splicing, obtaining876non-redundant gene sequences altogether, which consist of202contigs and674singletons. In202contigs, the copies of EST from2to106, the contigs which contain2copies are most, reaches81; and contain3copies have29; and contain more than7copies appear1or2. The EST library of'Duinian tung'oil tree is constructed interiorly for the first time, which provide the resource to further research the function genome and heredity improvement for V. fordii.
     (3) Annotation the function of the EST sequence of V. fordii. In3202effective EST sequence, there are1954sequences which function has known,423sequences which function is ambiguous,760sequences which function is low similarity,44sequences which function is no significant similarity,21sequences are non-plant gene. In1954gene sequences which function is known, have467non-redundant gene sequences, consisting of176contigs and291singletons, which relate to379kinds function genes. There are133homologous sequences with V. fordii;349homologous sequences with V. montana;1347homologous sequences with11species of Euphorbiaceae as Codiaeum variegatum.125homologous sequences with other family plants.
     (4) Analysis the gene expression of known function in EST library of V. fordii. The379known function genes of near-mature seeds of V. fordii are classified in12classes, include material metabolism, energy metabolism, cell growth/division, Transcription, protein synthesis, protein destination and storage protein, transporters, cell structure, signal transduction, disease/defence, secondary metabolism, and unclassified gene. The quantity of gene expression related to protein synthesis is richest to49.6%, the gene related to protein destination and storage protein is21.9%, disease/defence gene is8.1%. The quantity of gene expression is insufficient5%in other classes. It was the peak time of protein synthesis and protein storage at the seeds of V. fordii was gathered as experiment material. The function genes in EST library relate to fatty acid metabolism have△12oleic acid desaturase (FAD2), beta-ketoacyl-ACP synthase I (KASI), enoyl-acyl-carrier-protein reductase (EAR), malate dehydrogenase which take part in citriate shuttle,2,4-dienoyl-CoA reductase,3-ketoacyl-CoA thiolase B, glyoxysomal fatty acid beta-oxidation multifunctional protein and so on. The FAD2gene belongs to high abundance expression. The Oleosin genes relate to the oil storage are high abundance expression. The genes relate to storage protein includes glutelin type-A3precursor, legumin B precursor,11S globulin subunit beta precursor, legumin-like protein, seed storage protein and so on, are high abundance expression. The genes relate to resistance of disease/defence have35kinds, the high abundance expression genes include metallothionein, heat-shock protein, cyclophilin, dehydrin, translationally controlled tumor protein, proline-rich protein, glutathione peroxidase and so on. The genes relate to energy metabolism are low abundance expression, mainly include fructose-bisphosphate aldolase, phosphoglycerate kinase, phosphoglucomutase, dihydrolipoamide dehydrogenase, pyruvate dehydrogenase, succinate dehydrogenase and so forth. The genes relate to protein synthesis have64kinds, mainly include18S rRNA,26S rRNA, small subunit rRNA,30S ribosome protein,40S ribosome protein,50S ribosome protein,60S ribosome protein and eukaryotic translation initiation factor.4sequences relate to amino-acid metabolism. The gene relate to protein structure have17kinds. Mainly include prefoldin-related KE2-like protein, protein disulfide isomerase, ubiquitin and so on. The gene relate to signal transduction have23kinds (32sequences), and transcription24kinds(36sequences), secondary metabolism23kinds (44sequences), material transportation23sequences.
     (5) Cloning of the full-length cDNA of FAD2of V. fordii. The sequence length of the FAD2gene clone is1537bp, contains the complete CDS its length1146bp, that code383amino acids. There are3changeable sectors at amino acid sequence of FAD2. The initial sector which contain6amino acids at N end is the signal peptide sequence of transmembrane, the3histidine clusters is highly conservative. The molecular weight of zymoprotein is44144.4Da, isoelectric point is8.57. There are5transmembrane structure domain, that explaine FAD2is the membrane-conjugating enzyme, There are strongly hydrophilic section at N end, C end and center-section respectively, which is structure outside the membrane; The middle sectors are some hydrophobic section, which is the section inside the membrane. The histidine clusters is located at membrane surface. In secondary structure of the protein, the helices is mainly located at the peptide chain C end, the strands is short, the coils is mainly located at the N end of peptide chain.
     (6) Cloning of the full-length cDNA of ribosome protein and rRNA of V. fordii. The sequence length of60S ribosome protein L8gene is1086bp, which includes the complete CDS its length783bp, codes261amino acids. It is highly conservative near N end and near C end, but change in rear part of peptide chain at C end. The protein MW28175.3Da, pI11.44, which is an alkalinity protein. The N end and C end of protein is strongly hydrophilic respectively, hydrophilic section and hydrophobic section is alternate at middle. In secondary structure of protein, the coils is mainly located at middle of peptide chain, the strands is short, the helices are few, mainly located at N end and C end. The full-length sequence of18SrRNA gene is2523bp, the26SrRNA gene sequence length is2933bp. The species which come from different habitat and different living environment have different base composition in rRNA gene. The nearer the relationship of the species, the smaller the change at base, the bigger the similarity of rRNA. Constructing the evolution tree of rRNA gene is one of powerful auxiliary means to detect the homology of species gene and differentiate the species.26SrRNA and18SrRNA participate into the self-assembly process of the ribosome large and small subunit respectively. The abundance reverse supplementary sequences in rRNA bring on formation of massive double strand, which curl and fold to form the stable secondary structure as'stem ring' shape. There is lots intrachain double strands in rRNA molecule, the small ring in jog is between the double strands, the ring side jog is the flex point of the strands, the big ring is the rotary island that direction double strands, the terminal of double strands show hairpin structure as long brachial'drag arm'in periphery, that is advantage to form the stable structure of ribosome subunit with rRNA molecule and ribosome protein.
引文
[1]谭晓风.油桐的生产现状及其发展建议[J].经济林研究2006,24(3):62-64
    [2]李永梅,魏远新,周大林等.油桐的价值及其发展途径[J].现代农业科技,2008,(16):113
    [3]方嘉兴,何方.中国油桐[M].北京:中国林业出版社,1999,332-334
    [4]蔡金标,丁建祖.中国油桐品种,类型的分类[J].经济林研究,1997,15(4):47-50
    [5]盖廷亮.中国油桐生产发展战略研究[J].经济林研究,1999,19(7):74-76
    [6]王汉涛,段聪仁,徐树华等.油桐种仁与油脂形成规律的研究[J].经济林研究.1985,3(2):29-35
    [7]傅伟昌,顾小红,陶冠等.桐油脂肪酸组成分析和甘三酯结构判定[J].天然产物研究与开发.2008,20:964-968
    [8]刘家欣,朱苗力,黄诚.湘西桐油中脂肪酸的气相色谱-质谱法分析[J].化学世界,1998,9:493-494
    [9]阴艳,张敏.湘西桐油中脂肪酸分析方法的研究[J].中国林副特,2007,4:5-7
    [10]陈炳章.油桐种籽油脂合成及其在品几种类型上的差异[J].林业科学研究,1988,2:140-147
    [11]王春生.湘西地区油桐优树选择初报[J].湖南农业科学,2006,(02):89-91
    [12]范义荣,毛迎春,夏逍鸿等.油桐育种程序系列研究[J].林业科学,1997,(05):403-410
    [13]范义荣,夏逍鸿.油桐自由授粉家系数量性状的遗传分析[J].南京林业大学学报(自然科学版)1999,23(5):35-38
    [14]陈斐.油桐69个无性系的典范相关分析与选优研究[J].林业科学研究,1998年,11(5):518-522
    [15]欧阳准,余义彪,柯玉铸.营建油桐种质资源基因库的研究[J].福建林业科技,1991,63(1):7-13
    [16]何方,王承南,林峰.油桐产量遗传效应分析[J].经济林研究,2001,19(1):1-3
    [17]何方,何柏,王承南,等.油桐产品质量等级标准制订说明[J].经济林研究,2005,23(4):118-122
    [18]王承南,何方,林峰,等.油桐花粉配合力测定及产量遗传效益分析[J].中南林业科技大学学报(社会科学版),2002,4:40-43
    [19]刘金龙,国政田,孙东发等.湖北“金丝油桐”和贵桐2号的核型分析[J].经济林研究,2008,26(1):53-57
    [20]李建安,孙颖,陈鸿鹏等.油桐LEAFY同源基因片段的克隆与分析[J].中南林业科技大学学报,2008,(28)04:21-26
    [21]郭文丹,李建安,刘丽娜等.油桐花芽分化期内源激素含量的变化[J].经济林研究,2009,(02):31-34
    [22]李鹏,汪阳东,陈益存等.油桐ISSR-PCR最佳反应体系的建立[J].2008,21(2):194-199
    [23]周冠,汪阳东,陈益存等.油桐种仁cDNA文库的构建及其油体蛋白oleosin基因的生物信息学分析[J].林业科学研究,2009,22(2):177-181
    [24]李元,汪阳东,李鹏等.油桐种子FADX基因的克隆和序列分析[J].安徽农业科学,2008,36(11):4753-4755
    [25]汪阳东,李元,李鹏.油桐桐酸合成酶基因克隆和植物表达载体构建[J].浙江林业科技,2007,27(2):1-5
    [26]Potter G. F.The Domestic Tung Industry Today. The Journal the Americ of an Oil Chemists Society. 1968,45:281-284
    [27]Drosdoff M, Sell HM, Gilbert SG. Some Effects of Potassium Deficiency on the Nitrogen Metabolism and Oil Synthesis in the Tung Tree (Aleurites Fordii).Plant Physiol.1947,22(4):538-547
    [28]Gilbert SG, Sell HM, Drosdoff M. The effect of copper deficiency on the nitrogen metabolism and oil synthesis of the tung tree. Plant Physiol.1946,21:290-303
    [29]Sell HM, Best AH, Reuther W, et al. Changes in chemical composition and biological activity of developing tung fruit with reference to oil synthesis. Plant Physiol 1948,23:359-372
    [30]Park J.Y,Kim D. K,Wang Z. M.. Production and Characterization of Biodiesel from Tung Oil. Appl Biochem Biotechnol,2008,148:109-117
    [31]Kobori M, Ohnishi-Kameyama M, Akimoto Y,et al. Alpha-eleostearic acid and its dihydroxy derivative are major apoptosis-inducing components of bitter gourd. Agric Food Chem. 2008,56(22):10515-20
    [32]Tsuzuki T., Igarashi M., Iwata T.,et al.Oxidation rate of conjugated linoleic acid and conjugated linolenic acid is slowed by triacylglycerol esterification and a-Tocopherol. Lipids,2004,5 (39):475-480
    [33]Tsuzuki T, Kawakami Y. Tumor angiogenesis suppression by alpha-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via peroxisome proliferator -activated receptor gamma. Carcinogenesis.2008,29(4):797-806
    [34]Tsuzuki T, Igarashi M, Komai M,et al. The metabolic conversion of 9,11,13-eleostearic acid (18:3) to 9,11-conjugated linoleic acid (18:2) in the rat[J].Nutr Sci Vitaminol (Tokyo).2003,49 (3):195-200
    [35]Tsuzuki T, Tokuyama Y, Igarashi M,et al. Tumor growth suppression by a-eleostearic acid, a-linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis 2004,.25(8):1417-1425
    [36]Igarashi M, Miyazawa T. Newly recognized cytotoxic effect of conjugated trienoic fatty acids on cultured human tumor cells. Cancer Lett.2000,148(2):173-179
    [37]Kohno H, Suzuki R, Noguchi R, et al. Dietary conjugated linolenic acid inhibits azoxymeth-ane-induced colonic aberrant crypt foci in rats. Jpn J Cancer Res..2002,93:133-142
    [38]Suzuki R, Noguchi R, Ota T, et al. Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia. Cells.Lipids,2001,36 (5):477-482
    [39]Mizushina Y, Tsuzuki T, Eitsuka T.Inhibitory action of conjugated C18-fatty acids on DNA polymerases and DNA topoisomerases. Lipids 2004,39:977-983
    [40]Pencreac'h G, Graille J, Pina M,et al. An ultraviolet spectrophotometric assay for measuring lipase activity using long-chain triacyglycerols from Aleurites fordii seeds. Anal Biochem.2002,303(1):17-24
    [41]Devi P. S. TLC as a Tool for Quantitative Isolation of Conjugated Trienoic FA. JAOCS,2003, 80(4):315-318
    [42]Ioh Y.G., Kim S.J.,Christie W.W.. The structure of the triacylglycerols,containing punicic acid, in the seed oil of Trichosanthes kirilowii.JAOCS,1995,72 (9):1037-1042
    [43]Husain S and Devi.K. S. Separation and identification of isomeric conjugated fatty acids by high-performance liquid chromatography with photodiode array detection. Lipids,1993,28 (11):1037-1040
    [44]Liu L.S., Hammond E C.,Nikolau B.J. In Vivo studies of the biosynthesis of c in the seed of Momordica charanfia L. Plant Physiol.1997,113:1343-1349
    [45]Taniguchi S, Uechi K, Kato R, et al. Accumulation of hydrolyzable tannins by Aleurites fordii callus culture. Planta Med.2002,68(12):1145-1146
    [46]Jacks T,J. and Yatsu L.Y. Synthesis of conjugated trienoic fatty acids by a cell-free preparation of Tung endosperm. Lipids,1972,7:445-446
    [47]Shockey J M, Gidda S K, Chapital D C, et al. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum.Plant Cell,2006,18(9):2294-2313
    [48]Dyer J M., Chapital D C., Kuan J W.,et al. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung.Implications for the evolution of plant fatty acid diversity.Plant Physiol, 2002,130:2027-2038
    [49]Dyer J M., Chapital D C., Kuan J W.,et al. Production of Linolenic Acid in Yeast Cells Expressing an Omega-3 Desaturase from Tung (Aleurites fordii). JAOCS,2004,81 (7):647-651
    [50]Cahoon EB, Dietrich CR, Meyer K,et al. Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry. 2006,67(12):1166-76
    [51]Cahoon EB, Carlson TJ, Ripp KG,et al. Biosynthetic origin of conjugated double bonds:Production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Natl Acad Sci USA.1999,96(22):12935-12940
    [52]王关林,方宏筠主编.植物基因工程[M].第二版.科学出版社.北京:2002:82-84
    [53]李碧荣.国内cDNA文库及cDNA克隆的研究概况[J].生物工程进展,1992,12(4):53-57
    [54]J.萨姆布鲁克等.分子克隆实验指南(第三版)[M].2002:857-967
    [55]Gubler U, Hoffman B J. A simp le and very effient method for generating cDNA library. Gene, 1983,25:263-269
    [56]田海生,马磊等.两个标准化cNDA差减文库的构建[J].中国血吸虫病防治杂志,2001,13(2):75-78
    [57]刘军,袁自强等.应用抑制差减杂交法分离水稻幼穗发育早期特异表达的基因[J].科学通报,2000,45(13):1392-1397
    [58]Lisitsyn N et al. Cloning the differences between two complex genomes. Science,1993,259: 946-951
    [59]骆蒙,孔秀英,贾继增.儿种cDNA差减文库构建方法的比较[J].生物技术通报,2000,6:14-17
    [60]罗敏捷.抑制性差减杂交方法介绍[J].国外医学:临床生物化学与检验学分册,2000,2 1(5):252-253
    [61]Schraml P et al. cDNA subtraction library construction using a magnet-assisted subtraction technique (MAST). Trends Genet,1993,9:70-71
    [62]Patanjali S R, Parimoo S,Weissman S M. Construction of a uniform-abundance (normalized) cDNA library. Proc Natl Acad Sci UAS,1991,88:1943-1947
    [63]Roeder T. Solid-phase cDNA library construction, a versatile approach. Nucleic Acids Res. 1998,26(14):3451-3452
    [64]Maruyama K, Sugano S. Oligo-capping:a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene.1994,138(12):171-174
    [65]Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K,et al.Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. Gene.1997,200(12):149-56
    [66]Frohman MA, Dush MK, Martin GR. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA. 1988,85(23):8998-9002
    [67]Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989,340:245-6
    [68]张迪,霍克克,顾科隆等.酵母双杂交技术研究进展[J].高技术通讯,2000,10(3):98-101
    [69]李菁菁,吴新杞,刘良式.水稻小穗cDNA文库的构建[J].中山大学学报论丛,1989,(04):170-174
    [70]Adams M D, J M Kelley, J D Gocayne, et al. Complementary DNA sequencng:expressed sequence tags and human genome project. Science,1991,252:1651-1656
    [71]张文华,石碧.不饱和脂肪酸结构与自动氧化关系的理论研究[J].皮革科学与工程,2009,19(4):5-9
    [72]Crombie L, Holloway SJ. The biosynthesis of calendic acid, octadeca (8E,10E,12Z)-trienoic acid, by developing marigold seeds:origins of (E,E,Z) and (Z,E,Z) conjugated triene acids in higher plant, J. Chem. Soc., Perkin Trans.1985,2425-2434
    [73]高红丽,曹莹,陈振宇.共轭亚麻酸的制备、表征和生物活性研究进展[J].化学通报,2007,2:96-105
    [74]高阳华,张成学,高阳兴等.油桐产量和品质与气象条件的关系[J].中国农业气象,1994,15(6):38-39
    [75]Ikuo N., Plastid metabolic pathways for fatty acid metabolism,Mol. Biol. and Biotech. of Plant Orga.,2004,543-564
    [76]王幼平,曾宇,罗鹏.植物脂肪酸代谢工程研究进展[J].中国油料作物学报,1998,20(4):88-92
    [77]Ohlrogge J.B.,Kuhn D.N., Stumpf P.K., Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea,Proc.Natl.cad.Sci.,1979,76:1194-1198
    [78]Thelen J.J.,Ohlrogge J.B.,Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng,2002,4:12-21
    [79]Harwood J.L.,Fatty acid metabolism.Annu Rev Plant Physiol Mol Biol,1988,39:101-138
    [80]Worsham LM, Williams SG, Ernst-Fonberg ML.Early catalytic steps of Euglena gracilis chloroplast type Ⅱ fatty acid synthase. Biochim Biophys Acta.1993,1170(1):62-71
    [81]Nikolau B.J., OhlroggeJB.and Wurtele E.S., Plant biotin-containing carbixylases, Arch. Biochem.Biophys.,2003,414:211-222
    [82]Sasaki Y, Nagano Y.Plant acetyl-CoA carboxylase:structure, biosynthesis, regulation, and gene manipulation for plant breeding.Biosci Biotechnol Biochem.2004,68(6):1175-84
    [83]Slabas AR,Fawcett T.The biochemistry and molecular biology of plant lipid biosynthesis. Plant Mol Biol,1992,19:169-191
    [84]Gengenbach. Transgenic plants expressing maize acetylCoA carboxylase gene and method of altering oil content. United States Patent,2001,6,222,099
    [85]Cronan JE Jr, Waldrop GL. Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res.2002,41(5): 407-435
    [86]Roesler K.,Shintani D.,Savage L.et al. Targting of the Arabidopsis homomeric Acetyl coenzyme A Carboxylase to plastids of rapeseeds,Plant Physiol.,1997,113:75-81
    [87]Thelen J.J.,Ohlrogge J.B. Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl coenzyme a carboxylase in Arabidopsis thaliana. Plant J,2002, 32:419-431
    [88]Davis M.S.,Solbiati J.,Cronan J.E., Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli,J.Biol.Chem.,2000,275:285593-29598
    [89]Savage LJ, Ohlrogge JB. Phosphorylation of pea chloroplast acetyl-CoA carboxylase. Plant J,1999,18:521-527
    [90]Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Prog Lipid Res.2002,41(2):182-196
    [91]Caughey I., Kekwick R.G.O.,The characteristics of some components of the fatty-acid synthetase system in the plastids from the mesocarp of avocado (Persea americana) fruit. Eur J Biochem.,1982, 123:553-561
    [92]White SW, Zheng J, Zhang YM. The structural biology of type Ⅱ fatty acid biosynthesis. Annu Rev Biochem.2005;74:791-831
    [93]Lamppa G and Jacks C. Analysis of two linked genes coding for the acyl carrier protein (ACP) from Arabidopsis thaliana (columbia); Plant Mol. Biol.1991,16:469-474
    [94]Kater M M, Koningstein G M, Nijkamp H J et al.cDNA cloning and expression of Brassica napus enoyl-acyl carrier protein reductase in Escherichia coli; Plant Mol. Biol.1991,17:895-909
    [95]Klein B, Pawlowski K, Horicke-Grandpierre C, et al. Isolation and characterization of a cDNA from Cuphea lanceolata encoding a beta-ketoacyl-ACP reductase; Mol. Gen.Genet.1992,233:122-128
    [96]Scherer D E and Knauf V C.Isolation of a cDNA clone for the acyl carrier protein-I of spinach; Plant Mol. Biol.1987,9:127-134
    [97]Hansen L and Kauppinen S.Barley acyl carrier protein Ⅱ:nucleotide sequence of cDNA clones and chromosomal location of the Acl2 gene; Plant Physiol.1991,97:472-474
    [98]Mekhedov S, Cahoon E B and Ohlrogge J. An unusual seed-specifi c 3-ketoacyl-ACP synthase associated with the biosynthesis of petroselinic acid in coriander; Plant Mol. Biol.2001,47:507-518
    [99]Chen J and Post-Beittenmiller D. Molecular cloning of a cDNA encoding 3-ketoacyl-acyl carrier protein synthase III from leek; Gene 1996,182:45-52
    [100]LI M J,LI A Q, XIA H,et al.Cloning and sequence analysis of putative type Ⅱ fatty acid synthase genes from Arachis hypogaea L. J. Biosci.2009,34(2):227-238
    [101]Rafferty J B, Simon J W, Baldock C,et al. Common themes in redox chemistry emerge from the X-ray structure of oilseed rape(Brassica napus) enoyl acyl carrier protein reductase; Structure.1995, 3:927-938
    [102]Fisher M, Kroon J T M, Martindale W, et al.The X-ray structure of Brassica napus β-ketoacyl carrier protein reductase and its implications for substrate binding and catalysis; Structure,2000, 8:339-347
    [103]Hlousek-Radojcic A, Post-Beittenmiller D and Ohlrogge JB.Expression of constitutive and tissue-specifi c acyl carrier protein isoforms in Arabidopsis; Plant Physiol.1992,98:206-214
    [104]Hlousek-Radojcic A, Post-Beittenmiller D and Ohlrogge JB.Expression of constitutive and tissue-specifi c acyl carrier protein isoforms in Arabidopsis; Plant Physiol.1992,98:206-214
    [105]de Silva J, Loader NM, Jarman C, et al. The isolation and sequence analysis of 2 seed-expressed acyl carrier protein genes from Brassica napus. Plant Mol Biol,1990,14:537-548
    [106]Takashi Shimakata and Paul K. Stumpf. The purification and function of acetyl coenzyme A:acyl carrier protein transacylase. The Journal of Bioligial Chemistry,1983,258(6):3592-3598
    [107]Keatinge-Clay A T, Shelat A A, Savage D F, et al. Catalysis,specifi city, and ACP docking site of Streptomyces coelicolor malonyl-CoA:ACP transacylase; Structure,2003,11:147-154
    [108]Oefner C, Schulz H, D'Arcy A, Dale GE.Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. Acta Crystallogr D Biol Crystallogr.2006;62(6):613-618
    [109]von Wettstein-Knowles P., Olsen J G., McGuire K A. et al.Fatty acid synthesis Role of active site histidines and lysine in Cys-His-His-type β-ketoacyl-acyl carrier protein synthases. FEBS Journal, 2006,273:695-710
    [110]Ikuo N., Plastid metabolic pathways for fatty acid metabolism,Mol. Biol. and Biotech, of Plant Orga.,2004,543-564
    [111]Clough, R.G., A.L. Mattis, S.R. Barnum and J.G. Jaworski.1992. Purification and characterization of 3-ketoacyl-acyl carrier protein synthase Ⅲ from spinach. J. Biol. Chem.267:20,992-20,998
    [112]Tai, H., D. Post-Beittenmiller and J.G. Jaworski. Cloning of a cDNA encoding 3-ketoacyl-acyl protein synthase Ⅲ from Arabidopsis. Plant Physiol.1994,106:801-802
    [113]Prigge ST, He X, Gerena L,et al.The initiating steps of a type Ⅱ fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASⅢ. Biochemistry.2003,42(4):1160-1169
    [114]Dehesh K,Tai H, Edwards P, Byrne J. et al. Overexpression of 3-ketoacyl-acyl-carrier protein synthase Ills in plants reduces the rate of lipid synthesis. Plant Physiol.2001,125:1103-1114
    [115]Sheldon PS, Kekwick RG, Smith CG,et al.3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus). Biochim Biophys Acta.1992,1120(2):151-9
    [116]Sheldon P.S., Kelwick R.G., Sidebottom C.3-Oxoacyl-(acyl-carrier protein) reductase from avocado (Persea americana) fruit mesocarp. Biochem. J.1990,271:713-720
    [117]Klein B, Pawlowski K, Horicke-Grandpierre C,et al. Isolation and characterization of a cDNA from Cuphea lanceolata encoding a beta-ketoacyl-ACP reductase. Mol Gen Genet.1992,233(1-2): 122-8
    [118]Heath R J., Rock C O. Roles of the FabA and FabZ β-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. The Journal of Biological Chemistry,1996,271 (44):27795-27801
    [119]Heath R J, Rock C O. Enoyl-acyl carrier protein reductase (fabl) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli.1995,270(44):26538-26542
    [120]de Boer GJ, Kater MM, Fawcett T, et al. The NADH-specific enoyl acyl carrier protein reductase: characterization of a housekeeping gene involved in storage lipid synthesis in seeds of Arabidopsis and other plant species. Plant Physiol Biochem.1998,36:473-486
    [121]Fawcett T, Simon WJ, Swinhoe R, et al. Expression of messenger-RNA and steady-state levels of protein isoforms of enoyl-ACP reductase from Brassica napus. Plant Mol Biol,1994,26:155-163
    [122]Voelker T.Plant acyl-ACP thioesterases:chain-length determining enzymes in plant fatty acid biosynthesis. Genet Eng(NY).1996; 18:111-33
    [123]Loader NM, Woolner EM, Hellyer A, et al.Isolation and characterization of two Brassica napus embryo acyl-ACP thioesterase cDNA clones. Plant Mol Biol.1993,23(4):769-778
    [124]Jones A, Davies H M, Voelker T A. Palmitoyl-Acyl carrier protein (ACP) thioesterase and the evolutidnary-origin of plant acyl-ACP thioesterases. The Plant Cell,1995,7:359-371
    [125]Serrano-Vega M. J,Garces R.,Martinez-Force E. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Planta,2005,221:868-880
    [126]Pollard, M.R., Anderson, L., Fan, C., Hawkins, D.H.,et al. A specific acyl-ACP thioesterase implicated in medium chain fatty acid production in immature cotyledons of Umbellularia californica. Arch. Biochem. Biophys.1991,284 306-312
    [127]Dormann P,Voelker T A, Ohlrogge J B. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long chain acyl-acyl carrier proteins. Arch Biochem Biophys,1995,316:612-618.
    [128]Uhden, I., Frentzen, M. Role of plastidial acyl-acyl carrier protein:Glycerol 3-phosphate acyltransferase and acyl-acyl carrier protein hydrolase in channeling the acyl flux through the prokaryotic and eucaryotic pathway. Planta,1988,176:506-512
    [129]Gibson, S., Falcone, D.L., Browse, J.,et al. Use of transgenic plants and mutants to study the regulation and function of lipid composition. Plant Cell Environ.1994,17:627-637
    [130]Schnurr J. A., Shockey J.M., Boer G., et al.Fatty Acid Export from the Chloroplast. Molecular Characterization of a Major Plastidial Acyl-Coenzyme A Synthetase from Arabidopsis, Plant Physiol, 2002,129:1700-1709
    [131]Ohlrogge J.B., Jaworski J.G., Regulation of fatty acid synthesis.Ann Rev Plant Physiol Plant Mol Biol.1997,48:109-136
    [132]Stymne S, Stobart A K, Gladd G. The role of the acyl-CoA pool in the synthesis of polyunsaturated 18-carbin fatty acids and triacylglycerol production in the microsomes of developing safflower seeds. Biochimica et biophysica acta,1983,752:198-208
    [133]Slocombe SP, Cummins I, Jarvis RP et al. Nucleotide sequence and temporal regulation of a seedspecific Brassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Mol Biol.1992,20:151-155
    [134]Elborough KM, Swinhoe R, Winz R,et al. Isolation of cDNAs from Brassica napus encoding the biotin-binding and transcarboxylase domains of acetyl-CoA carboxylase:assignment of the domain-structure in a full-length Arabidopsis thaliana genomic clone. Biochem J,1994,301:599-605
    [135]Fawcett T, Simon WJ, Swinhoe R, et al. Expression of messenger-RNA and steady-state levels of protein isoforms of enoyl-ACP reductase from Brassica napus. Plant Mol Biol.1994,26:155-163
    [136]Ke J.,Wen T.N.,Nikolau B.J.,et al. Coordinate regulation of the nuclear and plastidic genes coding for the subunits of the heteromeric acetyl coenzyme a carboxylase.Plant Physiol,2000,122:1057-1072
    [137]O'Hara P, Slabas AR, Fawcett T.Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiol.2002,129(1):310-320
    [138]Somerville C.,Direct tests of the role of membrane lipid composition in low-temperature- induced photoinhibition and chilling sensitivity in plants and cyanobacteria, Proc.Natl.Acad.Sci.,1995,92(14): 6215-6218
    [139]Nishida I.,and Murata N.,Chilling sensitivity in plants and cyanobacteria:the crucial contribution of membrane lipid,1996,Ann.Rev.Plant Physiol.Plant Mol. Biol.,47:541-568
    [140]Kodama H.,Hamada T.,Horiguchi G.,et al.Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco, Plant Physiol.,1994,105(2):601-605
    [141]刘星辉,佘文琴,张惠斌.龙眼、荔枝叶处膜拜脂脂肪酸与耐用消费品寒性的研究[J].福建农业大学学报,1996,25(3):297-301
    [142]Kodama T., Harada M., Sugawara K., et al. Two maize genes encoding ω-3 fatty acid esaturase and their differential expression to temperature, Plant Mol. Bio.,1998.36(2):297-306
    [143]Falcone D.L., Ogas J.P., and Somerville C.R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition, Plant Bio.2004, 4:17
    [144]Mikkilineni V.,Rocheford T. R.,Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize.Theor. Appl. Genet.2003,106: 1326-1332
    [145]Buchanan B.B.,Gruissem W.,Jones R.L., Biochemistry and Molecular Biology of Plants, American Society of Plant Physiologists,Rockville,Maryland,2000,456-526
    [146]Higashi S.,Murata N., An in vivo study of substrate specificities of acyl-lipid desaturase and acyltransferases in lipid synthesis in Synechocystis PCC6803,Plant Physiol.,1993,110:311-319
    [147]Ohlrogge J. and Browse J.,Lipid biosynthesis,Plant Cell.1995,7:957-970
    [148]Hugly S.and Somerville C.,A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature.Plant Physiol,1992,99:197-202
    [149]张羽航,鲍时翔,郑学勤,黄自然等.脂肪酸脱饱和酶的研究进展[J].生物技术通报,1998,4:1-9
    [150]Somerville C.,BrowseJ.,Disseeting desaturation,Trends in Cell Biol.,1996,6:148-153
    [151]Hitz W.D., Carlson T.J., Booth J. R., et al, Cloning of a higher-plant plastid ω-6 fatty acid desaturase cDNA and its expression in a Cyanobacterium, Plant Physiol.1994,105:635-641
    [152]Heppard E.P.,Kinney A.J.,Stecca K.L.,et al. Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans,Plant Physiol.,1996,110(1):311-319
    [153]Byrum J. R., Kinney A. J., Stecca K. L. et al.Alteration of the ω-3 fatty acid desaturase gene is associatedwith reduced linolenic acid in the A5 soybean genotype. TheorAppl Genet,1997,94:356-359
    [154]Kwon J.H.,Lee Y.M.,An C.S.,cDNA cloning of chloroplastω-3fatty acid desaturase from Capsicum annuum and its expression upon wounding.Mol.Cells,2000,10(5):493-497
    [155]Berberich T., Harada M., Sugawara K., et al.Two maize genes encoding co-3 fatty acid desaturase and their differential expression to temperature. Plant Mol.Bio.,199836:297-306
    [156]Fawcett, T., Simon, W.J., Swinhoe, R., et al. Expression of mRNA and steady-state levels of protein isoforms of enoyl-ACP reductase from Brassica napis. Plant Mol. Biol.1994,26:155-163
    [157]Slocombe, S.P., Cummins, I., Jarvis, R.P., et al. Nucleotide sequence and temporal regulation of a seedspecific Brassica napus cDNA encoding a stearoyl-acyl carrier protein (ACP) desaturase. Plant Mol. Biol.1992,20:151-155
    [158]Slocombe, S.P., Piffanelli, P., Fairbairn, D., et al. Temporal and tissue-specific regulation of a Brasica napus stearoyl-acyl carrier protein desaturase gene. Plant Physiol.1994,104:1167-1176
    [159]卢善发.植物脂肪酸的生物合成与基因工程[J].植物学通报,2000.17(6):481-491
    [160]McKeon T. A. and Stumpf P.K., Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesteras from maturing seeds of safflower. J.Biol Chem.1982,257(20):12141-12147
    [161]Okuley J.,Lightner J.,Feldmann K.,et al.Arabidopsis fad2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis.Plant Cell,1994,6:147-158
    [162]Shanklin, J., and Somerville, C.R. Stearyl-acyl carrier protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc. Natl. Acad. Sci. USA.1991,88:2510-2514
    [163]Zaborowska Z., Starzycki M., Femiak I., et al. Yellow lupine gene encoding stearoyl-ACP desaturase-organization, expression and potential application. Acta. Biochim. Pol.2002,49:29-42
    [164]Knutzon, D.S., Thompson, G.A., Radke, S.E., et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA.1992,89, 2624-2628
    [165]Luo T., Peng S.M., Deng W.Y.,et al. Characterization of a new stearoyl-acyl carrier protein desaturase gene from Jatropha curcas. Biotech. Lett.2006,28:657-662
    [166]Knutzon D.S.,Scherer D.E.,Schreckengost W.E.Nucleotide sequence of complementary cDNA clone encoding Stearoyl-Acyl Carrier protein desaturase from castor bean,Ricinus communis.Plant Physiol,1991,96:344-345
    [167]Slocimbe S.P.,Cummins I.,Jarris R.P.,et al.Nucleotide sequence and temporal regulation of a seed-specific Bracica napus cDNA encoding a stearoylacyl carrier protein (ACP)desaturase. Plant Mol Biol,1992,20:151-155
    [168]Lighter J.,Wu J.R.,and Browse J., A mutant of Arabidopsis with increased levels of stearic acid,Plant physiol.,1994,106(4):1443-1451
    [169]Yukawa Y,Takaiwa F,Shojik K,et al. Structure and expression of two seed-specific cDNA encoding stearoyl-acyl carrier protein desaturase from sesame, Sesamum indicum. Plant Cell Physi., 1996,37(2):201-205
    [170]Knutzon D S, Thompson G A, Radke S E et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc nat l acad sci USA,1992,89: 2624-2628
    [171]Zaborowska Z, Starzycki M, Femiak I, et al.Yellow lupine gene encoding stearoyl-ACP desaturase--organization, expression and potential application. Acta Biochim Pol.2002;49(1):29-42
    [172]Thompson, G.A., Scherer, D.E., Foxall-Van Aken, S., et al. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc. Natl.Acad. Sci. USA 1991,88:2578-2582
    [173]Lindqvist Y.,Hu W.T.,Schneider G.,et al.Crystal structure of △9stearoyl-ACP desaturase from caster seed and its relationship to other diiron protein. EMBO J,1996,15(16):4081-4092
    [174]Mikkilineni V.,Rocheford T. R.,Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize,Theor Appl Genet.2003,106: 1326-1332
    [175]Miller J.F.,Zimmerman D.C.,Vick B.A.,Genetic control of high oleic acid content insunflower oil.Crop Sci.,1987,27:923-926
    [176]Kinney AJ and Knowlton S.Designer oils:the high oleic acid soybean.In S.Roller&S. Harlander (Eds.) Genetic Modification in the Food Industry:A Strategy for Food Quality Improvement Blackie Academic and Professional London,UK.1998,193-213
    [177]Hitz W D, Yadav N S, Reifer R S et al. In Plant lipid metabolism.Netherlands:Kluwer, Dordrecht, 1995,506-509
    [178]戴晓峰,肖玲,武玉花等,植物脂肪酸去饱和酶及其编码基因研究进展[J],植物学通报,2007,24(1):105-113
    [179]Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.).Ⅱ. Molecular basis and genetics of the trait. Mol Gen Genet.2000,263:806-811
    [180]Jin UH, Lee JW, Chung YS, et al. Characterization and temporal expression of a omega-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci.2001,161:935-941
    [181]Martinez-Rivas JM, Sperling P, Luhs W, Heinz E.Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower(Helianthus annuus L.).Mol Breed.2001,8:159-168
    [182]Liu Q, Singh SP, Brubaker CL, et al. Molecular cloning and expression of a cDNA encoding a microsomal w-6 fatty acid desaturase from cotton (Gossypium hirsutum). Plant Physiol.1999,26:101-106
    [183]Dyer J.M., Chapital D.C., Kuan J.C.W.,et al. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung, implications for the evolution of plant fatty acid diversity.Plant Physiol.2002,130:2027-2038
    [184]Banilas G, Moressis A, Nikoloudakis N, et al. Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). Plant Sci,2005,168:547-555
    [185]Kirsch C.,Hahlbrock K.,SomssiehI.E.,Rapid and transient induction of a parsley microsomal delta 12 fatty acid desaturase mRNA by fungal eicitor.Plant Physiol.,1997,115:283-299
    [186]Liu Q, Brubaker CL, Green AG, et al. Evolution of the FAD2-1 fatty acid desaturase 5'UTR intron and the molecular systematics of Gossypium(Malvaceae). American Journal of Botany.2001,88: 92-102.
    [187]Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, et al. Molecular cloning and functional expression of the gene for a cotton Delta-12 fatty acid desaturase (FAD2). Biochim Biophys Acta. 2001,1522(2):122-129.
    [188]Hitz W.D., Carlson T.J., Booth J. R., et al, Cloning of a higher-plant plastid ω-6 fatty acid desaturase cDNA and its expression in a Cyanobacterium, Plant Physiol.1994,105:635-641
    [189]Lcmieux B.,Miquel M.,Somerville C.,et al.Mutants of Arabidopsis with alterations in seed lipid fatty acid composition.Theor.Appl.Genet.,1990,80:234-240
    [190Iba K.,Gibson S.,Nishiuchi T.,et al.A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana.JBiol Chem,1993,268(32):24099-24105
    [191]McConn M.,Hugly S.,Browse J.,et al.A mutation at the fad8 locus of Arabidopsis identifies a second chloroplastco-3 desaturase.Plant Physiol,1994,106:1609-1614
    [192]Matsuda O., Sakamoto H., Hashimoto T., et al. A temperature-sensitive mechanism that regulates post-translational stability of a plastidial ω-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. Bio. Chem..2005,280(5):3597-3604
    [193]Yadav N.S., Wierzbicki A., Aegerter M. et al. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol.1993,103:467-476
    [194]Hamada T., Nishiuchi T., Kodama H., et al. Cloning of a wounding- inducible gene encoding a plastid omega -3 fatty acid desaturase from tobacco. Plant Cell Physiol.1996,37:606-611
    [195]Arondel V., Lemieux B., Hwang I., et al. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis.Science 1992,258:1353-1354
    [196]Kodama H., Akagi H., Kusumi K., et al. Structure chromosomal location and expression of a rice gene encoding the microsome omega-3 fatty acid desaturase.Plant Mol Biol.1997,33:493-502
    [197]Tang S.Y., Guan R.Z, Zhang H.S.,et al. Cloning and expression analysis of three cDNAs encoding omega-3 fatty acid desaturases from Descurainia sophia.Biotechnol.2007,29:1417-1424
    [198]van de Loo F., Somerville C. Plastid ω-3 fatty acid desaturase cDNA from Ricinus communis., Plant Physiol.1994,105:443-444
    [199]Gibson S., Arondel V., Iba K.,et al. Cloning of a temperature-regulated gene encoding a chloroplast ω-3 desaturase from Arabidopsis thaliana. Plant Physiol.1994,106:1615-1621
    [200]Yadav NS, Wierzbicki A, Aegerter M, et al. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol.1993 Oct;103(2):467-476
    [201]Berberich T., Harada M., Sugawara K., et al.Two maize genes encoding ω-3 fatty acid desaturase and their differential expression to temperature. Plant Mol.Bio.,199836:297-306
    [202]Matsuda O, Sakamoto H, Hashimoto T, Iba K. A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. J Biol Chem.2005,280(5):3597-3604
    [203]Nishiuchi T., Nakamura T., Arondel V., et al. Genomic nucleotide sequence of a gene encoding a microsomal omega -3 fatty acid desaturase from Arabidopsis thaliana. Plant Physio.1994,105:767-768
    [204]Hornung E., Pernstich C., Feussner I. Formation of conjugated △11 △13-double bonds by △12-linoleic acid (1,4)-acyl-lipid-desaturase in pomegranate seeds. Eur. J. Biochem.2002,269:4852-4859
    [205]Darwin W. R, Christopher K. S, Xiao Q. Mechanism of 1,4-dehydrogenation catalyzed by a fatty acid (1,4)-desaturase of Calendula officinalis.J. Biochem.2002,269,5024-5029
    [206]Cahoon E B., Ripp K G., Hall S E. et al. Formation of conjugated △8,△10-double bonds by △12-oleic-acid desaturase-related enzymes:biosynthetic origin of calendic acid. J. Biological Chemistry,2001,276(4):2637-2643
    [207]Liu L, Hammond EG, Nikolau BJ. In Vivo Studies of the Biosynthesis of [alpha]-Eleostearic Acid in the Seed of Momordica charantia L. Plant Physiol.,1997,113(4):1343-1349
    [208]Cahoon EB, Dietrich CR, Meyer K, et al.Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and Arabidopsis seeds. Phytochemistry.2006,67 (12):1166-1176
    [209]Cahoon, E.B., Carlson, T.J., Ripp, K.Get al. Biosynthetic origin of conjugated double bonds: Production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc. Natl Acad. Sci. USA,1999,96:12935-12940
    [210]Dyer JM, Chapital DC, Kuan JC, et al. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol.2002,130(4):2027-2038
    [211]Murata N.,Wada H., Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria.Biochem.J,1995,308:1-8
    [212]Shanklin J., Cahoon E.B.,Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol.Biol.1998,49:611-641
    [213]Shah S., Xin Z.G., and Browse J.,Overexpression of the FAD3 desaturase gene in a mutant of Arabidopsis.Plant Physiol.1997,114:1533-1539
    [214]Poghosyan Z.P., Haralampidis K., Martsinkovskaya A.I. et al. Developmental regulation and spatial expression of a plastidial fatty acid desaturase from Olea europaea. Plant Physiology and Biochemistry.1999,37(2):109-119
    [215]Nishiuchi T.,Nakamura T.,Abe T.,et al. Tissue-specific and light responsive regulation of the promoter region of the Arabidopsis thaliana chloroplast ω-3 fatty acid desaturase gene.Plant Mol.Biol.1995,29:599-609
    [216]Horiguchi G.,Iwalawa H.,Kodama H.,et al.Expression of gene for plastid ω-3fatty acid desaturase and changes in lipid and fatty acid composition in light-and dark-grown wheat leaves.Physiol. Plant, 1996,96:275-283
    [217]Zou J.,Abrams G.D.,Barton D.L.,et al,Induction of lipid and oleoisin biosynthesis by(+)-abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L.cv Reston.Plant Physiol.,1995,108:563-571
    [218]Yamamoto K.T., Further charaeterizationcof auxin-regulated mRNA in hypototyl section of mung bean.Planta,1994,192:359-364
    [219]Raison J.K., Roberts J.K.M., Berry J.A. Correlation between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant Nerium oleander to growth temperature. Biochim Biophys Acta.1982,688:218-228
    [220]Horiguchi G., Fuse T., Kawakami N., et al.Temperature-dependent translational regulation of the ER omega-3 fatty-acid desaturase gene in wheat root tips.Plant J.2000,24:805-813
    [221]Harwood J.L. Plant acyl lipids. In:Stumpf PK, Conn EE(eds) The biochemistry of plants. A comprehensive treatise,4. Academic Press, New York,1980,1-55
    [222]High L, et al. The primary signal in the biological perception of temperature:Pd -catalyzed hydrogenation of membrane liquids the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA,1993,90:9090-9094
    [223]Wada H, et al. Enhancement of chilling tolerance of a cyannobacterium by genetic manipulation of fatty acid desaturation. Nature,1990,347:200-203
    [224]Wolter F P. et al. Chilling sensivity of Arabidopsis thaliana with genetically engineered membrane liquids. EMBO JEur.Mol Biol Organ,1992,11(13):4685-4692
    [225]Bell E.,Creelman R.A.,Mullet J.E.,A chloroplast liposygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proe. Natl. Acad. Sci. USA,1995,92:8675-8679
    [226]Blechert S.,Brodschelm W.,Holder S.,et al.,The octadecanoie pathway:signal molecules for the regulation of secondary pathways.Proc.Aatl.Acad Sci. USA,1995,92:4099-4105
    [227]Dittrich F.,Kutchan T.M.,Zenk M.H.,The jasmonate precursor,12-oxo-Phytodienoic acid, induces Phytoalexin synthesis in Petroselinum crispum cell cultures.FEBSLett,1992,309:33-36
    [228]柴团耀;张玉秀.菜豆富含脯氨酸蛋白质基因在生物和非生物斜坡下的表达[J].植物学报,1999,41(1):111-113
    [229]王保明,谭晓风.植物亲环素基因的结构、功能及表达调控[J].中南林业科技大学学报.2008,28(1):168-174
    [230]吕素芳,郭广君,蔡永萍.翻译控制肿瘤蛋白(TCTP)研究进展[J].科学技术与工程,2006,6(4): 424-428
    [231]M. C. Teixeira,N. Coelho,M. E. Olsson et al.Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.).Biotechnology Letters,2009,3:11-14
    [232]John M. D,Dorselyn C. C,Jui-Chang W. Kuan et al. Molecular Analysis of a Bifunctional Fatty Acid Conjugase/Desaturase from Tung. Implications for the Evolution of Plant Fatty Acid Diversity. Plant Physiology,2002,130:2027-2038
    [233]仇键,谭晓风.植物种子油体及相关蛋白研究综述[J].中南林学院学报,2005,24(5):96-100
    [234]Yasuda H, Hirose S, Kawakatsu T. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant Cell Physiol.2009,50(8): 1532-1543
    [235]白宇杰,马华升,王火旭.植物细胞亲环素研究进展[J].植物生理学通讯,2010,46(9):881-889
    [236]谭晓风,胡芳名,谢禄山等.油茶种子EST文库构建及主要表达基因的分析[J].林业科学2006,42(1):43-48
    [237]谭晓风,陈鸿鹏,张党权等.油茶FAD2基因全长cDNA的克隆和序分析[J].林业科学2008,44(3):70-75
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.