大型水生植物在浅水湖泊生态系统营养循环中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊富营养化是当今世界面临的重大环境问题,研究大型水生植物在浅水湖泊生态系统营养循环中的作用,对探讨水生植物对湖泊的净化机制、揭示富营养化湖泊的控制和逆转机理以及湖泊的永续利用具有重要的理论和现实意义。
     本论文以长江中下游富营养型浅水湖泊为研究对象,通过水生植物群落内的沉积物再悬浮、营养吸收、凋落物的腐烂分解以及营养周转等实验,研究了水生植物在富营养化浅水湖泊营养循环中的作用,主要结果如下:
     沉水植物群落促进沉积、降低再悬浮、减少磷内源负荷,实验期间(212d),苦草和微齿眼子菜群落内因沉积物再悬浮而送入上覆水的TP分别为334和253mg m~(-2),而养殖样地为589 mg m~(-2);微齿眼子菜群落比苦草群落能更有效地降低沉积物再悬浮,养殖草食性鱼类,破坏水生植被,显著增加沉积物再悬浮,促进内源营养释放;实验结果表明,维持300 mg m~(-2)的沉水植物生物量,才能有效降低再悬浮作用。
     AFDW/TN是影响凋落物分解的重要因素,AFDW/TN低的材料分解快,五种分解材料分解的快慢顺序为:莲叶>菰叶>菰茎>微齿眼子菜>莲叶柄;凋落物分解残渣占生物量的20%,促进湖泊的淤积和沼泽化进程;凋落物腐烂分解过程中75%和80%的N、P营养能够在年内释放出来。
     苦草生长快(0.055 d~(-1)),对N、P的吸收速率高(136.45,33.51 mg m~(-2)d~(-1)),应是富营养化湖泊生态修复、重建水生植被的重点选择对象。微齿眼子菜生长期长,碳的积累速率高(2.63 g m~(-2)d~(-1)),持有的营养量大,对于从底泥中移出营养具有重要意义。
     苦草和微齿眼子菜群落中TC、TN、TP的循环系数都在0.7以上,说明其所吸收的大部分营养又归还到环境中,水生植物衰败死亡和腐烂分解过程中释放营养盐是水体营养盐的重要来源,是重要的内源营养负荷。
     营养盐在各相的分配结果表明,水生植物成为系统中仅次于底泥的营养库;营养周转分析表明,通过残渣积累和沉积作用,湖泊沉积物成为湖泊中营养盐的“汇”。
Eutrophication of water bodies is a common problem in the world. Studying the effects of aquatic macrophytes on nutrient cycling in the aquatic ecosystem will have great significance in understanding the mechanisms of macrophytes in purifying the water bodies, revealing the principle of eutrophic lakes control and restoration, and utilizing the lakes resource sustainablely.
     To research the effects of aquatic macrophytes on the nutrient cycling in the shallow and eutrophic lakes in middle to lower reaches of the Yangtze River, several experiments have been performed, such as the effects of submerged macrophytes on the sediment resuspension, breakdown and nutrient dynamics of macrophytes, macrophytes in nutrients assimilating and turnover in two submerged communities. The main results are as follow:
     Submersed macrophytes can reduce sediment resuspension and decrease internal P loading. During the study period, total phosphorus of 334, 253 and 589 mg m~(-2), were brought back to the water column due to the sediment resuspension in V. denseserulata, P. maackianus communities and in aquiculture stand, respectively. The P. maackianus community was more effective in reducing sediment resuspension than the V. denseserulata. Herbivorous fish could destroy the aquatic vegetation, induce sediment resuspension and promote the internal nutrient loading. The results show that exploiting the resources of aquatic macrophytes must be reasonably, maintaining the biomass at 300 g m~(-2) is necessary to control the sediment resuspension effectively.
     AFDW/TN ratio determined the litters breakdown rate, litters with lower AFDW/TN ratio decayed fast. According to the decay rate the sequence of the five litters is: leaves of N. nucifera > leaves of Z. latifolia > culms of Z. latifolia > P. maackianus > petioles of N. nucifera. 20% of their biomass remained as detritus after decay in a year, which promoted the lake silt and swampiness; 75% and 80% of their initial TN, TP lost in a year, respectively.
     V. natans grew rapidly (0.055 d-1) and absorbed the N, P nutrients efficiently (136.45 and 33.5 mg m~(-2) d~(-1), respectively). Therefore, V. natans should be used as a preferred aquatic plant in restoring aquatic vegetation. While the P. maackianus with high carbon accumulation rate (2.63 g m~(-2) d~(-1)) and high biomass was of great significance in transferring nutrition from the sediment.
     In V. denseserulata and P. maackianus communities, the cycle coefficient of TC, TN and TP were all above 0.7, suggesting that most of the nutrients assimilated in plants would be released back to the environment as the plants senescence and decay. Litters of the macrophytes served as a nutrient "source" rather than a "sink".
     The study stated sediment was the richest nutrient bank, followed by the macrophytes communities. Through detritus accumulation and sedimentation, the sediment would become the nutrient "sink" in the macrophytes communities.
引文
陈荷生,石建华.1998.太湖底泥的生态疏浚工程——太湖水污染综合治理措施之一.水资源保护,14(3):11~16.
    陈荷生,江溢,宋祥甫,邹国燕.2002.太湖湖内综合治理技术.水利水电技术.33(12):46-49.
    陈静,郭慧光,张涛,卢云涛,和丽萍.1999.世博会期间滇池草海蓝藻清除应急措施.环境科学研究,12(5):13-23.
    陈世俭,王学雷,卢山.洪湖的水资源与水位调控.华中师范大学学报(自然科学版),2002,36(1):121—124
    陈宜瑜,许蕴珩.洪湖水生生物及其资源开发[M].北京:科学出版社,1991.129 139.
    陈毅风,张军,万国江.2001.贵州草海湖泊系统碳循环简单模式.湖泊科学,13(1):15-20.
    崔心红,熊秉红,蒲云海,李伟,陈家宽,何国庆.2000.5种沉水植物无性繁殖和定居能力的比较研究.植物生态学报,24(4):502~505.
    戴全裕,蒋兴昌,汪耀斌,黄卫良,成新.1995.太湖入湖河道污染物控制生态工程模拟研究.应用生态学报,6(2):201-205.
    单保庆,尹澄清,白颖,等.2000.小流域磷污染物非点源输出的人工降雨模拟研究.环境科学学报,20(1):33~37.
    董悦安,孟庆义,顾华,张景峰,高云柱.2005.密云水库富营养化防治中的应用.地学前缘(中国地质大学,北京;北京大学),12:77-82.
    葛继稳,蔡庆华,李建军,刘建康,刘胜祥,蒲云海,王希群2004.梁子湖水生植被1955—2001年间的演替.北京林业大学学报,26(1):14-20.
    顾欢达,顾熙.2002.河道淤泥的有效利用方式及其物性探讨.环境科学学报,22(4):454~458.
    顾林娣,陈坚,陈卫华.1994.苦草种植水对藻类生长的影响.上海师范大学学报(自然科学版),23(1):62~68.
    韩菲,陈永灿,刘昭伟.2003.湖泊及水库富营养化模型研究综述.水科学进展,14(6):785~791.
    贺宝根,周乃晟,胡雪峰.2001.农田降雨径流污染模型探讨—以上海郊区农田氮素污染模型为例.长江流域资源与环境,10(3):159~165.
    洪祖善,何品晶.2002.受污染底泥易地处理处置技术.上海环境科学,21(4):233~236.
    简永兴.2001.两湖平原湖泊湿地水生植物多样性编目与评价.武汉大学博士学位论文.P51—53.
    金送笛,李永函,倪彩虹,王斌.1994.菹草(Potamogeton crispus)对水中氮磷的吸收及若干影响因素.生态学报,14(2):168-173.
    金相灿,刘鸿亮,屠清瑛等.中国湖泊富营养化.北京:中国环境科学出版社,1990.121~133.
    金相灿主编.湖泊富营养化控制和管理技术.化学工业出版社.2001.p112-115.
    孔垂华,徐涛,胡飞.2000.环境胁迫下植物的化感作用及其诱导机制.生态学报,20(5):849~854.
    李飞,陈永瑞.1999.人工马尾松阔叶混交林矿质营养循环的研究.林业科学,35(3):16-21.
    李琪,李德尚,熊邦喜等.1993.放养鲢鱼(Hypophtyalmichys molitrix C et V)对水库浮游植物群落的影响.生态学报,13(1):30-37.
    李伟,刘贵华,熊秉红,浦云海.2004.1998年特大洪水后鄱阳湖自然保护区主要湖泊水生植被的恢复.武汉植物学研究,22(4):301-306.
    李伟,钟扬编译.水生植被研究的论文和方法.华中师范大学出版社,武汉,1992.
    李伟.洪湖水生植被及其演替研究.武汉:中国科学院水生生物研究所,1995.
    李文朝,陈开宁,吴庆龙,潘继任.2001.东太湖水生植物生物质腐烂分解实验.湖泊科学,13(4):331-336.
    李文朝.1997a.东太湖水生植物的促淤效应与磷的沉积.环境科学,18(3):9-12.
    李文朝.1997b.东太湖沉积物中氮的积累与水生植物沉积.中国环境科学,17(5):418-421.
    李亚东,崔艳秋.2000.武汉东湖苦草种子和块茎发芽实验.水生生物学报,24(3):298-300.
    李酉开主编.《土壤农业化学常规分析方法》.科学出版社.北京.1989.pp95-97.
    林婉莲,王建,黄祥飞等.1995.武汉东湖水柱浮游颗粒有机碳、氮、磷十年动态.:刘建康主编.东湖生态学研究.北京:科学出版社.1995:75-91.
    刘建康,谢平.1999.揭开武汉东湖蓝藻水华消失之迷.长江流域资源与环境,8(3):312-319.
    刘健康,谢平.2003.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践.生态科学,22(3):193-196.
    刘增文,李雅素.1999.黄土残塬沟壑区刺槐人工林生态系统的养分循环通量与平衡分析. 生态学报,19(5):632~634.
    卢山,姜加虎.2003.洪湖湿地资源及其保护对策.湖泊科学,3:281~284.
    罗辑,程根伟,李伟,何祖慰.2005.贡嘎山天然林营养元素生物循环特征.北京林业大学学报,27(2):13-17.
    罗潋葱,秦伯强.2003.太湖波浪与湖流对沉积物再悬浮不同影响的研究,水文,23(3):1-4.
    马剑敏,靳萍,李益健.2001.富营养湖泊大型围隔和围栏中磷的动态.植物资源与环境学报,10(1):44-47.
    年跃刚,宋英伟,李英杰,孙艳妮,聂志丹.2006.富营养化浅水湖泊稳态转换理论与生态恢复探讨.环境科学研究,19(1):67-70.
    潘文斌,蔡庆华.2000.保安湖大型水生植物在碳循环中的作用.水生生物学报,24(5):418-425.
    彭映辉,简永兴,倪乐意,李仁东.2003.西凉湖水生植物多样性研究.广西植物,23(3):211-216.
    濮培民,王国祥,胡春华,胡维平,范成新.2000.底泥疏浚能控制湖泊富营养化吗?湖泊科学,12(3):269-279.
    秦伯强,范成新.2002.大型浅水湖泊内源营养盐释放的概念性模式探讨.中国环境科学,22(2):150~153.
    秦伯强,胡维平,高光,罗敛葱,张金善.2003.太湖沉积物悬浮的动力机制及内源释放的概念性模式.科学通报,48(17)1822-1831.
    秦伯强.2002.长江中下游浅水湖泊富营养化发生机制与控制途径韧探.湖泊科学,14(3):193—202.
    宋碧玉,王建,曹明,戴莽.1999.利用人工围隔研究沉水植被恢复的生态效应.生态学杂志,18(5):21-24.
    宋福,陈艳卿,乔建荣,任久长.1997.常见沉水植物对草海水体(含底泥)总氮去除速率的研究.环境科学研究,10(4):47-50.
    宋祥甫,邹国燕,吴伟明,金千瑜,应火冬.1998.浮床水稻对富营养化水体中氮、磷的去除效果及规律研究.环境科学学报,18(5):489-494.
    苏睿丽,李伟.2005.沉水植物光合作用的特点与研究进展.植物学通报,2005,22(增刊):128~138.
    苏文华,张光飞,张云孙,肖衡,夏峰.2004.5种沉水植物的光合特征.水生生物学报, 28(4):391-395.
    孙刚,盛连喜,冯江,郎宇,李振新.1999.中国湖泊渔业与富营养化的关系.东北师大学报自然科学版,1:74-78.
    唐森铭,庄栋法,林昱,陈孝麟.1993.围隔生态系内富营养对水体营养盐结构的扰动.海洋学报,15(2):135-140.
    屠清瑛,顾丁锡,尹澄清等.巢湖—富营养化研究.合肥:中国科学技术大学出版社,1990.
    王苏民,窦鸿身.主编.中国湖泊志.科学出版社,1998.P196.
    王学雷,刘兴土,吴宜进.2003.洪湖水环境特征与湖泊湿地净化能力研究.武汉大学学报(理学版),49(2):217-220.
    王业勤,冯勃.1989.洪湖野菰及其化学成分分析.水生生物学报,13(1):51-57.
    温周瑞,陈洪达,苏泽古.1997.西凉湖网围养鱼经济效益分析.水产养殖,4:11-12.
    温周瑞,刘慧集,吴琅虎,陈洪达.2000.河蟹对几种水草的选择性与摄食量的研究.水利渔业.20:16-18.
    吴丰昌,万国江,黄容贵.1996.湖泊沉积物—水界面的地球化学研究.中国环境科学,16(3):182-185.
    吴庆龙,胡耀辉,李文朝,陈开宁,潘继征.2000.东太湖沼泽化发展趋势及驱动因素分析.环境科学学报,20(3):275-279.
    吴生才,陈伟民.2004.水体富营养化的渐进性和灾难性灾害学,19(2):13-17.
    吴玉树,余国莹.1991.根生沉水植物菹草(Potamogeton crispus)对滇池水体的净化作用.环境科学学报,11(4):411-416.
    吴振斌,邱东茹,贺锋,付贵萍,成水平,马剑敏.2003.沉水植物重建对富营养水体氮磷营养水平的影响.应用生态学报,14(8):1351-1353.
    吴征镒.1991.中国种子植物属的分布区类型.云南植物学研究,9(3):181-288.
    鲜啟鸣,陈海东,邹惠仙,曲丽娟,尹大强.2005.淡水水生植物化感作用研究进展.生态学杂志,24(6):664~669.
    熊秉红,李伟.2000.我国苦草属(Vallisneria L.)植物的生态学研究.武汉植物学研究,18(6):500~508.
    徐开钦,林诚二,牧秀明,村上正吾,徐保华,渡边正孝.2004.长江干流主要营养盐含量的变化特征—1998—1999年日中合作调查结果分析.地理学报,59(1):118-124.
    徐永福,浦一芬,赵亮.2005.海洋碳循环模式的研究进展.地球科学进展,20(10): 1106-1115.
    许航,陈焕壮,熊启权,王宝贞.1999.水生植物塘脱氮除磷的效能及机理研究.哈尔滨建筑大学学报,32(4):69-73.
    严国安,刘永定.2001.水生生态系统的碳循环及对大气CO2的汇.生态学报,21(5):827-833.
    杨达源,李徐生,张振克.2000.长江中下游湖泊的成因与演化.湖泊科学,12(3):226-232.
    杨汉东,蔡述明.1997.江汉平原湖泊沉积物的化学特征及其与人类活动的关系.地理科学,17(4):323-328.
    杨清心.1998.东太湖水生植被的生态功能及调节机制.湖泊科学,10(1):67-72.
    袁峻峰,章宗涉.1992.金鱼藻(Ceratophyllum demersum Kom.)对藻类的生化干预作用.生态学报,13(1):45~50.
    张国华,曹文宣,陈宜瑜.1997.湖泊放养渔业对我国湖泊生态系统的影响.水生生物学报,21(3):271-280.
    张圣照,王国祥,濮培民,千金凉·达哉.1999.东太湖水生植被及其沼泽化趋势.植物资源与环境.8(2):1-6.
    张希彪,上官周平.2005.黄土丘陵区主要林分生物量及营养元素生物循环特征.生态学报,25(3):527-537.
    张运林,秦伯强,陈伟民,罗潋葱.2004.太湖水体中悬浮物研究.长江流域资源与环境,13(3):266-271.
    种云霄,胡洪营,钱易.2003.大型水生植物在水污染治理中的应用研究进展.环境污染治理技术与设备,4(2):36-40.
    朱广伟,高光,秦伯强,张路,罗潋葱.2003.浅水湖泊沉积物中磷的地球化学特征.水科学进展,14:714-719.
    朱广伟,秦伯强,高光,张路,范成新2004.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系.环境科学学报,24:382-388.
    朱敏,王国祥,王建,陈灿.2004.南京玄武湖清淤前后底泥主要污染指标的变化.南京师范大学学报(工程技术版),4(2):66-69.
    Adhi T. P., Korus R. A. & Crawford D. L., 1989. Production of major extracellular enzymes during lignocellulose degradation by two streptomycetes in agitated submerged culture. Applied and Environmental Microbiology, 55:1165-1168.
    Andersen J. M., 1975. Influence of PH on release of phosphorus from lake sediments. Arch. Hydrobiologia, 76: 411-419.
    Anderson J. T. & Smith L. M., 2002.The effect of flooding regimes on decomposition of Polygonum pensylvanicum in playa wetlands (Southern Great Plains, USA). Aquatic Botany, 74: 97-108.
    Anesio A. M., Abreu P. C. & Biddanda B. A., 2003. The role of free and attached microorganisms in the decomposition of estuarine macrophyte detritus. Estuarine, Coastal and Shelf Science, 56:197-201.
    Asaeda T., Kien T. V. & Manatunge J., 2000. Modeling the effects of macrophyte growth and decomposition on the nutrient budget in shallow lakes. Aquatic Botany, 68: 217-237.
    Asaeda T., Nama L. H., Hietz P., Tanaka N. & Karunaratne S., 2002. Seasonal fluctuations in live and dead biomass of Phragmites australis as described by a growth and decomposition model: implications of duration of aerobic conditions for litter mineralization and sedimentation. Aquatic Botany, 73: 223-239.
    Bachmann R. W., Hoyer M. V. & Canfield D. E., 2001. Evaluation of recent limnological changes at Lake Apopka, Hydrobiologia, 448 (1-3): 19 - 26.
    Bachmann R. W., Hoyer M. V. & Canfield D. E., J., 1999.The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia, 394: 219 - 232,
    Balls H., B. Moss & Irvine K., 1989. The loss of submerged plants with eutrophication. I. Experimental design, water chemistry, aquatic plant and phytoplankton biomass in experiments carried out in ponds in the Norfolk Broad. Freshwater Biology, 22: 71-87.
    Barko J. W. & Smart R. M., 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biology, 10: 229-238.
    Barko J. W. & Smart R. M., 1986. Sediment related mechanisms of growth limitation in submerged macrophytes. Ecology, 67: 1328-1340.
    Barko J. W. & W. F. James, 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation and resuspension. In: Jeppesen, E., Ma. Sondergaard, Mo. Sondergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, NewYork,p197-214.
    
    Barko J. W., Gunnison D. & Carpenter S. R., 1991. Sediment interactions with submersed macrophyte growth and community dynamics. Aquatic Botany, 41: 41-65.
    Barko J. W., Smart R. M., McFarland D. G. & Chen R. L., 1988. Interrelationships between the growth of Hydrilla verticillata (L.f.) Royle and sediment nutrient availability.Aquatic Botany, 32: 205-216.
    Bashan D. L. E. & Bashan Y., 2004. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research, 38: 4222-4246.
    Bechmann M. E., D. Berge, H. O. Eggestad & Vandsemb S. M., 2005. Phosphorus transfer from agricultural areas and its impact on the eutrophication of lakes—two long-term integrated studies from Norway. Journal of Hydrology, 304 (1-4) : 238-250.
    Beklioglu M. & Moss B., 1996. Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshwater Biology, 36: 315-325.
    Bengtsson L., Hellstrom T. & Rakoczi L., 1990. Redistribution of sediments in three Swedish lakes. Hydrobiologia, 192 (2-3): 167-181.
    Benner R., Newell S.Y., macCubbin A.E. & Hodson R. E., 1984. Relative contributions of bacteria and fungi to rates of degradation of lignocellulose detritus in salt marsh sediments. Appl. Environ. Microbiol., 48: 36-40.
    Benoit R. E., Starkey R. L. & Basaraba J., 1968. Efect of purified plant tannin on decomposing of some organic compounds and plant materials. Soil Science, 105: 153-158.
    Bishop P. L., Eighmy T. T., 1989. Aquatic wastewater treatment using Elodea nuttalli. J. Water Poll Contro Fed, 61: 641 - 648.
    Blindow I., Andersson G, Hargeby A. & Johansson S., 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology, 30: 159-167.
    Blindow I., Hargeby A. & Andersson G, 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chora vegetation. Aquatic Botany, 72 (3-4): 315-334.
    Bloesch J. & Burns N. M., 1980. A critical review of sediment trap technique. Schweiz Z Hydrol., 42: 15-5 6.
    Bloesch J., 1994. A review of methods used to measure sediment resuspension. Hydrobiologia, 284: 13 - 8.
    
    Blomqvist S. & Hakanson L., 1981. A review on sediment taps in aquatic environments. Arch.Hydrobilogia, 91(1): 101-132.
    Boers P. C. M., 1991. The influence of PH on phosphate release from lake sediments. Water Research, 25:309-311.
    Bouchard V. & Lefeuvre J.-C, 2000. Primary production and macro-detritus dynamics in a European salt marsh: carbon and nitrogen budgets. Aquatic Botany, 67: 23-42.
    Bouchard V., Gillon D., Joffre R. & Lefeuvre J.-C, 2003. Actual litter decomposition rates in saltmarshes measured using near-infrared reflectance Spectroscopy. Journal of Experimental Marine Biology and Ecology, 290 (2): 149-163.
    Boulton A. J. & Boon P. I., 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: time to turn over an old leaf?. Australia Journal Marine Freshwater Research, 42: 1-43.
    Breukers C. P. M., Van Dam E. M. & De Jong S. A., 1997. Lake Volkerak-Zoom: a lake shifting from the clear to the turbid state. Hydrobiologia, 342/343: 367-376.
    Brezonik P. L. & Engstrom D. R., 1998. Modern and historic accumulation rates of phosphorus in Lake Okeechobee, Florida. Journal of Paleolimnology, 20: 31-46.
    Brinson M. M., 1977. Decomposition and nutrient exchange of litter in an alluvial swamp forest. Ecology, 58:601-609.
    Brinson M. M., A. E. Lugo & Brown S:, 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review Ecological System, 12: 123-161.
    Brix H. & Schierup H. H., 1989. The use of aquatic macrophytes in water pollution control. Ambio, 18: 100-107.
    Brock T. C. M., Boon J. J. & Paffen B. G. P., 1985b. The effects of the season and of water chemistry on the decomposition of Nymphaea alba L.; weight loss and pyrolysis mass spectrometry of the particulate matter. Aquatic Botany, 22: 197-229.
    Brock T.C. M., De Lyon M. J. H., Van Laar E. M. J. M. & Van Loon E. M. M., 1985a. Field studies on breakdown of Nuphar lutea (L.) SM. (Nymphaeceae), and a comparison of three mathematical models for organic weight loss. Aquatic Botany, 21: 1-22.
    Brock T.C. M., Huijbregts C. A. M., Van de Steeg-Huberts M. J. H. A. & Vlassak M. A., 1982. In situ studies on the breakdown of Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae); some methodological aspects of the litter bag technique. Hydrobiol. Bull., 16: 35-49.
    Bussmann I., 2005. Methane Release through Resuspension of Littoral Sediment. Biogeochemistry, 74 (3): 283 - 302.
    Carignan R. & Kalff J., 1980. Phosphorus sources for aquatic weeds : water or sediments ?. Science, 207: 987 - 988.
    Carpenter S. R. & Adams M. S., 1977. The macrophyte tissue nutrient pool of a hardwater eutrophic lake: implications for macrophyte harvesting. Aquatic Botany, 3: 239-255.
    Carpenter S. R. & Adams M. S., 1979. Effects of nutrients and temperature on decomposition of Myriophyllum spicatum L. in a hardwater eutrophic lake. Limnol. Oceanogr., 24: 50-528.;
    Carpenter S. R. & Kitchell J. F., 1992. Trophic cascade and biomanipulation: interface of research and management. A reply to the comment by DeMelo et al. Limnology and Oceanography, 37: 208-213.
    Carpenter S. R. & Lodge, D. M., 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, 26: 341-370.
    Carpenter S. R., 1980. Enrichment of Lake Wingra, Wisconsin, by submersed macrophyte decay. Ecology, 61: 1145-1155.
    Carpenter S. R., 1980. Estimating net shoot production by a hierarchical cohort method of herbaceous plants subject to high mortality. Amer. Midl. Nat., 104: 163-175.
    Carpenter S. R., Elser J. J. & Olson K. M., 1983. Effect of roots of Myriophyllum verticillatum L. on sediment redox conditions. Aquatic Botany, 17 :243 - 249.
    Carper G. L. & Bachmann R. W, 1984. Wind resuspension of sediments in a prairie lake. Canadian Journal of Fisheries and Aquatic Sciences, 41: 1763 - 1767.
    Chambers P. A., Prepas E. E., Bothwell M. L. & Hamilton H. R., 1989. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters, Can. J. Fish. Aquat. Sci., 46: 435-439.
    Charlton M. N. & Lean D. R. S., 1987. Sedimentation, resuspension, and oxygen depletion in lake Erie (1979). J. Great Lakes Res., 13: 709-723.
    Chen R. L. & Barko J. W., 1988. Effects of freshwater macrophytes on sediment chemistory.Freshwat. Ecol., 4: 279-289.
    Cleuvers M. & Ratte H. T., 2002. Phytotoxicity of coloured substances: is Lemna Duckweed an alternative to the algal growth inhibition test ?. Chemosphere, 49: 9-15.
    Corstanje R., Reddy K. R. & Portier K. M., 2006. Typha latifolia and Cladium jamaicense litter decay in response to exogenous nutrient enrichment Aquatic Botany, 84: 70-78.
    Cuppen J. G. M., van den Brink P. J., Camps E., Uil K. F. & Brock T. C. M., 2000. Impact of the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates. Aquatic Toxicology, 48(2-3): 233-250.
    David R. I, Small J.W., & Osborne Jr. J.A., 2002. Phytoplankton responses to reduction and elimination of submerged vegetation by herbicides and grass carp in four Florida lakes. Aquatic Botany, 20: 307-319.
    Davis C. B. & Van der Valk A. G, 1983. Uptake and release of nutrients by living and decomposing Typha glauca GODR: tissues at Eagle Lake, Iowa. Aquatic Botany, 16: 75-89.
    Davis M. B., 1968. Pollen grain in lake sediments:redeposition caused by seasonal water circulation. Sciences, 162: 796-799.
    Davis S. E., Corronado-Molina, C, Childers, D.L. & Day J. W., 2003. Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L., leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquatic Botany, 75: 199-215.
    Deiter C. D., 1990. the importance of emergent vegetation in reducing sediment resuspension in wetlands. Journal of Freshwater ecology, 5: 467-473.
    Drake J. C. & Heaney S. I., 1987. Occurrence of phosphorus and its potential remobilization in the littoral sediments of a productive English lake. Freshwater Biology, 17: 513-523.
    Ellen V. D. & Wouter J. B., 2002. Impact of submerged macrophytes including charophytes on phyto and zooplankton communities: Allelopathy versus other mechanisms. Aquatic Botany, 72:261-274.
    Elwood J. W., Newbold J. D., Trimble A. F. & Stark R. W., 1981. The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology, 62: 146-158.
    Esteves F. A. & Barbieri R., 1983. Dry weight and chemical change during decomposition of tropical macrophytes in Lobo reservoir-Sao Paulo. Aquatic Botany, 16: 285-295.
    Evans R. D. & Hakanson L., 1992. Measurement andprediction of sedimentation in small Swedish lakes. Hydrobiologia, 235/236: 143-152.
    
    Evans R. D., 1994. Empiricalevidence of the importance of sediment resuspension in lakes. Hydrobiologia, 284: 5-12.
    Federle T. W., McKinley V. L. & Vestal J. R., 1982. Effects of nutrient enrichment on the colonization and decomposition of plant detritus by the microbiota of an arctic lake. Can. J. Microbiol., 28: 1199-1205.
    Findlay S. E., & Arsuffi T. L., 1989. Microbiol growth and detritus transformation during decomposition of leaf litter in a stream. Freshwater biology, 21: 261-269.
    Flindt M. R., Parda M. A., Lillebo A. I., Martins I.& Marques J. C, 1999. Nutrient cycling and plant dynamics in estuaries: A brief review. Acta Oecologica, 20 (4): 237-248.
    Gachter R., Meyer R. S. & Mares A., 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediment. Limnology and Oceanography, 33 (8) : 1542—1558.
    Gasith A., 1975. Tripton sedimentation in eutrophic lakes-simple correction for the resuspended matter. Verhandlungen der Internationlen Vereinigung fur Limnologia, 19: 116-122.
    Gaterell M. R., Gay R., Wilson R., Gochin R. J. & Lester J. N., 2000. An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertilizer markets. Environ. Technol., 21: 1067-1084.
    Gessner M. O. & Schwoerbel J., 1989. Leaching kinetics of fresh leaf-litter with implication for the current of leaf-processing in streams. Archiv fur Hydrobioligie, 115: 81-89.
    Gessner M. O., 2000. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake, Aquatic Botany, 66 (1) : 9-20.
    Godsshalk G. L. & Wetzel R. G., 1978a. decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model of decomposition. Aquatic Botany, 5: 329-354.
    Godsshalk G. L. & Wetzel R. G., 1978b. decomposition of aquatic angiosperms. II. Particulate components. Aquatic Botany, 5: 301-327.
    Gons H. J., Veeningen R. & Van Keulen R., 1986. Effects of wind on a shallow lake ecosystem: Resuspension of particles in the Loosdrecht Lakes. Aquatic Ecology, 20 (1-2): 109 - 120.
    Graneli W. & Solander D., 1988. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia, 70: 245 - 266.
    Gregg W. W & Rose F. L., 1982. The effects of aquatic macrophytes on the stream microenvironment. Aquatic Botany, 14:309-324.
    Gross E M., 2003. Allelopathy of aquatic autotrophs. Critical Rev. Plant Sci., 22 (3~4): 313- 339.
    Gulati R. D. & van Donk E., 2002. Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobiologia, 478 (1-3): 73 - 106.
    Gumbricht T., 1993. Nutrient removal processes in freshwater submersed macrophyte systems. Ecological Engineering, 2:1- 30.
    Hakanson L. & Jansson M., 1983. Principles of lake sedimentology. Springer-Verlag, Berlin. 郑光 赝译,湖泊沉积学原理, 1992, 北京:科学出版社, P119-169.
    Hakanson L., 1977. The influence of wind, fetch and water depth on the distribution of sediments in Lake Vanern, Sweden. Can. J. Earth Sci., 14: 397-412.
    Hakanson L., 1994. A model to predict gross sedimentation in small glacial lakes. Hydrobiologia, 284 (1): 19-42.
    Hakanson L., 2004. Internal loading: A new solution to an old problem in aquatic sciences. Lakes & Reservoirs: Research and Management, 9 (1): 3-23.
    Hakanson L., Floderus S. & Wallin M., 1989. Sediment trap assemblages - a methodological description. Hydrobiologia, 176/177: 481-490.
    Hamilton D. P. & Mitchell S. F., 1996. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia, 317 (3): 209 - 220.
    Hamilton D. P. & Mitchell S. R, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology, 38: 159-168.
    Hanson M. A. & Butler M. G, 1994. Responses of plankton, turbidity, and macrophytes to biomanipulation in a shallow prairie lake. Can. J. Fish. Aquat. Sci., 51: 1180-1188.
    Hargrave B. T. & Burns N. M., 1979. Assessment of sediment trap collection efficiency. Limnol. and Oceanogr., 24: 1124-1136.
    Havens K. E., 2003. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia, 493: 173—186.
    Havens K. E., Sharfstein B., Rodusky A. J. & East T. L., 2004. Phosphorus accumulation in the littoral zone of a subtropical lake. Hydrobiologia, 517 (1-3): 15-24.
    Hein L., 2005. Cost-efficient eutrophication control in a shallow lake ecosystem subject to two steady states. Ecological Economics, (online).
    Hellstrom T., 1991. The effect of resuspension on algal production in a shallow lake. Hydrobiologia, 213 (3): 183 - 190.
    Hicks R. E., Owen C. J. & Aas P., 1994. Deposition, resuspension, and decomposition of particulate organic matter in the sediments of Lake Itasca, Minnesota, USA. Hydrobiologia, 284(1): 79-91.
    
    Hill B. H., 1985.The breakdown of macrophytes in a resevior wetland. Aquatic Botany, 21: 23-31.
    Hilton J., Lishman J. P. & Allen P. V., 1986. The dominant processes of sedoment distribution and focusing in a small, eutrophic, monomictic lake. Limnol. Oceanogr., 31: 125-133.
    Hohener P. & Gachter R., 1994. Nitrogen cycling across the sediment water interface in an eutrophic, artificially oxygenated lake. Aquatic Sciences, 56 (2) : 115—131.
    Hohmann J. & Neely R. K., 1993. Decomposition of Sparganium eurycarpum under controlled pH and nitrogen regimes. Aquatic Botany, 46 (1): 17-33.
    Horppila J. & Nurminen L., 2001 The effect of an emergent macrophyte (Typha angustifolia) on sediment in a shallow north temperate lake. Freshwater Biology, 46: 1447-1455.
    Horppila J. & Nurminen L., 2003. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Research, 37: 4468-4474.
    Horppila J. & Nurminen L., 2005. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia, 545: 167-175.
    Horppila J., Peltonen H. & Malinen T., 1998. Top-down or bottom-up effects by fish : Issues of concern in biomanipulation of lakes. Restoration Ecology, 6 (1) : 20 - 28.
    Hosper S. H., 1998. Stable states , buffers and switches : an ecosystem approach to the restoration and management of shallow lakes in Netherlands. Wat. Sci. Tech., 37 (3): 151-164.
    Hosper S. P. & Meijer M. L., 1993. Biomanipulation , will it work for your lake. A simple test for the assessment of chances for clear water , followingdrastic fishstock reduction in shallow eutrophic lakes. Ecological Engineering, 2 : 63 - 72.
    Howard-Williams C. & Davies B. R., 1979. The rates of dry matter and nutrient loss from decomposing Potamogeton pectinatus in a brackish south-temperate coastal lake. Freshwater Biology, 9: 13-21.
    
    Howard-Williams C, 1981. Studies on the ability of a Potamogeton pectinatus community to remove dissolved nitrogen and phosphorus compounds from lake water. J. Appl. Ecol., 18, 619-637.
    Hu Chunhua, Hu Weiping, Zhang Fabing, Hu Zhixin, Li Xianghua & Chen Yonggen, 2006. Sediment resuspension in the Lake Taihu, China. Chinese Science Bulletin, 51 (6): 731-737.
    Hupfer M. & Dollan A., 2003. Immobilisation of phosphorus by iron-coated roots of submerged macrophytes. Hydrobiologia, 506-509: 635-640.
    Hupfer M., Pothig R., Bruggemann R. & Geller W., 2000. Mechanical resuspension of autochthonous calcite (Seekreide) failed to control internal phosphorus cycle in a eutrophic lake. Water Research, 34 (3): 859-867.
    
    Ikusima I., 1966. Ecological studies on the production of aquatic plant communities. II. Seasonal changes in standing crop and productivity of a natural submerged community of Vallisneria denseserrulata. Bot. Mag. Tokyo, 79: 7-19.
    
    Irfanullah H. M. & Moss B., 2004. Factors influencing the return of submerged plants to a clear-water, shallow temperate lake. Aquatic Botany, 80: 177-191.
    Jacoby J. M., Gibbons H. L. & Stoops K. B., 1994. Response of a shallow , polymictic lake to buffered alum treatment. Lake Reservoir Manage, 10 (2): 103 - 112.
    James W. F. & Barko J. W., 1991. Littoral-pelagic phosphorus dynamics during nighttime convective circulation. Limnol.Oceanogr., 36: 949-960.
    James W. F., Barko J. W. & Butler M.G., 2004b. Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia, 515 ( 1-3): 181 - 191.
    James W. F., Barko J. W. & Field S. J., 1996. Phosphorus mobilization from littoral sediments of an inlet region in Lake Delavan, Wisconsin. Arch. Hydrobiolgie, 138: 245-257
    James W. F., Best E. P. & Barko J. W, 2004a. Sediment resuspension and light attenuation in Peoria Lake: can macrophytes improve water quality in this shallow system? Hydrobiologia, 515: 193-201.
    Jaynes M. L. & Carpenter S. R., 1986. Effect of vascular and nonvascular macrophytes on sediment redox and solute dynemics. Ecology, 67: 875- 882.
    Jenny H., Gessel S. P. & Bingham F.T., 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regions Soil Sci., 68: 419-432.;
    Jensen H. S., Kristensen P., Jeppesen E. & Skytte A., 1992.Iron:phosphorus ratio in surface sediment as an inditcator of phosphate release from aerobic sediment in shallow lakes. Hydrobiologia, 235: 731-743.
    Jones J. I., 2005.The metabolic cost of bicarbonate use in the submerged plant Elodea nuttallii. Aquatic Botany, 83: 71-81.
    Jones J. I., Eaton J. W. & Hardwick K., 2000. The influence of periphyton on boundary layer conditions: a pH microelectrode investigation. Aquatic Botany, 67: 191-206.
    Jordan T. E., Whigham D. F. & Correll D. L., 1989. The role of litter in nutrient cycling in a brackish tikal marsh. Ecology, 70: 1906-1915.
    Kahara S. N. & Vermaat J. E., 2003. The effect of alkalinity on photosynthesis-light curves and inorganic carbon extraction capacity of freshwater macrophytes. Aquatic Botany, 75: 217-227.
    Kairesalo T. & Matilainen T., 1994. Phosphorus fluctuation in water and deposition emergent macrophyte stand. Hydrobiologia, 275/276: 285-292.
    Kalff J., 2002. limnology Prentice-Hall, Inc.
    Kaushik N. K. & Hynes H. B. N., 1968 Experimental study on the role of autumn shed leaves in aquatic environments. J. Ecol., 56: 22245.
    Keppler F., Hamilton J. T. G, Braβ M. & Rockmann T., 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature, 439: 187-191.
    Killingbeck K.T., 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology, 77: 1716-1727.
    Kleerekoper H., 1952. A new apparatus for the study of sedimentation in lakes. Can. J. Zool., 30: 185-190.
    Koch E. W., 1999. Sediment resuspension in a shallow Thalassia testudinum banks ex Konig bed. Aquatic Botany, 65: 269-280.
    Kozerski H. P., 1994. Possibilities and limitations of sediment traps to measure sedimentation and resuspension. Hydrobiologia, 284:93 - 100.
    Kristensen P., Sondergaard M. & Jeppeson E., 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia, 228, 101-109.
    Kufel L. & Kufel I., 2002. Chara beds acting as nutrient sinks in shallow lakes - a review. Aquatic Botany, 72: 249-260.
    
    Leuven R. E. S. W. & Wolfs W. J., 1988. Effects of water acidification on the decoposition of Juncus bulbosus L. Aquatic Botany, 31: 57-81.
    Levine S. N., Zehrer R. F. & Burns C. W., 2005. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshwater Biology, 50: 1515-1536.
    Li W., 1995. Studies on aquatic vegetation and its succession in Honghu lake. Ph. D. Dissertation, Institute of Hydrobiology, Academia Sinica.
    Li W., Huang B. & Li R. R., 2002. Assessing the effect of fishing development on aquatic vegetation using GIS. Aquatic Botany, 73: 187-99.
    
    Lodge D.M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany, 41: 195-224.
    Losee R. F., Wetzel R.G., 1993. Littoral flow rates within and around submersed macrophyte communities. Freshwater Biol. 29: 7-17.
    Ma Y., Zheng X. M., Endo K. & Sato K., 2005. Study on the Change of Nitrogen and Phosphorus and the Eutrophication Process in Honghu Lake. GUANGZHOU ENVIRONMENTAL SCIENCES, 20:5-15.
    Maceina M. J. & Soballe D. M., 1990. Wind-related limnological variation in Lake Okeechobee, FL. Lake and Reservoir Management, 6: 93-100.
    Madsen T. V. & Sand-Jensen K., 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquatic Botany, 41: 5-40.
    Madsen T. V., Olesen B. & Bagger J., 2002. Carbon acquisition and carbon dynamicsby aquatic isoetids. Aquatic Botany, 73: 351-371.
    Makela S., Huitu E. & Arvola L., 2004. Spatial patterns in aquatic vegetation composition and environmental covariates along chains of lakes in the Kokema'enjoki watershed (S. Finland). Aquatic Botany, 80: 253-269.
    Malmaeus J. M. & Hakanson L., 2004. Development of a Lake Eutrophication model. Ecological Modelling, 171 (1-2): 35-63.
    Maltby L. & Booth R., 1991.The effect of coal-mine effluent on fungal assemblages and leaf breakdown. Water Research, 24(3): 247-250.
    Marion L., Paillisson J.-M., 2003. A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake. Aquatic Botany, 75: 249-260.
    
    Meijer M. & Hosper H., 1997. Effects of biomanipulation in the large and Shallow Lake Wolderwijd , The Netherlands. Hydrobiologia, 342/343: 335 - 349.
    Meijer M., de Boois I., Scheffer M., Portielje R. & Hosper H., 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia, 408-409: 13 -30.
    Melo D. R., France R. & McQueen D. J., 1992. Biomanipulation : hit or myth. Limnology and Oceanography, 37: 192-207.
    Menendez M., Martinez M., Hernandez O. & Comin F. A., 2001. Comparison of Leaf Decomposition in Two Mediterranean Rivers: a Large Eutrophic River and an Oligotrophic Stream (S Catalonia, NE Spain) Internat. Rev. Hydrobiol., 86(4-5): 475-486.
    Moeller R. E., Burkholder J. M. & Wetzel R. G., 1988. Significance of sedimentary phosphorus to a rooted submersed macrophyte (Najas flexilis (Willd.) Rostk. and Schmidt) and its algal epiphytes. Aquatic Botany, 32(3):261-281.
    Moore B. C, Lafer J. E. & Funk W. H., 1994.Influence of aquatic macrophytes on phosphorus and sediment pore water chemistry in a freshwater wetland. Aquatic Botany, 49 (2-3): 137-148.
    Moss B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia, 200/201:367-378.
    Moss B., Stersfield J. & Irvine K., 1991. Developmant of Daphnid communities in Diatom and Cyanophyte dominated lakes and their relevance to lake restoration by biomanipulation. J Applied Ecology, 28 : 586 - 602.
    Neely R. K. & Davis C. B., 1985. Nitrogen and phosphorus fertilization of Sparganium eurycarpum Engelm. and Typha glauca Godr. stands. II: Emergent plant decomposition. Aquatic Botany, 22: 363-375.
    Nelson S. M., 2000. Leaf pack breakdown and macroinvertebrate colonization: bioassessment tools for a high-altitude regulated system?, Environmental Pollution, 110(2): 321-329.
    Newbold J. D., Elwood J. W., Schulze M. S., Stark R. W. & Barmeier J. C, 1983. Continuous ammonium enrichment of a woodland stream: Uptake kinetics, leaf decomposition, and nitrification. Freshwater Biology, 13: 193-204.
    Newman J. R. & Raven J. A., 1999. CO2 is the main inorganic C species entering photosynthetically active leaf protoplasts of the freshwater macrophyte Ranunculus penicillatus ssp. Pseudofluitans. Plant, Cell and Environment, 22: 1019-1026.
    Newman S. & Reddy K. R., 1992. Sediment resuspension effects on alkaline phosphates activity. Hydrobiologia, 245: 75-86.
    Newman S., Kumpf, H., Laing J. A., Kennedy W. C, 2001. Decomposition responses to phosphorus enrichment in an Everglades (USA) slough. Biogeochemistry, 54: 229-250.
    Nichols D. S. & Keeney D. R., 1976. Nitrogen nutrition of Myriophyllum spicatum uptake and translocation of 15N by shoots and roots, Freshwater Biolology, 6: 144-154.
    Noges P., Tuvikene L., Feldmann T., Tonno I., Kunnap H, Luup H., Salujoe J. & Noges T., 2003. The role of charophytes in increasing water transparency: a case study of two shallow lakes in Estonia. Hydrobiologia, 506-509 (1-3): 567- 573.
    Novics V. I., Osztoics A. S. & Honti M. R., 2004. Dynamics and ecological significance of daily internal load of phosphorus in shallow Lake Balaton, Hungary. Freshwater Biology, 49: 232-252.
    Nuhfer E. B. & Anderson R. Y., 1984. Changes in sediment composition during seasonal resuspension in small shallow dimictic inland lakes. Sedimentary Geology, 41(2-4): 131-158.
    Olson J. S., 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44: 322-332.
    
    Opuszyski K., 1972. Use of phytophagous fish to control aquatic plants. Aquaculture, 1: 61-74.
    Osborne J.A. & Sassic N.M., 1981. The size of grass carp as a factor in the control of hydrilla. Aquatic Botany, 11: 129-136.
    Pagano A. M. & Titus J. E., 2004. Submersed macrophyte growth at low pH: contrasting responses of three species to dissolvedinorganic carbon enrichment and sediment type. Aquatic Botany, 79: 65-74.
    Pedersen M. F., St(?)hr P. A., Wernberg T. and Thomsen M. S., 2005. Biomass dynamics of exotic Sargassum muticum and native Halidrys siliquosa in Limfjorden, Denmark—Implications of species replacements on turnover rates. Aquatic Botany, 83 (1): 31-47.
    Pereira A., Tassin B. & Jorgensen, S. E., 1994. A model for decomposition of the down vegetation in an Amazonian Reservoir. Ecol. Modelling, 75/76: 447—458.
    Perez-Llorens J. L., de Visscher P., Nienhuis P. H. & Niell F. X., 1993. Light-dependent uptake, translocation and foliar release of phosphorus by the intertidal seagrass Zostera noltii Hornem. Journal of Experimental Marine Biology and Ecology, 166 (2): 165-174.
    Perrow M. R., Meijer M. L., Dawidowicz P . & Coops H., 1997. Biomanipulation in shallow lake : state of the art. Hydrobiologia, 342/ 343: 355 - 365.
    Peterson B. J., Deegan L., Helfrich J., Hobbie J. E., Hullar M., Moller B., Ford T. E., Hershey A., Hiltner A., Kipphut G., Lock M. A., Fiebig D., McKinley V., Miller M. C, Vestal J. R., Ventullo R. & Volk G., 1993. Biological Responses of a Tundra River to fertilization. Ecology, 74: 653-672.
    Peterson R. C. & Cummins K. W., 1974. Leaf processing in a woodland stream. Freshwater Biology, 4: 345-368.
    Petticrew E.L. and Kalff J., 1992. Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. Aquat. Sci., 49: 2483-2489.
    Pieczynska, E., 1993. Detritus and nutrient dynamics in the shore zone of lakes: a review. Hydrobiologia, 251: 49-58.
    Pipalova I., 2002. Initial impact of low stocking density of grass carp on aquatic macrophytes. Aquatic Botany, 73: 9-18
    Pitois S., Jackson M. H., Wood B. J. B., 2000. Problems associated with the presence of cyanobacteria in recreational and drinking waters. Internat. J. Environ. Health Res., 10: 203-218.
    Platt H. M., 1979. Sedmentation and the distributation of organic matter in a sub-Antarctic marine bay. Estuarine and Coastal Mar. Sci., 9: 51-62.
    Pluntke T. & Kozerski H.-R, 2003. Particle trapping on leaves and on the bottom in simulated submerged plant stands. Hydrobiologia, 506-509 (1-3): 575 - 581.
    Pomogyi P., Best E. P. H., Dassen J. H. A. & Boon J. J., 1984. On the relation between age, plant composition and nutrient release from living and killed ceratophyllum plants. Aquatic Botany, 19: 243-250.
    Portielje R. & R. Roijackers M. M., 1995. Primary succession of aquatic macrophytes in experimental ditches in relation to nutrient input. Aquatic Botany, 50 (2): 127-140.
    Puriveth, P., 1980. Decomposition of emergent macrophytes in a Wisconsin marsh. Hydrobiologia 72,231-242.
    Qiu Dongru, Wu Zhenbin, Liu Baoyuan, Deng Jiaqi, Fu Guiping & He Feng, 2001. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecological Engineering, 18: 147-156.
    Raine R. C. T. & Patching J. W., 1980. Aspects of carbon and nitrogen cycling in a shallow marine environment. Journal of Experimental Marine Biology and Ecology, 47(2): 127-139.
    Rattraya M. R., Howard-Williams C. & Brown J. M. A., 1991. Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes. Aquatic Botany, 40 (3): 225-237.
    Reddy K. R. & DeBusk T. A., 1987. State-of-the-art utilization of aquatic plant in water pollution control. Wat. Sci. Tech , 19 (10): 61 - 79.
    Robertson A. I., 1988. Decomposition of mangrove leaf litter in tropical Australia.Journal of Experimental Marine Biology and Ecology, 116 (3): 235-247.
    Robinson, C. T. & Gessner M. O., 2000. Nutrient addition accelerates leaf breakdown in an alpine spring brook. Oecologia, 122: 258-263.
    Rodriguez J., 2006. Structural continuity and multiple alternative stable States in Middle Pleistocene European mammalian communities. Palaeogeography, Palaeoclimatology, Palaeoecology, (online).
    Rounick J. S. & Winterbourn M. J., 1983. Leaf proceeding in two contrasting beech forest stream: effects of physical and biotic factors on litter breakdown. Arch. Hydrobiol., 96: 448-474.
    Sand-Jensen K. & Sondergaard M., 1981. Phytoplankton and epiphyte development andand their shading effect on submerged macrophytes in lakes of different nutrient status. Int. Revue, ges. Hydrobiologia, 66: 529-552.
    Sand-Jensen K., Jeppesen E., Nielsen K., Van der Bijl L., Hjermind L., Nielsen L.W. & Iversen T.M., 1989. Growth of macrophytes and ecosystem consequences in a lowland Danish stream. Freshwater Biology, 22: 15-32.
    Santha C. R., Grant W E., William H. N. & Strawn R. K., 1991. Biological control of aquatic vegetation using grass carp: simulation of alternative strategies. Ecological Modelling, 59: 229-245.
    Schallenberg M. & Burns C. W, 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshwater Biology, 49: 143-159.
    
    Scheffer M, Carpenter S. R. & Foley J. A., 2001. Catastrophic shifts in ecosystems . Nature, 413 (11): 591 -596.
    Scheffer M. & Carpenter S. R., 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18 (12): 648-656.
    Scheffer M. & van Nes E H., 2004. Mechanisms for marine regime shifts : can we use lakes as microcosms for oceans ? . Progress in Oceanography, 60: 303 -319.
    Scheffer M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia, 200/201: 475-487.
    
    Scheffer M., 1998. Ecology of Shallow Lakes. Chapman & Hall, New York. pp. 20-234.
    Scheffer M., Hosper H.S., Meijer M.L., Moss B. & Jeppesen E., 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution, 8: 275-279.
    Scheffer M., Van den BergM., Breukelaar A., Breukers C, Coops H., Doef R. & Meijer M. L., 1994. Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany, 49: 193-196.
    Scheffer, M. & Jeppesen E., 1998. Alternative stable states. In Jeppesen, E., M. S0ndergaard & Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, 131:397-406.
    Scheffer, R. A., van Logtestijn R. S. P. & Verhoeven J. T. A., 2001. Decomposition of Carex and Sphagnum litter in two mesotrophic fen foffering in dominant plant species.OIKOS, 92: 44-54.
    Schulz M., Kozerski H.-P., Pluntke T. & Rinke K., 2003.The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Research, 37: 569-578.
    Shapiro J., 1990. Biomanipulation: The Next Phase Making it Stable. Hydrobiologia, 200/ 201: 13-27.
    Shurin J. B., Amarasekare P., Chase J. M., Holt R. D., Hoopes M F. & Leibold M A., 2004. Alternative stable states and regional community structure. Journal of Theoretical Biology, 227 (3): 359-368.
    Smart R. M. & Barko J. W, 1985. Laboratory culture of submersed freshwater macrophytes on natural sediments, Aquatic Botany, 21: 251-263.
    Smith, C. S. & Adams M. S., 1986. Phosphorus transfer from sediment by Myriophyllum spicatum. Limnol. Oceanogr., 31: 1312-1321.
    Somlyody L. & Koncsos L., 1991. Influence of sediment resuspension on the light conditions and algal growth in Lake Balaton. Ecological Modelling, 57 (3-4): 173-192.
    Sondergaard M. & Moss B., Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. In: Jeppesen E, editor. The structuring role of submerged macrophytes in lakes. 1998. New York: Springer-Verlag. P:115-132.
    Sondergaard M. & Sand-Jensen K., 1979. Distribution and quantitative development of aquatic macrophytes in relation to sediment characteristics in oligotrophic Lake Kalgaard, Denmark. Freshwater Biology, 9: 1-11.
    Sondergaard M., Bruun L., Lauridsen T., Jeppesen E. & Madsen T.V., 1996. The impact of grazing waterfowl on submerged macrophytes: in situ experiments in a shallow eutrophic lake. Aquatic Botany, 53: 73-84.
    Sondergaard M., Kristensen P. & Jeppesen E., 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arres(?), Denmark. Hydrobiologia, 228: 91-99.
    Strand J. A., 1999. The development of submerged macrophytes in lake: Ringsjoafter biomanipulation. Hydrobiologia, 404: 113-121.
    Stratful, I., Brett, S., Scrimshaw, M. B. & Lester, J.N., 1999. Biological phosphorus removal, its role in phosphorus recycling. Environ. Technol., 20: 681-695.
    Tam, N. F. Y., Vrijmoed L. L. P. & Wong,Y. S., 1990. Nutrient dynamic associated with leaf decomposition in a small tropical mangrove community in Hong Kong. Bulletin of Marine Science, 47: 68-78.
    Tartari G. & Biasci G, 1997. Trophic Status and Lake Sedimentation Fluxes Water, Air, & Soil Pollution, 99 (1-4): 523 - 531.
    Teeter A. M., Johnson B. H., Berger C, Stelling G, Scheffner N. W., Garcia M. H. & Parchure T. M., 2001.Hydrodynamic and sediment transport modeling with emphasis on shallow-water, vegetated areas (lakes, reservoirs, estuaries and lagoons). Hydrobiologia, 444 (1-3): 1-23.
    Twilley R. R., G. Ejdung, P. Romare & Kemp W. M., 1986b. A comparative study of decomposition, oxygen consumption, and nutrient release for selected aquatic plants occurring in an estuarine environment. OIKOS, 47: 190-198.
    
    Vahatalo A. V. & S(?)ndergaard M., 2002. Carbon transfer from detrital leaves of eelgrass (Zostera marina) to bacteria, Aquatic Botany, 73(3): 265-273.
    Van den Berg M. S., Coops H., Meijer M. L., Scheffer M. & Simons I, 1998. Clear Water Associated with a Dense Chara Vegetation in the Shallow and Turbid Lake Veluwemeer, The Netherlands. In Ecological studies: The structuring role of submerged macrophytes in lakes. Ed. Jeppesen E, Sondergaard Ma, Sondergaard Mo & Christoffersen K., Springer-Verlag, New York. p. 339 - 352.
    Van der Does J , Verstraelen P., Boers P., Van Roestel J., Roijackers R. & Moser G, 1992. Lake restoration with and without dredging of phosphorus enriched upper sediment layers. Hydrobiologia, 233 : 197-210.
    van der Molen D. T, R. Portielje, W. T. de Nobel, Boers P. C. M., 1998. Nitrogen in Dutch freshwater lakes: trends and targets Environmental Pollution, 102: 553-557.
    van der Valk, A. G., Rhymer J. M. & Murkin H. R., 1991. Flooding and the decomposition of litter of lour emergent plant species in a prairie wetland. Wetlands, 11: 1-16.
    van Dijk, G M. & van Vierssen W, 1991. Survival of a Potamogeton pectinatus L. population under various light conditions in a shallow eutrophic lake (Lake Veluwe) in The Netherlands. Aquatic Botany, 43: 17-41.
    van Donk E. & van de Bund W. J., 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany, 72(3-4): 261-274.
    van Donk, E. & Gulati R. D., 1995. Transition of a lake to turbid state six years after biomanipulation : mechanisms and pathways. Wat. Sci. Techn., 32(4): 197-206.
    van Donk, E., R. D. Gulati, Iedema A. & Meulemans J. T., 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia, 251: 19-26.
    Van Duin E. H. S., Blom G., Los F. J., Maffione R., Zimmerman R., Cerco C. F., Dortch M. & Best E. P. H., 2001. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiologia, 444 (1-3): 25-42.
    van Kooten T, de Roos A. M. and Persson L., 2005. Bistability and an Allee effect as emergent consequences of stage-specific predation. Journal of Theoretical Biology, 237 (1): 67-74
    van Nes E. H., Scheffer M., van den Berg M. S. & Coops H., 2002. Dominance of charophytes in eutrophic shallow lakes—when should we expect it to be an alternative stable state?.Aquatic Botany, 72 (3-4): 275-296.
    Vargo S. M., Neely R. K. & Kirkwood S. M., 1998. Emergent plant decomposition and sedimentation: response to sediments varying in texture, phosphorus content and frequency of deposition, Environmental and Experimental Botany, 40 (1): 43-58.
    Verhoeven, J. T. A., 1980a. The ecology of Ruppia-dominated communities in Western Europe. II . Synecological classification. Structure and dynamics of the macroflora and macrofaunacommunities. Aquatic Botany, 8: 1-85.
    Verhoeven, J. T. A., 1980b. The ecology of Ruppia-dominated communities in Western Europe. III. Aspects of production, consumption and decomposition. Aquatic Botany, 8: 209-253.
    Vermaat J. E, Santamaria L & Roos P. J., 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archiv fur Hydrobiologie, 148: 549-62.
    Villar C. A., de Cabo L., Vaithiyanathan P. & Bonetto C, 2001. Litter decomposition of emergent macrophytes in a floodplain marsh of the Lower Parana River. Aquatic Botany, 70(2): 105-116.
    Wang W. J., Baldock J. A., Dalai R. C. & Moody P.W., 2004. Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis. Soil Biology & Biochemistry, 36: 2045-2058.
    Ward L. G, Kemp W. M. & Boynton W. R., 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar. Geol., 59: 85-103.
    Webster J. R. & Benfield E. F., 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics, 17: 567-594.
    Weisner S., Eriksson,G., Graneli W. & Leonardson L., 1994. Influence of macrophytes on nitrate removal in wetlands.Ambio., 23: 363-366.
    Welsch M. & Yavitt J. B., 2003. Early stages of decay oiLythrum salicaria L. and Typha latifolia L. in a standing-dead position. Aquatic Botany, 75 (1): 45-57.
    White, D. S. & Howes B. L., 1994. Nitrogen incorporation into decomposing litter of Spartina alterniflora. Limnology and Oceanography, 39: 133-140.
    
    Wigand C, Stevenson J. C. and Cornwell J. C, 1997. Effects of different submersed macrophytes on sediment biogeochemistry. Aquatic Botany, 56 (3-4): 233-244.
    Wigand C, Wehr J., Limburg K., Gorham B., Longergan S. & Findlay S., 2000. Effect of Vallisneria americana (L.) on community structure and ecosystem function in lake mesocosms. Hydrobiologia, 418: 137-146.
    Wigand, C, Stevenson J. C. & Cornwell J. C, 1997. Effects of different submersed macrophytes on sediment biogeochemistry. Aquatic Botany, 56: 233-244.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.