山区高等级公路层状岩质边坡稳定性HSMR快速评价体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山区高等级公路工程建设具有如下特点:路线长,跨越地质地貌单元较多,从勘察设计到施工周期较短,难以全面深入地了解沿线路基工程地质条件及工程地质问题。这使得路基边坡设计具有一定盲从性,为公路工程建设埋下隐患。显然,针对设计、施工周期短和地质环境复杂的特点,传统的边坡稳定性研究方法和分析手段不合时宜,必须寻求新的途径与新的思路。
     本文以西南山区国道108线广元段、昆石路、广邻路、渝邻路和渝黔路等5条高速公路边坡为研究对象,归纳总结调查路段边坡结构类型及稳定状况,据此将数量多且危害大的层状岩质边坡的稳定性评价作为主要研究目标。在收集前人研究资料的基础上,首先对边坡发育环境、基本地质条件、边坡结构类型、变形破坏机理及模式进行深入细致的分析;引用统计学理论和地质工程理论的原理和方法,从分析岩质边坡稳定性与坡形、坡高、坡角、结构面特征、岩性及岩性组合特征等方面的关系入手,分析探讨适用于高等级公路层状岩质边坡的稳定性快速评价体系。
     该体系包含两个层次,首先针对山区公路设计阶段资料储备不足的情况,结合岩体结构分析方法和地质过程机制分析方法,建立以地质宏观判断为主的简洁的岩质边坡失稳判据;其次针对施工阶段资料相对较多的情况,基于SMR体系,同时参照CSMR体系,建立适合山区公路边坡稳定性快速评价的HSMR体系。从而在公路设计、施工阶段均能对开挖边坡进行快速准确的评价。具体如下:
     (1)针对公路开挖边坡特点,提出将45°作为岩层倾角陡、缓划分界限。在此基础上,建立了简洁的岩质边坡失稳判据(见表1)。运用该判据,设计阶段可对沿线岩质边坡稳定状况进行较为准确的判断,以便采取相应的加固处治措施;施工阶段由于资料更加完备,可以对岩质边坡稳定性作出更为准确的快速判断,提出更具针对性的加固处治方案。
     (2)鉴于常用岩体质量分类体系源于水电工程和矿山工程等领域,不能很好的评判公路岩质边坡稳定状况,各体系评判结果差异较大,甚至出现评分值超出体系评分范围的现象。引入归一化处理方法,使得各体系评分值差异能直观体现,便于进行差异分析。进一步引入可靠度概念,对初步分类结果进行相关性、一致性分析,寻找各个分类体系之间的内在联系及差异大小,为构建HSMR体系奠定基础。
     (3)虽然已有分类体系考虑了岩体结构对边坡稳定性的影响,但仍有不足之处,难以应对具有软、硬岩相间组合形式的边坡稳定性评价。在充分考虑岩体结构指标基础上,进一步将岩性组合形式作为参评因子纳入边坡稳定性分级系统中,提高了岩质边坡稳定性系统评分的准确度。
     (4)边坡的稳定性与坡高的关系并非简单的线性关系。考虑到分类体系的易操作性,将复杂繁冗的物理力学参数剔除后,通过大量样本的统计分析,寻求到一个简便合理的坡高修正函数,能将原有系统的分类结果与实际情况的差异尽可能缩小,满足稳定性初步评价要求。
     (5)以研究路段113个边坡作为研究对象,总结归纳出适用于高等级公路层状岩质边坡稳定性HSMR快速评价体系。HSMR=ξRMR-ηλ(F_1×F_2×F_3)+F_4
     依据上式计算得出HSMR值,其最大值为100,最小值为0,以20分为间隔,划分为5个级别(见表2)。
     该体系适用于资料较丰富的施工阶段,也可在旧线改造之设计阶段应用。进一步引入“误判率”的概念,系统地评价了HSMR体系的应用效果,证明了该体系的可靠性。
Mountain high-grade highway construction have the following characteristics: longdistance and passing more geological landform region, short cycle from survey and design toconstruction. These make the subgrade engineering geology characteristic and problemdifficult to fully and deeply investigation. Above reason make the subgrade slope designpossess uncertainty and embed hidden trouble for the road engineering construction.Therefore, conventional slope stability investigation method is out of date, the new methodmust be found.
     The expressway slope of the national road 108 route Guangyuan Segment, Kunshi Road,Guanglin Road, Yulin Road and Yuqian Road in southwest mountain area have beenresearched. The slope structure types and stabiliy have been concluded and summarized, then,the stability evaluation of stratiform rock slopes have been taken as main research objectwhich is big quantity and high hazard. On the basis of collecting materials, deep and carefulanalysis about slope's forming environment, basic geological condition, structure types,deformation and breakage pattern and its mechanism was carried on, then using statistics andgeology engineering theory, the relative of rock slope stability and landform, slope elevation,slope angle, structure characteristic, lithology, lithology combination situation etc. have beenstudied. The stratiform rock slope mass rating which suit to high-grade highway has beenanalyzed and discussed.
     This system includes two levels, firstly, because of the geological data lack in mountainroad design phase, the author using rock structure and geological process mechanism analysismethods, established a concise rock slope stability criterion which mainly base of geologymacro judgment. Secondly, considering the construction phase have more geological data, onthe basis of Slope Mass Rating (SMR) and Chinese system for Slope Mass Rating (CSMR),the Highway rock Slope Mass Rating (HSMR) has been presented which suit to fastevaluation of rock slope stability in mountain. So the stability of excavated slope can be havefast and exact appraisal in road design and construction phase. The details are as follows:
     (1) To the road slope excavation characteristics, put forward and regard 45°as thedemarcation line which divides the rock stratum with steep, slow inclination, on this basis, aconcise rock slope stability criterion is established(table.1).By using the criterion, thestability of the rock slope along the line can be comparatively accurate judged in designphase, so the corresponding reinforcement and administration measure can be taken. Duringthe course of construction, because the materials are more abundant, more accurate fastjudgement to the rock slope stability can be made; thus put forward more pointedreinforcement scheme.
     (2) Because the common rock mass classified system is established on the basis ofwater-power engneering or mine engineering, which can not best be used in road rock slopestability evaluation, the normalization managed method has been introduced, which can makeeach system grade value difference visible, easy to do the difference analysis. Then, thecredibility degree conception has been introduced, which can do the correlation andconsistency analysis for the preliminary classified result, find out the relation and differenceof each classified system. These established the foundation of HSMR rate..
     (3) Though there is categorised system that has considered structural impact on the slopestability at present, there are some shortage. For example, its very difficult to accord with thestability of soft, hard rock slopes mutually. On the basis of fully considering structural indexof rock mass, lithology combination has been included in the hierarchical system ascommenting factor, which improved the marked accuracy of rock slope stability system.
     (4) The relation between the slope stability and its height is not simple linear relations.Considering the simple operation of categorised system, reject the complicated andsuperfluous physics mechanics parameter, then by using statistical analysis of a large numberof samples, Seeked a simple and convenient revision function about slope height, which cannarrow the difference of the categorised result of the original system and actual conditions as much as possible, and meet the preliminary appraisal requirement of stability.
     (5) 113 slopes have been taken as studied object, then, high-grade Highway stratiformrock Slope Mass Rating (HSMR) has been introduced: HSMR=ξRMR-ηλ(F_1×F_2×F3)+F_4
     HSMR value can be calculated according to the above formula, its maximum is 100, theminimum is 0. Regarding 20 as the interval, which is divided into 5 ranks (table.2):
     These system is best be used in geological data relatively abundance construction phaseor be used in older line reconstruction design phase. The "mistake judgment ratio"conception has been further introduced, systematically evaluated the HSMR applicationeffect, proved this system reliability.
引文
[1] 成都理工大学,西南山区高等级公路边坡稳定性分级研究报告,2003年
    [2] 成都理工大学,锦屏二级水电站深埋隧洞围岩分类研究报告(中间成果),2005年
    [3] 黄润秋、张倬元、王士天.黄河拉西瓦水电站高边坡稳定性的系统工程地质研究[M].成都:四川科技大学出版社,1991
    [4] 黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报19(5):573~576.2000.
    [5] 唐胜传,黄润秋.岩体质量分类[J].西南工学院学报.Vol.16,No.4.2001
    [6] 胡卸文、黄润秋,水利水电工程中的岩体质量分类探讨[J],成都理工学院学报,1996,7(3):64~68
    [7] 黄润秋,高边坡整体稳定性综合评价探讨[J],水文地质工程地质,1995,22(6)
    [8] 黄国明,黄润秋.复杂岩体结构的几何描述[J].成都理工学院学报,1998(4):552-558
    [9] Barton. Recent experiences with the q-system of tunnel support design[J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers. 1977, 1 107-117
    [10] Barton, N. R. The Shear Strength of Rock and Rock Joints[J]. Int. J. Rock Mech. Min. Sci. 1976, 255~279.
    [11] Bieniawski Z T. Rock mass classification in rock engineering[J]. Proc. Syrup, on Exploration for Rock Engineering, Ralkema, Rotterdam, 1976, 97~106
    [12] Barton N. Some new Q-value correlations to assist in site characterisation and tunnel design[J]. International Journal of Rock Mechanics & Mining Sciences 39, 2002. p. 185-216.
    [13] Romana.M, SMR classification[J], In: Proc 7th ISRM Congress, 1991, 955~960
    [14] Romana.M, The SMR geomechanical classification for slopes[J]. Proc. Int. Syrup, on Landslides international conference and field trip on landslides. 1996, 255-267
    [15] Sen. Zekai, Sadagah B H. Modified rock mass classification system by continuous rating[J]. Engineering Geology, 2003, 67(3-4): 269-280
    [16] Inyang, H. I. Development of a preliminary rock mass classification scheme for near-surface excavation[J]. International Journal of Surface Mining & Reclamation, 1991, 5(2): 65-74
    [17] Hodkin, David. Classification systems for payment purposes[J]. Tunnels and Tunnelling. 1994, 26(1): 4
    [18] Sandbak, L. Rock mass classification in lhd mining at san manuel, arizona[J]. Preprint-Society of Mining Engineers ofAIME. 1988, 20
    [19] Moon Vicki, Mogi K, Gesta P, The value of rock mass classification systems for weak rock masses: A case example from Huntly, New Zealand[J]. Engineering Geology. 2001, 61(1): 53-67
    [20] 石豫川,王哲,万国荣等,西南山区高等级公路边坡稳定性分级研究[J],岩石力学与工程学报,2005年第6期;Vol.24
    [21] 石豫川,冯文凯,冯学钢等,国道108线某段缓倾角顺层边坡变形破坏机制物理模拟研究[J],成都理工大学学报(自然科学版),2003年第4期
    [22] 石豫川,冯文凯,刘汉超等,某水电站高边坡高边坡变形破坏模式及机制分析[J],西南交通大学学报,2004年第5期,Vol.23
    [23] 王广德,石豫川,葛华等,岩爆与围岩分类[J],工程地质学报,2006年第1期,Vol.14No.1
    [24] 王广德,石豫川,刘汉超等,深埋隧洞围岩分类方法——JPHC分类[J],成都理工大学学报(自然科学版),2006年第2期,Vol.33 No.2
    [25] 王广德,石豫川,刘汉超等,水力水电地下洞室围岩分类[J],水力发电学报,2006年第2期,Vol.24 No.2
    [26] 王广德,石豫川,刘汉超等,深埋隧洞围岩分类方法——JPQ系统[J],水文地质工程地质2006年第3期,Vol.33 No.3
    [27] 王哲,石豫川,柴贺军等,山区公路边坡岩体结构特征及其对边坡稳定性影响浅析[J],地质灾害与环境保护,Vol.15,2004年第2期
    [28] 王哲,石豫川,刘汉超等,公路边坡岩体分级中坡高修正系数的改进[J],工程地质学报,2004年第2期,Vol.12
    [29] 万国荣,石豫川,王哲等,SMR法在公路边坡稳定性分级中的应用[J],公路交通技术,2004年第2期
    [30] 冯文凯,石豫川,王学武等,库区公路岸坡稳定性风险评价基本理论体系[J],山地学报,2005年第6期,Vol.23
    [31] 冯文凯,石豫川,柴贺军等,缓倾角层状高边坡变形破坏机制物理模拟研究[J],中国公路学报,2004年第2期,Vol.17
    [32] 冯文凯,石豫川,王学武等,库水作用下公路岩质岸坡稳定性影响因素综合评判[J],地质灾害与环境保护,Vol.16,2005年第4期
    [33] 葛华,吉锋,石豫川等,岩体质量分级方法——CSMR法的修正及其应用[J],地质灾害与环境保护,Vol.17,2006年第1期
    [34] 王哲,西南山区高等级公路岩质边坡稳定性分级研究,成都理工大学硕士学位论文,2004年
    [35] 王广德,复杂条件下围岩分类研究—以锦屏二级水电站深埋隧洞隧洞围岩分类为例,成都理工大学博士学位论文,2006年
    [36] 寇佳伟,锦屏二级水电站深埋隧洞围岩分类研究,成都理工大学硕士学位论文,2006年
    [37] 刘佑荣,唐辉明.岩体力学(M).武汉:中国地质大学出版社,1999.
    [38] 国家技术监督局,中华人民共和国建设部.工程岩体分级标准GB50218-94[M].北京:中国计划出版社.1994.
    [39] 中华人民共和国水利部、原电力工业部.水利水电工程地质勘察规范GB50287-99[M].北京:中国计划出版社.1999.
    [40] 张宝红,邱泽华.关于注水地震研究的几个问题[J].现代地质.8(3):329-333.1994.
    [41] 张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994,383~428.
    [42] 孙广忠.岩体结构力学[M].北京:科学出版社,1988.10.100~105.
    [43] 商宏宽主编.谷德振文集[M].北京:地震出版社,1994.5.227~234.
    [44] 孙广忠.地质工程理论与实践[M].北京:地震出版社,1996.100~105.
    [45] 孙广忠.孙广忠地质工程文集[M].北京:兵器工业出版社,1997.347~351.
    [46] 王文,聂德新.我国水电地下工程围岩分类系统支护方案探讨[J].水文地质工程地质.1998.(1):12-15.
    [47] 王文,任光明,左三胜等.深埋长大隧道围岩分类评价的探讨与应用[J].地质灾害与环境保护.1997.8(4):14-21.
    [48] 周志东,胡卸文,张倬元等.西南某水电站坝肩岩体质量分级方法选取探讨[J].成都理工学院学报,1999.26(1):82-85.
    [49] 孙玉科、牟会宠、姚宝魁,边坡岩体稳定性分析[M],北京:科学出版社,1988.2
    [50] 韩爱果,聂德新.某电站地下厂房围岩质量综合分级[J].地质灾害与环境保护.2002.13(2):75-79.
    [51] 蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [52] 杨子文,岩体工程分级,《岩石力学的理论与实践》[M],北京:水利出版社,1981
    [53] 潘家铮,何璟.中国火坝50年[M].北京:中国水利水电出版社,2000
    [54] 张倬元、刘汉超、黄润秋.中国地质环境的基本特征及其对人类活动的制约[J].地质灾害与环境保护,Vol.8,No.1:1-18
    [55] 张有天.中国水工地下结构建设50年(上)[J].西北水电,Vol.70,No.4:8-14
    [56] 柳赋铮,岩体基本质量和工程岩体分级[J],长江科学院院报,1991,26:55~63
    [57] 黄昌乾等,边坡岩体质量分类的SMR法及其应用实例[J],岩土工程技术,1998,No3,P7~13
    [58] 徐光黎,潘别桐,唐辉明等.岩体结构模型与应用[M].武汉:中国地质大学出版社,1993
    [59] 吴志勇,聂德新,蔡云等.岩体结构信息的采集处理研究[J].中国地质灾害与防治学报,2003(2):82—83
    [60] 王清玉.应用弹性波法对岩体结构分类及有关问题解析[J].四川水力发电,1994(1):49—54
    [61] 中国水力发电工程——工程地质卷[M].北京:中国电力出版社.2000
    [62] 邓荣贵.地震物探在高速路堑边坡岩体结构研究中的应用[J].辽宁工程技术大学学报,Vol.20,No.4:463-465
    [63] 郑德超.节理岩体结构的分形研究[J].包头钢铁学院学报,1998(1):9-12
    [64] 徐卫亚,赵立永.坝基工程岩体结构分类分数维研究[J].武汉水利电力大学(宜昌)学报,1999(1):7-10
    [65] 袁宝远,杨志法,肖树芳.岩体结构要素分形几何研究[J].工程地质学报,1998(4):355-361
    [66] 徐卫亚.层状坝基岩体结构分类的三角多项式模式图方法[J].武汉水利电力大学(宜昌)学报,1999(4):283-286
    [67] 徐卫亚,赵立永,梁永平.岩体结构识别的三角多项式函数模式图方法[J].工程地质学报,1999(2):181-186
    [68] 孙东亚、陈祖煜等,边坡稳定性评价方法RMR-SMR体系及其修正[J],岩石力学与工程学报,1997.16(4),P297~304
    [69] 李胜伟、李天斌、王兰生,边坡岩体质量分类体系的CSMR法及应用[J],地质灾害与环境 保护,2001,No.2
    [70] 魏安、蒋爵光,铁路岩石边坡稳定性分类的逐步判别分析[J],西南交通大学学报1991,(2):49~55
    [71] 冯光乐,罗蓉等,RMR法在公路边坡应用中的几点修正[J],长安大学学报,2002,22(6).19~24.
    [72] 杜时贵等,岩石质量指标RQD与工程岩体分类[J],工程地质学报,2000,8(3):351~356
    [73] 魏继红等,岩体分类实例分析与研究[J],工程地质学报,2002,10(1):50~54
    [74] 王维刚、单守智,岩石分级的理论与实践[J].工程地质学报,1993,3:43~53.王维刚、
    [75] 单守智,岩石分级的理论与实践[J].工程地质学报,1993,3:43~53.
    [76] 林韵梅,围岩稳定性的动态分级法[J]’金属矿山,1985,(8):2~6
    [77] 钮强,我国矿山岩石爆破性分级的研究[J],爆破,1984,(1)
    [78] 陈昌彦,王贵荣,各类岩体质量评价方法的相关性探讨[J],岩石力学与工程学报,2002,21(12),1984~1900
    [79] 余诗刚译,隧道的岩体分类—岩体分类系统之间的对应关系[J],隧道译丛,1990,(1),12~15
    [80] 董学晟,工程岩体分级标准的研究[J],长江科学院院报,1992,9(4):1~9
    [81] 韩春秀、董羽蕙,岩质边坡稳定性分析的有限元解法[J],水利与建筑工程学报,2006,4(12):64~68
    [82] 黄润秋,王士天 反倾向层状结构岩质边坡失稳机理及稳定性评价方法研究[R],成都理工学院,1994
    [83] Goodman R. E、Shi Genhua, Block theory and its application to engineering, English cliffs, NJ: Pretice-hall, 1985
    [84] Kim、Hyung-Mok, Flow analysis of jointed rock masses based on excavation-induced transmissivity change of rough joints[J], International Journal of Rock Mechanics and Mining Sciences, 2004, 41 (6): 959-974
    [85] T. B. Li、J. Xu、L. S. Wang, Ways and methods for the physical simulation of landslides[J], In: Proceedings of 6th ISL, A. A. Balkema Publisher, 1992:487-491
    [86] Xu Jin、Chen Mingdong、Li Tianbin, Wang Lansheng. Geomechanical simulation of rock mass deformation and failure on a high dip slope[J], Proceedings of 6th ISL, A. A. Balkema Publisher, 1992: 601-606
    [87] 赵明阶、许锡宾,徐蓉,岩石在三轴加卸荷过程中的一种本构模型研究[J],岩石力学与工程学报[J],2002,21(5):6264-631
    [88] 刘志军,澜沧江小湾水电站左岸砂石系统边坡稳定性分析与评价[D],成都理工大学硕士论文,2004
    [89] 杨绪波,大型岩质边坡开挖的岩体结构效应研究—以云南澜沧江小湾水电站4#山梁边坡为例[D],成都理工大学硕士论文,2005
    [90] 刘国霖,21世纪的水电工程地质 武汉水利电力大学(宜昌)学报,1999,.21(4):273-276
    [91] 李天斌,岩质工程高边坡稳定性及其控制的系统研究[D]成都理工大学博士论文,2002
    [92] 陈祖安主编,中国水力发电工程(工程地质卷)[M].北京:中国电力出版社,2000
    [93] 黄润秋,中国西部地区典型岩质滑坡机理研究 地球科学进展[J],2004,19(3):443-450
    [94] 沈军辉,王兰生,王青海等 卸荷岩体的变形破裂特征 岩石力学与工程学报[J],2003,22(12):2028~2031
    [95] WalterWittke, Rock Mechanics Theory and Applications with Case Histories[M]. Springer-Werlag Berlin Heidelberg Printed in Germany, 1990, 97-112
    [96] Tan Tjong-kie(陈宗基), Kang Wen-fa. Lock in stress,creep and dilatancy of rocks and constitutive equation[J]. Rock Mechanics, 1980, 13: 5-22
    [97] 江学良、曹平等,层状岩质边坡开挖过程的有限元模拟[J],岩土力学,2006,27(11):1935-1940
    [98] 连镇营、韩国城、孔宪京,强度折减有限单元法研究开挖边坡的稳定性[J],岩土工程学报,2001,23(4):406—411
    [99] 冯顺剑、徐礼根、余清仔,高速公路建设中岩质边坡的破坏方式及确保边坡稳定的方法,岩土工程界,2006,9(9):62-65
    [100] 舒继森、王文忠、张镭,浅谈边坡稳定性分析方法[J],露天采矿技术,2005(5):40-42.
    [101] 胡云,边坡稳定性力学分析方法的比较与研究[J],西部探矿工程,2005(7):80-81.
    [102] Dontsch I, Statistical evaluation of rough set dependency analysis[J], Int. J. Human-Computer Studies, 1997, 46: 589-604.
    [103] Jagielska I、Matthews C、Whitfort T, An investigation into the application of neural networks,fuzzy logic,genetic algorithms,and rough sets to automated knowledge acquisition for classification problems[J], Neuro computing, 1999(24): 37-54.
    [104] Bao Huiming、Hu Changshun, ANN-Based Reliability Analysis of the Stabili of Cutting Slope, 4'" International Conference on Road&Airfield Pavement Technology, Kunming, P. R. China, April, 2002:1682-1687.
    [105] 许湘华、王强、方理刚,高速公路路堑边坡施工过程动态稳定性分析[J],中南大学学报(自然科学版),2006,35(5):1008-1012
    [106] 黎剑华、须荣贵、陈寿如,高等级公路缓斜陡节理边坡的复合破坏机制与处理对策[J],岩石力学与工程学报,2001,20(3):415-418
    [107] 陈红旗,岩质工程高边坡施工地质研究[D],成都理工大学博士后科研出站报告,2004.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.