青藏高原多年冻土区微生物多样性及其潜在应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多年冻土作为占据地球陆地总面积26%的生态环境,因其长期的低温和地磁辐射、严重缺乏液态水和可获取的营养,对生存于其中的生物是极大的挑战,是极端环境的一个重要代表。上世纪90年代,因研究低温环境下的生命特征和进化起源、作为地外生命研究的模型和开发低温环境下微生物资源的需要,冻土微生物的研究得到了大力支持而长足进展。然而,青藏高原作为一个特殊多年冻土环境的代表,其微生物学研究开展甚少;而随着全球气候变暖,青藏高原多年冻土正在急剧退化,这使研究其中微生物的工作显得重要且紧迫。
     本工作以取自青藏高原腹地北麓河流域的冻土样品为材料,重点研究了青藏高原多年冻土区可培养微生物的理化性质和多样性分布,并对一些细菌的新种和一些有应用前景的菌株做了进一步研究,主要结果如下:
     1.青藏高原冻土中可培养的细菌,其数量在10~2-10~7个/克土壤之间(干重),该数量随着冻土年龄的增加而减少;在低温恢复培养的过程中,发现在温度升高冻土消融的过程中,可培养细菌的数量增加而多样性却逐渐减少;通过系统发育学研究和分类分析,该细菌群落包含15个属,归于六个系统发育组:即高G+C革兰氏阳性细菌,低G+C革兰氏阳性细菌,α-proteobacteria,β-proteobacteria,γ-proteobacteria和CFB群细菌;通过生理生化研究,发现分离出来的细菌群落具有耐低温的特性,但真正的嗜冷菌却非常少。
     2.通过在培养基中添加碳酸氢钠的办法,恢复出一群数量在10~2-10~5个/克土壤之间的细菌群落,分离出的48株菌分属于6个属3个系统发育组。对其生理性质研究发现,这是一个具有耐冷嗜碱特性的细菌类群:在温度在10-15℃、pH为9-9.5的时获得最佳生长状态。这是首次对冻土中的嗜碱菌群进行了的研究,并发现一些能产生可能是新型的冷活性碱性蛋白酶的菌株,为进一步研究该类群细菌在生物科技产业的应用打下基础。
     3.通过比较已采用的几种培养方案,发现不同培养基对相同样品有不同的培养效果,而同一批样品经不同pH和温度下培养后,分离出来的菌群差异很大。本工作也对几种功能类群的细菌和放线菌的培养和初步研究成果,分析了使用多种培养方案对研究和开发微生物资源的重要意义。
     4.通过筛选发现有一部分细菌菌株能产生具低温活性胞外酶类,其中有一株来自地下5.7米处永冻层的Brevundimonas属细菌产冷活性淀粉酶和纤维素酶能力比较强,继而对其产酶最佳发酵条件进行了研究,为开发冻土中的微生物应用价值作了初步探索。
     5.通过常规鉴定手段和系统发育学研究,发现青藏高原冻土中的细菌有很大比例的细菌很可能是新的细菌物种代表,通过进一步研究,已完成鉴定了一个CFB类群的细菌新种,将其命名为Hymenobacter psychrotolerans,目前尚有数个能作为细菌新种的菌株正在研究鉴定中。
     通过以上研究表明,独特的青藏高原多年冻土中孕育着一个独特的微生物群落,很多微生物的新种等待被认识,更多有应用前景的微生物资源等待开发。
The permafrost environment represents 26% of terrestrial soil ecosystems, is considered extreme because indigenous microorganisms must survive prolonged exposure to subzero temperatures and background radiation for geological time scales in a habitat with seriously lack of liquid water reachable nutrition. In the last century 90's, with the purpose to study the life characteristic and evolution under the low temperature environment, as model to research extraterrestrial life and to exploration of the microorganism resources under the low temperature environment, research of permafrost microbiology obtained it's vigorously support and considerable achievements. The Qinghai-Tibet Plateau represents a unique and important permafrost environment. However, its microbiology remains nearly unexplored to date. In addition, the permafrost degradation is very severe in the Qinghai-Tibet Plateau under global warming scene. Thus, there is an urgent need of investigations concerning microorganisms in this extreme and unique soil.
     In this study, samples were collected from Beilu river basin, the hinterland of Qinghai-Tibet Plateau. And the investigations were concentrated in the characteristics, distribution and diversity of the viable microorganisms from the Qinghai-Tibet Plateau permafrost region including with the study concerning the description of novel bacteria species and the study of some candidate strains that they might be of potential value for biotechnological exploitation. The results obtained here were summarized as follows:
     1. The numbers of colony forming unit (CFU) were ranged between 0 and 10~7/g dry soil. Phylogenetic analyses indicated that all the isolates belong to 19 genera and fell into six categories: high G+C Gram-positive bacteria, low G+C Gram-positive bacteria,α-proteobacteria,β-proteobacteria,γ-proteobacteria and CFB group bacteria. These results of characterization suggested that the isolated population is psychrotolerant but owns very less psychrophiles.
     2. The viable bacteria on PYGV agar modified by adding sodium bicarbonate were varied between 10~2 and 10~5 CFU/g of dry soil. Forty-eight strains were gained from 18 samples. Through phylogenetic analyses, these isolates fell into three categories and six genera. The strains could grow best at pH values ranging from 9 to 9.5 with the optima temperatures ranging from 10℃to 15℃. These results indicate that there are populations of nonhalophilic alkaliphilic psychrotolerant bacteria within the permafrost of the Qinhai-Tibet plateau. The abilities of some strains to produce cold active extracellular protease suggest that they might be of potential value for biotechnological exploitation.
     3. The comparisons of the utilized isolation procedures suggest that, though the same batch of samples used, the different media resulted in the different isolated populations and the same medium with different pH or different incubation temperatures could isolate very different bacteria populations. Combined with the results of cultivating some functional kinds of bacteria and actinomyces, the important significances of using multiple strategies to investigate and explore microorganism resource were analysed.
     4. A part of strains can produce cold active extracellular hydrolytic enzymes. The result showed that a Brevundimonas strain, isolated from a permafrost layer sample with the depth of 570cm, had relatively stronger ability to produce cold active extracellular amylase and cellulose. Subsequently, the further researches were focus on the optimal conditions to produce the enzymes for biotechnological exploitation of the permafrost organisms.
     5. With using the routine methods and phylogenetic analyses, results indicate that a good part of strains isolated from the Qinghai-Tibet Plateau permafrost region might potentially be new taxa. Subsequently, investigation work concerning description a CFB group bacteria strain as a novel species was completed and the scientific name Hymenobacter psychrotolerans was proposed. In addition, some candidate strains might potentially be new taxa was still under recent study.
     The results above indicate that the unique permafrost on the Qinghai-Tibet Plateau accommodates a very special original microbial assemblage. There are many novel taxa of microorganisms need to be investigated and a great potential value of microbial resources ready to be explored.
引文
蔡婀英(2001)《常见细菌系统鉴定手册》(第2版),科学出版社。
    常承法等 (1982)《青藏高原大地构造发展轮廓-地质构造问题》,科学出版社。
    李潇丽,刘小汉,琚宜太,黄费新.(2002)东南极格罗夫山地区的土壤特征[J].中国科学D辑,36(9):767-775.
    刘光琇,胡长勤,张靖博,沈永平.(2001)青藏高原多年冻土微生物的分离分析及其意义[J].冰川冻土,23(4):419-422.
    马晓军(2004)博士论文:低温环境中细菌的恢复、鉴定、分离及其特征研究.兰州大学。
    王绍令,赵秀峰,郭东信,等.(1996) 青藏高原冻土对气候变化的响应[J].冰川冻土,18(增刊):157-165.
    王绍令(1997)青藏高原冻土退化的研究[J].地球科学进展,12:167-167.
    徐成勇,袁野.(1999)选择性分离放线菌[J].无锡轻工大学学报,,18(2):45-49.
    许光辉,郑洪元,(1986)《土壤微生物分析手册》,农业出版社。
    杨宇容,徐丽华.(1995)放线菌分离方法的研究(I.抑制剂的选择)[J].微生物学通报,22(2):88-91.
    周幼吾,邱国庆,郭东信,程国栋,李树德 (2000)《中国冻土》,科学出版社。
    朱允铸,钟坚华,李文生(1994)《柴达木盆地新构造运动及盐湖发展演化》,地质出版社。
    Aghafari N, Feller G, Gerday C. (1998) Structures of the psychrophilical teromomas haloplanctis-Amylase gives insights into cold adaptation at a molecular level. Structure. 6: 1503-1516.
    Altenburger P, Kaimpfer P, Makristathis A, Lubitz W, Busse HJ. (1996) Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47: 39-52.
    Anisimov O, Reneva S. (2006) Permafrost and changing climate: the Russian perspective. Ambio. 35(4): 169-175.
    Bai Y, Yang D, Wang J, Xu J, Wang X, An L. (2006) Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res Microbiol. 157:741-751.
    Baik KS, Seong CN, Moon EY, Park YD, Yi H, Chun J. (2006) Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 56:2189-2192.
    Bakermans C, Tsapin Al, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at -10 ℃ of bacteria isolated from Siberian permafrost. Environ Microbiol 5(4):321-326.
    Bakermans C, Nealson KH. (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol. 186(8):2340-2345.
    Bakermans C, Ayala-del-Rio HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM. (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol. 56:1285-1291.
    Becker FE, Volkmann CM (1961) A preliminary report on the bacteriology of permafrost in the Fairbanks area. Proc. Alaskan Sci Conf. 12:188.
    Belikova VA, Cherevach NV, Kalakutskii LV. (1986) New species of bacteria in the genus Kurthia-Kurthia sibirica sp. nov. Mikrobiologiia. 55(5):831-835.
    Binladen J, Wiuf C, Gilbert MT, Bunce M, Barnett R, Larson G, Greenwood AD, Haile J, Ho SY, Hansen AJ, Willerslev E. (2006) Assessing the fidelity of ancient DNA sequences amplified from nuclear genes. Genetics. 172(2):733-741.
    Bolter M. (2004) Ecophysiology of psychrophilic and psychrotolerantmicroorganisms. Cell Mol Biol (Noisy-le-grand). 50(5):563-573.
    Boston PJ, Ivanov MV, McKay CP. (1992) On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus. 95:300-308.
    
    Boyd WL, Boyd JW (1964) The presence of bacteria in permafrost of the Alaskan arctic. Can J Microbiol. 10:917-919.
    Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110: 403-413.
    Buczolits S, Denner EBM, Vybiral D, Wieser M, Kampfer P, Busse HJ. (2002) Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52: 445-456.
    
    Buczolits S, Denner EB M, Kampfer P, Busse HJ. (2006) Proposal of Hymenobacter norwichensis sp. nov., classification of "Taxeobacter ocellatus", "Taxeobacter gelupurpurascens" and "Taxeobacter chitinovorans" in the genus Hymenobacter as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56: 2071-2078.
    
    Callaghan TV, Bjorn LO, Chernov Y, et al. (2004) Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system. Ambio. 33(7):459-468.
    
    Cameron RE, Morelli FA (1974) Viable microorganisms from ancient Ross Island and Taylor Valley drill core. Antarct J US 9:113-116
    
    Carr MH. (1996) Water on early Mars. Ciba Found Symp. 202:249-265.
    
    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM. (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442-443.
    
    Collins MD. (1985). Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics, pp. 267-287. Edited by M. Goodfellow & D. E. Minnikin. London:Academic Press.
    
    Collins MD, Hutson RA, Grant IR, Patterson MF. (2000) Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 50: 731-734.
    
    Davidson EA, Janssens IA. (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 440(7081): 165-173.
    
    Davis JL, Heginbottom JA, Annan AP, Daniels RS, Berdal BP, Bergan T, Duncan KE, Lewin PK, Oxford JS, Roberts N, Skehel JJ, Smith CR. (2000) Ground penetrating radar surveys to locate 1918 Spanish flu victims in permafrost. J Forensic Sci. 45(1):68-76.
    Dement'ev AA, Golyshin PN, Riabchenko NF, Pustobaev VN, Shliapnikov SV. (1993) Two forms of extracellular low molecular weight Bacillus sp. BCF 247 ribonuclease. Isolation and characteristics of the protein. Biokhimiia. 58(8): 1258-1265.
    Dmitriev VV, Suzina NE, Rusakova TG, Gilichinskii DA, Duda VI. (2001) Ultrastructural characteristics of natural forms of microorganisms isolated from permafrost grounds of eastern Siberia by the method of low-temperature fractionation. Dokl Biol Sci. 378:304-306.
    Dmitriev VV, Suzina NE, Barinova ES, Duda VI, Boronin AM. (2004) An electron microscopic study of the ultrastructure of microbial cells in extreme biotopes in situ. Mikrobiologiia. 73(6):832-40.
    Drancourt M and Raoult D (2005 ) Palaeomicrobiology: current issues and perspectives. Nat Rev Microbiol. 3(1): 23-35
    Erokhina LG, Spirina EV, Shatilovich AV, Gilichinskii DA. (2000) Chromatic adaptation of ancient viable cyanobacteria from Arctic permafrost. Mikrobiologiia. 69(6):855-856.
    Erokhina LG, Spirina EV, Kaminskaia OP, Gilichinskii DA. (2006) Spectral properties of viable ancient green algae from arctic permafrost. Mikrobiologiia 75(6):857-860.
    Fedorova ND, Shul'ga AA, Peredel'chuk MP, Kozharinova LV, Golyshin PN, Riabchenko NF, Kirpichnikov MP. (1994) Cloning of the gene for extracellular Bacillus circulans RNAase. Mol Biol (Mosk). 28(2):468-471.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.
    
    Feofilova EP. (2003) Deceleration of vital activity as a universal biochemical mechanism ensuring adaptation of microorganisms to stress factors: a review. Prikl Biokhim Mikrobiol. 39(1):5-24
    Friedmann EI (1994) Permafrost as microbial habitat. In: Gilinchisky DA (ed) Viablemicroorganisms in permafrost. Institute of Soil Science and Photosynthesis, Russian Academy of Science, Pushchino, pp 21-26
    Ganzert L, Jurgens G, Munster U, Wagner D. (2007) Methanogenic communities in permafrost- affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59(2): 476-488.
    Garzon L. (2004) Microbial life and temperature: a semi empirical approach. Orig Life Evol Biosph. 34(4):421-38.
    Gavrish EIu, Krauzova VI, Potekhina NV, Karasev SG, Plotnikova EG, Altyntseva OV, Korosteleva LA, Evtushenko LI. (2004) Three new species of Brevibacteria- Brevibacterium antiquum sp. nov., Brevibacterium aurantiacum sp. nov. and Brevibacterium permense sp. nov. Mikrobiologiia. 73(2):218-225.
    Gilbert MT, Binladen J, Miller W, Wiuf C, Willerslev E, Poinar H, Carlson JE, Leebens-Mack JH, Schuster SC. (2007) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res. 35(1):l-10.
    Gilichinsky DA, Khlebnikova GM, Zvyagintsev DG, Fedorov-Davydov DG, Kudryavtseva NN (1988) The use of microbiological characteristics of rocks in geocryology. Proc 5th Int Conf Permafrost 1:749-753
    Gilichinsky DA, Vorobyova E, Erokhina LG, Fyordorov-DayvdovDG, Chaikovskaya NR (1992) Long-term preservation of microbial ecosystems in permafrost. Adv Space Res 12:255-263.
    Gilichinsky DA, Soina VS, Petrova MA. (1993) Cryoprotective properties of water in the Earth cryolithosphere and its role in exobiology. Orig Life Evol Biosph. 23(1):65-75.
    Gilichinsky DA, Wagener S, Vishnivetskaya TA (1995) Permafrost microbiology. Permafrost Periglac Process 6:281-291
    
    Gilichinsky DA, Rivkina EM, Shcherbakova V, Laurinavichuis K, Tiedje J. (2003) Supercooled water brines within permafrost-an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology. 3(2):331-341.
    Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117-128.
    Golyshin PN, Kombarova SP, Riabchenko NF, Vorob'eva EA, Soina VS, Dement'ev AA, Shliapnikov SV. (1993) Extracellular alkaline ribonucleases produced by Bacilli strains from the permafrost of the Kolyma lowland. Prikl Biokhim Mikrobiol. 29(6):844-850.
    Gubin SV, Maksimovich SV, Davydov SP, Gilichinskii DA, Shatilovich AV, Spirina EV, Iashina SG. (2003) The possible contribution of late pleistocene biota to biodiversity in present permafrost zone. Zh Obshch Biol. 64(2): 160-165.
    Hansen AJ, Mitchell DL, Wiuf C, Paniker L, Brand TB, Binladen J, Gilichinsky DA, Ronn R, Willerslev E. (2006) Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics. 173(2): 1175-1179.
    Harding R, Kuhry P, Christensen TR, Sykes MT, Dankers R, van der Linden S. (2002) Climate feedbacks at the tundra-taiga interface. Ambio. 12: 47-55.
    Hoffman N. (2002) Active polar gullies on Mars and the role of carbon dioxide.Astrobiology. 2(3):313-323.
    Horikoshi K (1991) Microorganisms in alkaline environments. Kodansha-VCH, Tokyo,Japan
    Horikoshi K (1999) Alkaliphiles: some application of their products fro biotechnology. Microbiol Mol Biol Rev 63(4):735-750
    Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica. Science 176:242-245.
    Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of CytophagalFlavobacteriumlBacteroides line of phylogenetic descent. Syst Appl Microbiol 21: 374-383.
    James N, Sutherland ML (1942) Are there living bacteria in permanently frozen subsoil? Can J Res Sect C Bot Sci. 20(6):228-235.
    Jin H, Li S, Cheng G, Wang S, Li X. (2000) Permafrost and climatic change in China. Global Planet Change. 26: 387-404.
    Johansson M, Christensen TR, Akerman HJ, Callaghan TV (2006) What determines the current presence or absence of permafrost in the Tornetrask region, a sub-arctic landscape in northern Sweden? Ambio. 35(4): 190-197.
    Jones EB, Grant WD, Collins NC, Mwatha WE (1994) Alkaliphiles: diversity and identification, p. 195-230. In: Priest et al. (ed), Bacterial diversity and systematics. Plenum Press, New York, N.Y.
    Jones EB, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity ofsoda lakes. Extremophiles 2:191-200
    Juck DF, Whissell G, Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl Environ Microbiol 71:1035-1041.
    Jukes TH, Cantor CR (1969) Evolution of protein molecules, In: Munro (ed), Mammalian protein metabolism. Academic Press, New York, pp.21-132
    Junge K, Gosink JJ, Hoppe HG, Staley JT (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 2\(2):306-314
    Katayama T, Tanaka M, Moriizumi J, Nakamura T, Brouchkov A, Douglas TA,Fukuda M, Tomita F, Asano K. (2007) Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl Environ Microbiol. 73(7):2360-2363.
    Kato T, Hirota M, Tang Y, Cui X, Li Y, Zhao X, Oikawa T (2005) Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai-Tibetan plateau. Soil Biol Biochem 37: 1966-1969.
    Khlebnikova GM, Gilichinsky DA, Fedorov-Davydov DC, Vorobyova EA (1990) Quantitative evaluation of microorganisms in permafrost deposits and buried soils. Mikrobiologiya 59:106-112.
    Khmelenina VN, Makutina VA, Kalyuzhnaya MG, Rivkina EM, Gilichinsky DA, Trotsenko Y. (2002) Discovery of viable methanotrophic bacteria in permafrost sediments of northeast Siberia. Dokl Biol Sci. 384:235-237.
    Kholodii G, Mindlin S, Petrova M, Minakhina S. (2003) Tn5060 from the Siberian permafrost is most closely related to the ancestor of Tn21 prior to integronacquisition. FEMS Microbiol Lett. 226(2):251-255.
    Kochkina GA, Ivanushkina NE, Karasev SG, Gavrish EIu, Gurina LV, Evtushenko LI, Spirina EV, Vorob'eva EA, Gilichinskii DA, Ozerskaia SM. (2001) Micromycetes and actinobacteria under conditions of many years of natural cryopreservation. Mikrobiologiia. 70(3):412-20.
    Kozlovsky AG, Zhelifonova VP, Adanin VM, Antipova TV, Ozerskaia SM, Kochkina GA, Grafe U. (2003a) The fungus Penicillium citrinum Thom 1910 VKM FW-800 isolated from ancient permafrost sediments as a producer of the ergot alkaloids agroclavine-1 and epoxyagroclavine-1. Mikrobiologiia. 72(6):816-821.
    
    Kozlovsky AG, Zhelifonova VP, Antipova TV, Adanin VM, Ozerskaya SM, Kochkina GA, Schlegel B, Dahse HM, Gollmick FA, Grafe U. (2003b) Quinocitrinines A and B, new quinoline alkaloids from Penicillium citrinum Thom 1910, a permafrost fungus. J Antibiot (Tokyo). 56(5):488-491.
    Kozlovsky AG, Zhelifonova VP, Antipova TV. (2005) Fungus Penicillium citrinum, isolated from permafrost sediments, as a producer of ergot alkaloids and new quinoline alkaloids quinocitrinines. Prikl Biokhim Mikrobiol. 41(5):568-572.
    
    Krulwich TA (2000) Alkaliphilic prokaryotes. In: Dworkin et al. (ed), The prokaryotes: an evolving electronic resource for the microbiological community, 2nd ed. Springer-Verlag, New York, N.Y.
    Kumar S, Tamura K, Jakobsen IB and Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 12:1244-1245.
    
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E and Goodfellow M (ed.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Inc., New York, pp. 115-148
    Li X, Cheng G. A (1999) GIS aided response model of high altitude permafrost to global change. Science in China, Series D. 42(1): 72-79.
    
    Liebner S, Wagner D. (2007) Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ Microbiol. 9(1): 107-117.
    Liu X, Chen B. (2000) Climatic warming in the Tibetan Plateau during recent decades, Inter J Climatology. 20: 1729-1742.
    Lydolph MC, Jacobsen J, Arctander P, Gilbert MT, Gilichinsky DA, Hansen AJ, Willerslev E, Lange L. (2005) Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl Environ Microbiol. 71(2): 1012-1017.
    Marmur J, Doty P. (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 4: 109-118.
    Marota I, Rollo F. (2002) Molecular paleontology. Cell Mol Life Sci. 59(1): 97-111.
    Matsumoto GI, Friedmann EI, Gilichinsky DA. (1995) Geochemical characteristics of organic compounds in a permafrost sediment core sample from northeast Siberia, Russia. Proc NIPR Symp Antarct Meteorites. 8: 258-267.
    Mazhitova G, Karstkarel N, Oberman N, Romanovsky V, Kuhry P. (2004) Permafrost and infrastructure in the usa Basin (Northeast European Russia): possible impacts of global warming. Ambio. 33(6): 289-294.
    Metje M, Frenzel P. (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol. 9(4):954-64.
    Michaud L, Di-Cello F, Brilli M, Fani R, Lo-Giudice A, Bruni V (2004) Biodiversity of cultivable psychrotrophic marine bacteria isolated from Terra Nova Bay. FEMS Microbiol Lett 230 (1): 63-71
    Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34: 1785-1795.
    
    Miller GL. (1959) Use of dinitrosalictlic acid reagent for determination of reducing sugars. Anal Chen 31 ;426-428
    Mindlin S, Minakhin L, Petrova M, Kholodii G, Minakhina S, Gorlenko Z, Nikiforov V. (2005) Present-day mercury resistance transposons are common in bacteria preserved in permafrost grounds since the Upper Pleistocene. Res Microbiol. 156(10):994-1004.
    Moaledji, K. (1986). Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria : their application to numerical taxonomy. J Microbiol Methods 5: 303-310.
    Morozova D, Mohlmann D, Wagner D. (2007a) Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions. Orig Life Evol Biosph. 37: 189-200.
    Morozova D, Wagner D. (2007b) Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. FEMS Microbiol Ecol. 2007 Apr 11 online first
    Muliukin AL, Sorokin VV, Vorob'eva EA, Suzina NE, Duda VI, Gal'chenko VF, El'-Registan GI. (2002) Detection of microorganisms in the environment and the preliminary appraisal of their physiological state by X-ray microanalysis. Mikrobiologiia. 71(6):836-848.
    Muller S. (1943) Permafrost or permanently frozen ground and related engineering problems. Strategic Studies, 62. United States Army, Office Chief of Engineers, Military Intelligence Div. Strategic Eng. Study 62, PP. 231. (Also 1947, Ann Arbor, Mich., Edwards Bros.)
    Nelson FE, Anisimov OA, Shiklomanov NI. (2001) Subsidence risk from thawing permafrost. Nature. 410(6831):889-90.
    Niu F, Cheng G, Ni W, Jin D (2005) Engineering-related slope failure in permafrost regions of the Qinghai-Tibet Plateau. Cold Reg Sci Technol 42(3): 215-225
     Nozhevnikova AN, Simankova MV, Parshina SN, Kotsyurbenko OR. (2001) Temperature characteristics of methanogenic archaea and acetogenic bacteria isolated from cold environments. Water Sci Technol. 44(8): 41-48.
    Omelyansky VL (1911) Bakteriologicheskoe issledovanie Sanga mamonta Prilegayushchei pochvy Bacteriological investigation of the Sanga mammoth and surrounding soil. Arkhiv Biologicheskikh Nauk. 16:335-340.
    Ostroumov V. (1995) A physical and chemical characterization of Martian permafrost as a possible habitat for viable microorganisms. Adv Space Res. 15(3):229-236.
    Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below -39℃. Soil Biol Biochem 38: 785-794.
    
    Panikov NS, Sizova MV. (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to -35℃. FEMS Microbiol Ecol. 59(2):500-512.
    Perreault NN, Andersen DT, Pollard WH, Greer CW, Whyte LG. (2007) Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian high Arctic. Appl Environ Microbiol. 73(5):1532-1543.
    Petrova MA, Mindlin SZ, Gorlenko ZhM, Kaliaeva ES, Soina VS, Bogdanova ES. (2002) Mercury-resistant bacteria from permafrost sediments and prospects for their use in comparative studies of mercury resistance determinants. Genetika. 38(11):1569-1574.
    Pikuta EV, Marsic D, Bej A, Tang J, Krader P, Hoover RB. (2005) Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the F in Alaska. Int J Syst Evol Microbiol. 55:473-478.
    Podlipaeva IuI, Shmakov LA, Gilichinskii DA, Gudkov AV. (2006) Heat shock protein of HSP70 family revealed in some contemporary freshwater Amoebae and in Acanthamoeba sp. from cysts isolated from permafrost samples. Tsitologiia. 48(8):691-694.
    Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM. (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol. 53(1): 103-115.
    Porter K, Feig YS (1990). The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25: 943-948.
    Price PB, Nagornov OV, Bay R, Chirkin D, He Y, Miocinovic P, Richards A, Woschnagg K, Koci B, Zagorodnov V. (2002) Temperature profile for glacial ice at the South Pole: implications for life in a nearby subglacial lake. Proc Natl Acad Sci USA. 99(12):7844-7847.
    Price PB, Sowers T. (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA. 101(13): 4631-4636.
    Price PB. (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol. 59(2):217-231.
    Qiu Y, Kathariou S, Lubman DM. (2006) Proteomic analysis of cold adaptation in a Siberian permafrost bacterium-Exiguobacterium sibiricum 255-15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics. 6(19):5221-5233.
    Reddy GS, Prakash JS, Vairamani M, Prabhakar S, Matsumoto GI, Shivaji S (2002) Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 6(3):253-261
    Reid AH, Fanning TG, Hultin JV, Taubenberger JK. (1999) Origin and evolution ofthe 1918 "Spanish" influenza virus hemagglutinin gene. Proc Natl Acad Sci USA.96(4):1651-1656.
    Rivkina E, Gilichinsky D, Wagener S, Tiedje JM, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. GeomicrobiolJ 15:187-193.
    Rivkina EM, Friedmann EI, McKay CP & Gilichinsky DA (2000) Metabolic activityof permafrost bacteria below the freezing point. Appl Environ Microbiol 66: 3230-3233.
    Rivkina EM, Laurinavichus KS, Gilichinsky DA, Shcherbakova (2001) Methane generation in permafrost sediments. Dokl Biol Sci 383:179-181.
    Rivkina EM, Laurinavichus KS, Gilichinsky DA, Shcherbakova VA. (2002) Methane generation in permafrost sediments. Dokl Biol Sci. 383:179-181.
    Rivkina EM, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D. (2004) Microbial life in permafrost. Adv Space Res. 33(8): 1215-1221.
    Rivkina EM, Shcherbakova V, Laurinavichius K, Petrovskaya L, Krivushin K, Kraev G, Pecheritsina S, Gilichinsky D. (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol. 2007 Apr 11 online first
    Rodrigues DF, Goris J, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM. (2006) Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov. Extremophiles. 10(4):285-294.
    Rodrigues DF, Tiedje JM. (2007) Multi-locus real-time PCR for quantitation of bacteria in the environment reveals Exiguobacterium to be prevalent in permafrost. FEMS Microbiol Ecol. 59(2):489-499.
    Ruger HJ, Fritze D, Sproer C (2000) New psychrophilic and psychrotolerant Bacillus marinus strains from tropical and polar deep-sea sediments and emended description of the species. Int J Syst Evol Microbiol 50:1305-1313
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425.
    Sanchez-Porro C, Martin S, Mellado E, Ventosa A (2003) Diversity of moderatelyhalophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94(2): 295-300
    
    Schiermeier Q. (2001) Fears grow over melting permafrost. Nature. 409(6822): 751.
    Shcherbakova VA, Chuvilskaya NA, Rivkina EM, Pecheritsyna SA, Laurinavichius KS, Suzina NE, Osipov GA, Lysenko AM, Gilichinsky DA, Akimenko VK. (2005) Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles. 9(3):239-246.
    Sherr BF, Sherr EB, McDaniel J. (1992). Effect of protistan grazing on the frequency of dividing cells in bacterioplankton assemblages. Appl Environ Microbiol 58: 2381-2385.
    Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33(3):169-179.
    
    Sinclair J. (1991) Global warming: a vicious circle. Our Planet. 3(1): 4-7.
    Smibert RM, Krieg NR. (1994). Phenotypic characterisation. In Methods for Generaland Molecular Bacteriology, pp. 607-654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Woods & N. R. Krieg. Washington, DC: American Society for Microbiology. Smith AW, Skilling DE, Castello JD, Rogers SO. (2004) Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses. Med Hypotheses. 63(4):560-566.
    Smith LC, Sheng Y, MacDonald GM, Hinzman LD. (2005) Disappearing Arctic lakes. Science. 308(5727):1429
    Soina VS, Vorobiova EA, Zvyagintsev DG, Gilichinsky DA. (1995) Preservation of cell structures in permafrost: a model for exobiology. Adv Space Res. 15(3):237-242.
    Soina VS, Mulyukin AL, Demkina EV, Vorobyova EA, El-Registan GI. (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology. 4(3): 345-358.
    Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol AA: 846-849.
    Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J. Bacteriol. 95:1921-1942.
    Steven B, Leveille R, Pollard W, Whyte LG. (2006) Microbial ecology and biodiversity in permafrost. Extremophiles. 10: 259-267.
    Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG. (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol. 59(2):513-523.
    Stone R. (1999) Permafrost comes alive for Siberian researchers. Science. 286(5437):36-37.
    Stolz A, Busse HJ, Kampfer P. (2007) Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57: 572-576
    Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35(3): 14.
    Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions and in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777-780
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG. (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876-4882.
    Tiago I, Chung AP, Verissimo (2004) A Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations. Appl Environ Microbiol 70(12):7378-7387
    Tindall BJ. (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128-130.
    Torsvik R, Goksoyr J, Daae FL. (1990) High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56(3): 782-787.
    Trotsenko YA and Khmelenina VN. (2005) Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol Ecol 53(1): 15-26.
    Vinokurova NG, Ivanushkina NE, Kochkina GA, Arinbasarov MU, Ozerskaia SM. (2005) Production of mycophenolic acid by fungi of the genus Penicillium link. Prikl Biokhim Mikrobiol. 41(1):95-8.
    Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4(3):165-173
    Vishnivetskaya TA, Kathariou S. (2005) Putative transposases conserved in Exiguobacterium isolates from ancient Siberian permafrost and from contemporary surface habitats. Appl Environ Microbiol. 71(11):6954-6962.
    Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM. (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology. 6(3):400-414.
    Vishnivetskaya TA, Siletzky R, Jefferies N, Tiedje JM, Kathariou S. (2007) Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology. 54(2):234-240.
    Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvih A, Gilichinsky D, Rivkma E, Vishnivetskaya T. (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277-290
    Wagner D, Lipski A, Embacher A, Gattinger A. (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol. 7(10): 1582-92.
    
    Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature. 443(7107): 71-75.
    Wang B, French HM (1995) Permafrost on the Tibet Plateau, China. Quaternary Sci
    Rev. 14(3):255-274.
    
    Wang S, Jin H, Li S, Zhao L. (2000) Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts. Permafrost and Periglacial Processes. 11: 43-53.
    
    Wu Q, Li X, Li W. (2000) The prediction of permafrost change along the Qinghai-Tibet Highway, China. Permafrost and Periglacial Processes. 11: 371-376
    Wu Q, Liu Y. (2004) Ground temperature monitoring and its recent change inQinghai-Tibet Plateau. Cold Reg Sci Technol. 38: 85-92.
    
    Wu T, Li S, Cheng G, Nan Z. (2000) Using ground-penetrating radar to detect permafrost degradation in the northern limit of permafrost on the Tibetan Plateau. Cold Reg Sci Technol. 41:211-219.
    
    Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MT, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A. (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science. 300(5620):791-795.
    Willerslev E, Hansen AJ, Poinar HN. (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol. 19(3): 141-147.
    Williams PJ, Smith MW (1989) The frozen earth: fundamentals of geocryology. Cambridge University Press, Cambridge, PP306
    
    Zamolodchikov DG, Karelin DV, Chestnykh OV. (2004) Measurements of carbon balance in permafrost ecosystems: advances and problems. Dokl Biol Sci. 397: 333-335.
    Zhelifonova VP, Antipova TV, Ozerskaia SM, Ivanushkina NE, Kozlovskii AG.( 2006) The fungus Penicillium variabile sopp 1912 isolated from permafrost deposits as aproducer of rugulovasines. Mikrobiologiia. 75(6):742-746.
    Zheng S, Ponder MA, Shih JY, Tiedje JM, Thomashow MF, Lubman DM. (2007) A proteomic analysis of Psychrobacter articus 273-4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis. 28(3):467-488.
    Zhou J, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143 (12):3913-3919.
    Zhu Y, Chen FH, Madsen D (2001) Early-holocene lake pollen record and environmental implication in Shiyanghe River drainage, arid region of China. Chin Sci Bull 46(19): 1596-1602.
    Zvyagintsev DG, Gilichinsky DA, Blagodatskii SA, Vorobyeva EA, Khlenikovam GM, Arkhangelov AA, Kudryavtseva NN (1985) Survival time of microorganisms in permanently frozen sedimentary rock and buried soils. Mikrobiologiya 54:155-161.
    Zvyagintsev DG (1992) Microorganisms in permafrost. Proc 1st Int Conf Cryopedology. Pushchino, Russia, pp 229-232.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.