苹果园土壤微生物类群与栽培环境关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在果园生态系统中,土壤微生物的作用是不可忽视的。现代果园中产量变化,栽培技术措施改变,影响土壤微生物类群,进而影响了土壤生态健康。研究苹果园土壤微生物类群及其与栽培环境的关系,以阐明影响果园土壤生态的因素及变化规律为目标,以改善土壤微生物生态状况为核心,以构建果园土壤微生物的良好微生物生态及技术体系为目的,良好的果树栽培环境和果园生态是苹果生产及产业持续发展的重要一环。本研究以“富士/平邑甜茶”植株、平邑甜茶(Malus hupehensis Rehd.)实生苗为试材,采用BIOLOG和FAME等方法,试验于2003-2007年在山东农业大学园艺学院根系实验室进行。采用野外调查与土壤栽培试验,研究了不同产量和不同土质苹果园中生物生态状况,有机肥和氮素化肥及其组合效应对平邑甜茶土壤微生物、土壤酶活性的动态影响,氮肥、有机肥处理条件下土壤微生物类群及功能多样性等生物学指标,取得了以下结果:
     对9个有代表性的不同产量的苹果园土壤养分、微生物类群及土壤酶活性的研究,获得不同产量水平苹果园的土壤生物生态状况。结果表明,各苹果园的土壤养分、微生物数量、多样性和酶活性均表现出较大差异。随土壤碱解氮、速效磷、速效钾、总碳含量增加,产量水平呈增高趋势。高产园土壤微生物数量高,多数土壤酶活性强,微生物多样性好。土壤微生物中细菌数量、微生物多样性、蛋白酶、磷酸酶活性可作为评价果园土壤肥力的生物指标。果树产量与土壤微生物类群、数量具有显著正相关,果树产量与速效磷、速效钾、碱解氮和全氮含量显著正相关。果树产量与蛋白酶和磷酸酶显著正相关。
     不同根窖条件下,不同质地土壤(河沙、壤土、粘土)对“富士/平邑甜茶”植株的土壤微生物数量、酶活性、微生物多样性及果树生长的研究表明,三种土壤中细菌、放线菌数量均为壤土>粘土>河沙;土壤酶活性的变化为壤土>粘土>河沙;表层酶活性显著高于深层酶活性;PLFA分析的微生物多样性变化为真菌、革兰氏阳性菌的特征脂肪酸在3种不同土质中是壤土>粘土>河沙,但革兰氏阴性菌和AMF菌的特征脂肪酸是粘土>壤土>河沙;BIOLOG测定的碳源利用AWCD值在3种土质中变化壤土>粘土>河沙。壤土与粘土各项指标差别不大。土壤生物指标的变化与果树生长变化相一致。
     氮肥、有机肥处理影响根际微生物类群的变化。3%有机肥和200 mg kg-1氮肥处理根际微生物类群数量发生变化,明显增加除根际固氮菌外其他微生物类群的数量,单施500 mg kg-1氮肥会对根际微生物的数量产生抑制作用,有机肥可以缓解由高浓度氮肥引起的这种抑制作用。6%有机肥对真菌、放线菌、自生固氮菌和硝化细菌等的影响与3%有机肥处理无显著差异。施用3%的有机肥和200 mg kg-1氮肥就可达到较好的增加根际微生物的效果。有机肥促进了有益微生物数量。钾细菌、自生固氮菌与氮肥浓度成反比,有机磷细菌数量>无机磷细菌,磷细菌在200mgkg-1处理时数量增加,芽孢杆菌对氮肥的耐受力较高。
     根际细菌、真菌、氨化细菌和硝化细菌数量与生长根和吸收根生物量之间显著正相关,固氮菌则仅与吸收根生物量显著负相关,细菌和纤维素分解菌数量与根系呼吸显著正相关。
     施肥对土壤酶活性的动态影响,氮肥、有机肥处理显著增加参与C、N、P循环及脱氢酶的酶活性。高浓度氮肥对土壤酶的酶活性产生抑制。C循环中的纤维素酶酶活性变化程度大于蔗糖酶,N循环中脲酶对施肥反应灵敏,P循环的酶活性酸性磷酸酶>碱性磷酸酶>中性磷酸酶。土壤微生物类群与土壤酶活性有一定的相关性。
     BIOLOG法研究微生物多样性变化,有机肥处理AWCD增加,200 mg·kg-1氮肥处理AWCD值有所升高,高浓度氮肥﹙500,700 mg·kg-1﹚的处理AWCD值降低。施肥处理的土壤微生物群落功能多样性(Shannon指数和Mc Intosh指数)与相应的对照比较,高浓度氮肥处理都显著降低。施肥处理在碳源的利用上存在着较大的差异,显示微生物群落结构发生变化。
     FAMEs变化指示施肥处理根际微生物类群多样性发生改变,有机肥、氮肥处理微生物类群发生显著变化。施加有机肥处理,随有机肥浓度增加,FAMEs值相应增加。施加氮肥200mg·kg-1可增加细菌和腐生真菌、AM、放线菌的FAMEs含量,高浓度氮肥处理减少其含量。有机肥与氮肥组合施用,真菌、AMF菌、革兰氏阳性菌特征脂肪酸及FAMEs总量变化为氮肥浓度200mgkg-1>500mgkg-1>700mgkg-1。
In the orchard ecosystem, effects of the soil microbial community are not neglectable. The management practices and yield in modern apple orchards affect the populations of soil microorganisms and soil environment. Since good plant growth environment in orchard ecosystem is one of the most important factors in apple production and the development of fruit industry, this study was to clarify the factors that influenced the orchard ecosystem, including the soil microbial community and the fruit tree management in the root system laboratory in College of Horticulture Science and Engineering, Shandong Agricultural University through investigating on growth of field and pot plants,“Fuji/ Malus hupehensis Rehd”apple trees and Malus hupehensis Rehd. seedlings, the ecosystem of the plant biology in different orchards were analysised. The influences of the organic fertilizer and the nitrogen and their combination on the Malus hupehensis Rehd seedlings , soil microorganism communities and the activity of the soil enzymes were measured. The results were as the followings:
     The relationships among soil nutrient content, rhizosphere microorganisms and activities of soil enzymes, which were regarded as a parameter to evaluate soil nutrient condition were analyzed to obtain the biological conditions of rhizosphere microorganism in 9 different apple orchards with varied yield. The results indicated that the above parameters were correlated with apple yield . The contents of alkali-N, olsen-P, and total-C increased with orchard yield increased. In high-yield-orchard, the populations of rhizosphere microorganisms and the activities of soil enzymes were high. There was a significant positive correlation between apple yield and species and the amount of the soil microorganisms, and that of the apple yield and olsen-P, avail-K, alkali-N and total-C, and the protease and phosphatase as well.
     This paper studied the changes of microorganisms and enzyme activities in“Fuji /Malus hupehensis Rehd”apple trees grown in pot media, and analyzed the relationships between the parameters. The results showed that the microorganisms community, enzymes’activities and diameters of apple trees were the lowest in the sands, while that of the highest in the loams and middle in clay. The change of the soil enzyme activity was greatest in the loams, while the least in the sands. The activities of the soil enzyme in the surface layer were higher significantly than that of in the deep layer. The changes in the composition of microorganisms communities were analyzed by PLFA , which showed that the characteristic fatty acid in fungi and G+ in the three different soil was the most in loams, and that was the least in sands. However, the characteristic fatty acid in G- and arbuscular mycorrhizal fungal﹙AM﹚ bacteria were the most in the clay, and those were the least in the sands. The AWCD value of the utilization of the carbon source determined by BIOLOG in the three different soils was the highest in the loam, and lowest in the sands, however, no significant difference was found between the loam and clay soils. It was indicated that soil biology change was consistent with the apple tree growth.
     Effects of nitrogen (N), organic fertilizer and their combination on the rhizosphere microorganisms and root growth of M. hupenensis Rehd. seedlings (2years old ) were investigated. The results showed that fertilizer application increased the numbers of rhizosphere microorganisms with the exception of nitrogen-fixing bacteria. Fertilizer N at the concentration of 500 mg kg-1 decreased the number of bacteria, actinomycetes and cellulolytic microbe, which reversed by applying the organic fertilizer at the concentration of both 3% and 6%. To alleviate the unfavorable effect of higher concentration N (500 mg kg-1), combination of 3% of organ fertilizer and 200 mg kg-1 N was the optimal choice. Numbers of bacteria, fungi, ammonifier bacteria and nitrobacteria were positively correlated with the biomass of growing roots and absorbing roots, while that of nitrogen-fixing bacteria was negatively correlated with absorbing root biomass. Correlation between number of cellulolytic microbe and root biomass was not detected. Only numbers of bacteria and cellulolytic microbe were positively correlated with root respiration rate of the M. hupenensis Rehd.seedlings. The amount of phosphor bacterium increased when N application at 200mg kg-1. And bacillus circulans had a high tolerance ability to N application.
     There was significant positive correlation between the amount of rhizosphere bacteria, fungis, aminate bacteria and dry weight of absorbing root. There was significant negative correlation between azotobacters and dry weight of absorbing root. And there was also significant positive correlation between the amount of bacteria and fibrin disassembling bacteria.
     Fertilizer application had dynamic influence on the activities of the soil enzyme. The application of nitrogen (N) and organic fertilizer increased significantly the enzyme activities in C, N, P cycling. The nitrogen at high concentration inhibited the activities of the soil enzymes. The activity of fibrin enzyme in C cycle changed greatly than that of cane sugar enzyme. Urease in N cycle was sensitive to fertilization. Enzyme activities in P cycling was in the following order: acid phosphatase>alkalescence phosphatase>neutral phosphatase. The species of soil microorganism was correlated with the activities of soil enzyme.
     Using BIOLOG method, the changes of microorganism diversity were studied. The application of organic fertilizer increased AWCD at the concentration of 200 mg·kg-1, while decreased at 500 and 700 mg·kg-1. Compared with CK, the diversities soil microorganism decreased significantly by applicating of nitrogen at high concentration , among which T1 is the highest, and T16 is the lowest. The effect of different fertilizers on carbon utilization was remarkable, indicating the changes of the microorganism community.
     Application of fertilizer changed FAMEs of rhizosphere microorganism community. Organic fertilizer and the nitrogen increased FAMEs. Application of the nitrogen at 200mg·kg-1 increased the content of FAMEs in bacteria, fungi, AMF and actinomycete, while decreased by applying nitrogen at high concentration. With the combination of the organic fertilizer and the nitrogen, the contents of biomarker fungi, AMF, G+ , FAMEs at 200 mg kg-1 of N were higher than those at 500 and 700 mg kg-1 of N.
引文
包雪梅, 张福锁 等. 陕西省有机肥料施用状况分析评价. 应用生态学报态学报. 2003, 14(10):1669~1672
    卜玉山, 苗果园, 周乃健 等. 地膜和秸秆覆盖土壤肥力效应分析与比较. 中国农业科学. 2006, 39(5):1069-1075
    蔡昆争, 骆世明, 方 祥. 水稻覆盖膜对根叶性状, 土壤养分和土壤微生物活性的影响. 生态学报, 2006, 26: 1903-1911
    蔡晓布, 钱 成, 张永青 等. 秸秆还田对西藏中部退化土壤环境的影响. 植物营养与肥料学报. 2003, 9(4):411-415
    蔡晓布. 西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响. 应用生态学报, 2004. 15(3):463-468
    陈灏. 不经培养的农田土壤微生物种群构成及系统分类的初步研究. 微生物学报, 2002. 42(4):478-483
    陈华癸, 李阜棣, 陈文新, 曹燕珍编著:土壤微生物学. 上海:上海科学出版社, 1981.
    陈利军, 武志杰. 与氮转化有关的土壤酶活性对抑制剂使用的响应[J]. 应用生态学报, 2002. 13(9):1099-1101
    陈文新. 土壤和环境微生物学. 北京:北京农业大学出版社, 1990.
    陈锡时, 郭树凡, 汪景宽, 张键. 地膜覆盖栽培对土壤微生物种群和生物活性的影响. 应用生态学报. 1998, 9(4)435-439
    杜连凤, 张维理, 李志宏 等, 张认连. 长江三角洲地区不同种植类型对土壤质量的影响. 农业环境科学学报. 2006, 25(1):95-99
    杜天庆, 苗果园. 豆科牧草根际土壤脲酶活性的研究. 中国生态农业学报. 2007, 15(1):25-27
    樊军, 郝明德. 长期轮作与施肥对土壤主要微生物类群的影响. 水土保持研究. 2003. 10(1):88-89
    高 明, 周保同, 魏朝富, 谢德体, 张 磊. 不同耕作方式对稻田土壤动物, 微生物及酶活性的影响研究. 应用生态学报, 2004, 15: 1177-1181.
    高云超, 朱文珊, 陈文新. 2001. 秸秆覆盖免耕土壤真菌群落结构与生态特征研究. 生态学报, 21(10):1704-1710
    关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. 274-332.
    郭天财, 宋晓 等. 2006. 氮素营养水平对小麦根际微生物及土壤酶活性的影响. 水土保持学报. 20(3):129~131
    韩芳 等. 皇甫川流域不同土地利用方式下的土壤微生物多样性. 内蒙古大学学报(自然科学版), 2003, 34(3):298-303
    和文祥, 来航线, 武永军, 朱铭莪. 2001. 培肥对土壤酶活性影响的研究浙江大学学报(农业与生命科学版), 27. (3):265~268
    胡锋. 两种基因型小麦根际土壤微生物动态及根际效应. 土壤通报, 1998, 29(3):133-135.
    胡江春. 大豆连作障碍研究Ⅲ. 海洋放线菌MB-97促进连作大豆增产机理. 应用生态学报. 2002, , 13(9):1095-1098
    胡 江 春 . 植 物 根 际 促 生 菌 (PGPR) 的 研 究 与 应 用 前 景 . 应 用 生 态 学 报 . 2004. 15(10):1963-1966
    胡小加. 根际微生物与植物营养[J]. 中国油料作物学报, 1999, 9:77-79.
    黄昌勇主编:土壤学. 北京:中国农业出版社, 2000.
    贾志红, 孙敏, 扬珍平, 苗果园. 施肥对作物根际微生物的影响. 作物学报. 2004. 30(5):491-495
    孔维栋, 刘可星, 廖宗文, 朱永官, 王碧玲. 不同腐熟程度有机物料对土壤微生物群落功能多样性的影响. 生态字报, 2005. 25﹙9﹚:2291-2296
    李斌, 谢关林, 陈若霞, 皇甫伟国, 刘波. 耕作与栽培方式对瓜类土壤细菌数量及枯萎病拮抗细菌分布的影响. 应用生态学报. 2006. 17(10): 1937-1940
    李春俭, 张福锁. 微生物产生的生长调节物质与植物的生长[J]. 世界农业, 1995, 8:42-43.
    李清波. 玉米和花生根际生物的原位观察初探. 微生物学通报. 2004, 31(1):5-10
    李双霖. 应用聚类分析检验土壤酶活性作为土壤肥力的可行性[J]. 土壤通报, 1990, 21(6):272-2741
    李秀英, 赵秉强, 李絮花 等. 不同施肥制度对土壤微生物的影响及其与土壤肥力的关系. 中国农业科学. 2005, 38(8):1591-1599
    李酉开. 土壤农业化学常规分析[M]. 北京:科学出版社, 1983.
    刘侯俊, 巨晓棠 等. 陕西省主要果树的施肥现状及存在问题. 干旱地区农业研究. 2002. 20(1): 38~44
    刘卫群. 黄褐土, 潮土中不同氮素形态配比对烤烟根际土壤微生物数量的影响. 土壤通报. 2004, 35(1):43-47
    龙健, 李娟, 江新荣, 黄昌勇. 贵州茂兰喀斯特森林土壤微生物活性的研究. 土壤学报. 2004, 41(4):597-602
    鲁如坤. 土壤农业化学分析方法(M). 北京:中国农业科技出版社, 2000
    马云华, 王秀峰, 魏 珉, 亓延凤, 李天来. 黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响. 应用生态学报, 2005, 16:2149-2153.
    米国全, 袁丽萍, 龚元石 等. 不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究. 农业工程学报. 2005, 21(7):124-127
    南京农业大学. 土壤农化分析[M] . 北京: 农业出版社, 1996.
    庞欣, 张福锁, 王敬国, 等. 不同供氮水平对根际微生物量氮及微生物活度的影响[J]. 植物营养与肥料学, 2000, 6(4):476-4801
    彭福田, 姜远茂. 不同产量水平苹果园氮磷钾营养特点研究. 中国农业科学, 2006, 39:361-367.
    邱莉萍, 刘军, 王益权, 孙慧敏, 和文祥. 2004. 土壤酶活性与土壤肥力的关系研究. 植物营养与肥料学报, 10. (3):277-280
    任天志. 持续农业中的土壤生物指标研究. 中国农业科学. 2000, 33(1):68-75.
    邵玉琴, 赵吉, 杨吉力. 恢复草地和退化草地土壤微生物类群数量的分布特征. 中国沙漠. 2004, 24(2):223-226
    沈法富, 韩秀兰, 范术丽. 转Bt基因抗虫棉根际微生物区系和细菌生理群多样性的变化. 生态学报. 2004, 24(3):432-437
    沈慧, 姜凤岐, 杜晓君, 等. 水土保持林土壤肥力及其评价指标[J]. 水土保持学报, 2000, 14(2):60-65
    沈萍主编. 微生物学[M]. 北京:高 等教育出版社, 2001
    束怀瑞, 王丽琴. 我国苹果根系研究的成就与应用. 中国科学技术前沿. 2003
    束怀瑞. 我国果树业生产现状和待研究的问题. 中国工程科学. 2003, 5(2):45-48
    宋秋华, 李凤民, 王俊 等. 覆膜对春小麦农田微生物数量和土壤养分的影响. 生态学报. 2002, 22(12):2125-2132
    
    孙秀山 等. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用. 作物学报, 2001, 27(5):617-621
    陶光灿. 芽胞杆菌属(Bacillussp)10株细菌混合制剂对4种作物出苗及苗期生长的影响. 应用与环境生物学报. 2003, 9(6):598-602.
    王超, 吴凡, 刘训理, 刘冰. 不同肥力条件下烟草根际微生物的初步研究. 中国烟草科学. 2005(2):12-14
    王丽宏, 曾昭海, 杨光立 等. 前茬冬季覆盖作物对稻田土壤的生物特征影响. 水土保持学报. 2007. 21(1):164-167
    王茹华, 周宝利 等. 嫁接对茄子根际微生物种群数量的影响. 园艺学报. 2005, 32(1):124-126
    王书锦, 胡江春. 新世纪中国土壤微生物学的展望[J]. 微生物学杂志, 2002, 22(1):36-391
    王曙光, 侯彦林. 2004. 尿素肥斑扩散对土壤微生物群落结构的影响. 生态学报. 24(10):2269-2274
    王鑫, 徐明月, 曹兵, 等. 包膜控释尿素对保护地菜地土壤肥力及酶活性的影响[J]. 水土保持学报, 2005, 19(5):77-801
    姚槐应. 不同利用年限茶园土壤的化学及微生物生态特征研究. 浙江农业科学. 2002, 3:129-131
    姚槐应. 不同土地利用方式对红壤微生物多样性的影响. 水土保持学报, 2003, 17(2):51-54
    姚占芳, 吴云汉. 微生物学实验技术[M]. 北京:气象出版社, 19981128-1311
    俞慎. 不同树龄茶树根层土壤化学特性及其对微生物区系和数量的影响. 土壤学报, 2003, 40(3):433-439
    袁玲, 杨邦俊, 郑兰君, 等. 长期施肥对土壤酶活性和氮磷养分的影响[J]. 植物营养与肥料学报, 1997, 3(4):301-3071
    张 辉, 李维炯, 倪永珍. 生物有机无机复合肥对土壤性质的影响. 土壤通报, 2006, 37: 273-277
    张晓海 等. 烤烟施用菜籽饼后根际微生物数量变化研究. 云南农业大学学报, 2003, 19(1):95-99
    张彦东, 孙志虎, 沈有信. 施肥对金沙江干热河谷退化草地土壤微生物的影响. 水土保持学报. 2005, 19(2):88-91
    章家恩, 刘文高. 微生物资源的开发利用与农业可持续发展[J]. 土壤与环境, 2001, 10:154-157.
    赵斌. 何绍江. 微生物学实验. 北京:科学出版社, 2002
    赵世杰, 刘华山, 董新纯. 植物生理学实验指导. 北京:中国农业科学技术出版社, 1998
    赵哲权, 王明久, 刑建民, 等. 施用有机物及无机物对玉米根际土壤酶活性的影响 中国科学院林业土壤研究所. 全国土壤酶学研究文集[C]. 沈阳:辽宁科学出版社, 1988:1104-1101
    中国科学院南京土壤研究所. 土壤微生物研究法[M]. 北京:科学出版社. 1985
    周礼恺, 等. 土壤酶活性的总体在评价土壤肥力水平中作用[J]. 土壤学报, 1983, 20(4):413-4171
    Aber, J. D. 1992. Nitronen cyclinn and nitronen saturation in temperate forest ecosystems. Trends in Ecology and Evolution7:220-223
    Aida E. Jiménez Esquilín, Mary E. Stromberger, William J. Massman, John M. Frank and Wayne D. Shepperd. 2007. Microbial community structure and activity in a Colorado Rocky Mountain forest soil scarred by slash pile burning. Soil Biology and Biochemistry, 39:1111-1120
    Ajwa, C. J. Dell and C. W. Rice. 1999. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biology and Biochemistry, 31(5):769-777
    Amann RI, Ludwig W, Scheidler KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. FEMS Microbiological Review. 59:143-169.
    Anderson TH. Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems and Environment, 2003, 98: 285-293
    Arnebrandt, K. , B th, E. and S derstr, M. B. 1990. Changes in microfungal community structure after fertilization of Scots pine forest soil with ammonium nitrate orurea. BiologyandFertilityofSoils. 22:309-312.
    Balota E L, Kanashiro M, Filho A C, Andrade D S, Dick R P. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Brazilian Journal of Microbiology, 2004, 35:300-306.
    Bolton HJr, Elliott LF, Papendick RI, Bezdicek DF. 1985. Soil microbial biomass and selected soil enzyme activities effect of fertilization and cropping practices. Soil Biol Biochem, 17:297-302.
    Bossio, D. A. , Scow, K. M. , Gunapala, N. , Graham, K. J. , 1998. Determinants of soil microbial communities: effects of agricultural management, season and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36:1-12
    Bradley, K L, Drijber R. , Knops J. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of Arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 2006, 38:1583-1595.
    Bram Govaerts, Monica Mezzalama, Yusuke Unno, Ken D. Sayre, Marco Luna-Guido, Katrien Vanherck, Luc Dendooven and Jozef Deckers. Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Applied Soil Ecology, In Press, Corrected Proof, Available online 23 April 2007
    Brown, A. L. 1978. Ecology of Soil Organisms. Heinemann Educational Books Ltd. 35-43
    Caldwell, B. A. , R. P. Griffiths, and P. Sollins. 1999. Soil enzyme response to vegetation disturbance in two lowland Costa Rican soils. Soil Biology and Biochemistry, 31:1603-1608
    Carmine Crecchio, Antonio Gelsomino. 2004. Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biology and Biochemistry. 36(11): 1873-1883
    Chiarini L,Bevivino A,Dalmastri C,et al.1998.Influence of plant development,cultivar and soil type on microbial colonization of maize root.Appl.Soil Ecol.,8:11-18
    Da SilvaKRA,Salles JF,Seldin L,et al. 2003.Application of anovel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. In the maize rhizosphere.J.Microbiol.Meth.,54:213-231.
    Denens, B. P. 1998. Microbia functional diversity can be influenced by the addition of simple organic substrates to soil. Soil Biology and Biochernistry. 30:1981-1988.
    Dick, R. P. , C. Pankhurst, B. M. Doube, and V Gupta. 1997. Soil enzyme activities as integrative indicators of soil health, In C. Pankhurst, eds. Biological indicators of soil health. Cab International, Wallingford;UK.
    Dick, R. P. , P. E. Rasmussen, and E. A. Kerle. 1988. Influence of long-term residue management on soil enzyme activity in relation to soil chemical properties of a wheat-fallow system. Biology and Fertility of Soils. 6:159-164
    Dick, R. P. 1992. Areview:long-term effects of agricultural systems on soil biochemical and microbial parameters. Agriculture, Ecosystems and Environment, 40:25-36.
    Dick, R. P. 1994. Soil enzyme activities as indicators of soil quality, p. 107-124, In J. W. Doran, eds. Defining soil quality for a sustainable environment. Soil Science Society of American Special Publication No. 35, Madison, Wisconsin, USA
    Diosma G, Aulicino M, Chidichimo H, Balatti P A. Effect of tillage and N fertilization on microbial physiological profile of soils cultivated with wheat [J]. Soil and Tillage Research, 2006, 91:236-243.
    Doran JW, Zeiss MR. 2000. Soil health and sustainability :Managing the biotic component of soil quality. A ppl Soil Ecol , 15 :3~11
    E. Puglisi, A. A. M. Del Re, M. A. Rao and L. Gianfreda. 2006. Development and validation of numerical indexes integrating enzyme activities of soils. Soil Biology and Biochemistry, 38(7):1673-1681
    Ellen Kandeler, Michael Stemmer and Eva-Maria Klimanek. 1999. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biology and Biochemistry, 31(2):261-273
    Emile Benizri, Christophe Nguyen, Séverine Piutti, Sophie Slezack-Deschaumes and Laurent Philippot. 2007. Additions of maize root mucilage to soil changed the structure of the bacterial community. Soil Biology and Biochemistry, 39:1230-1233
    Fauci, M. F. and Dick, R. P. 1994. Soil microbial dynamics short- and long-term effects of organic and inorganic nitrogen. Soil Science Society of America Journal, 58:801-808.
    Filion M, Hamelin C, Bernier L, St-Arnaud M. 2004. Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Applied and Environmental Microbiology. 70(6):3541-3551
    Fliebbach A, Eyhorn F, Mader P. DOK long-term farming systerm trial:microbial biomass, activity and diversity affected the decomposition of plant residues. In:Rees R M, Campell B C(eds)Sustainable Management of Organic Matter. Wallingford:CAB Publishing, 2001. 363-369.
    Forlani. 1995. Root colonization effciency PGPR activity and pot tentially related properties in plant-associated bacteria. Genetics&Breeding. 49(4):343-352
    Frostegard, A Baath, E. , 1996. The use of phospholipid fatty acid analysis to stimate bacterial and fungal biomass in soil. Biology and Fertility of Soils 22, 59–65.
    Garland JL, Mills AL. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole carbon source utilization. Applied and Environmental Microbiology. 57:2351-2359
    Gaskins M H, Albrecht S L, Hubbell D H. Rhizosphere bacteria and their use to increase plant productivity [J]. Agriculture, Ecosystems & Environment, 1985, 12:99-116.
    Gelsomino A,Keijzer-Wolters A,CaccoGet al.1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis.J.Microbiol.Meth.,38:1-15
    Goyal, S. , Mishra, M. M. , Hooda, I. S. , Singh, R. 1992. Organic matter microbial biomass relationships in field experiments under tropical conditions: effects of inorganic fertilization and organic amendments. Soil Biology and Biochemistry. 24:1081-1084
    H. Bolton, L. F. Elliott, R. I. Papendick and D. F. Bezdicek. 1985. Soil microbial biomass and selected soil enzyme activities: Effect of fertilization and cropping practices. Soil Biology and Biochemistry, 17(3):297-302
    Hawksworth DL. 1991. The fungal dimension of biodiversity: magnitude, significance , and conservation. Mycological Research. 95:641-655.
    Hawksworth DL. 2001. The magnitude of fungal diversity: the 1. 5million species estimate revisited. Mycological Research. 105:1422-1432.
    Iker Mijangos, Roberto Pérez, Isabel Albizu and Carlos Garbisu. 2006. Effects of fertilization and tillage on soil biological parameters. Enzyme and Microbial Technology, 40(1): 100-106
    Insam H, Amor K, Renner M. 1996. Changes in functional abilities of the microbial community during composing of manure. Microbial Ecology. 31:77-87
    Johnson, C. K. , Wienhold, B. J. , Doran, J. W. , Drijber, R. A. , Wright, S. F. , 2004. Linking microbial-scale finding to farm-scale outcomes in a dryland cropping system. Precision Agriculture, 5:311–328.
    Kanazawa, S. , Asakawa, S. andTakai, Y. 1988. Effect on fertilizer and manure application on microbial numbers , biomass, and enzyme activities in volcanic ash soils. Microbial numbers and biomass carbon . Soil Science and Plant Nutrition, 34:429-439.
    Kandeler, E. , M. Stemmer, and E. M. Klimanek. 1999b. Response of soil microbial biomass, unease and xylanase within particle size fractions to long-term soil management. Soil Biology and Biochemistry 31:261-273
    Karlen DL. , Gardner JC , Rosek HJ . . A soil quality framework for evaluating the impact of CRP. J Produc Agric , 1998. 11 (1) :56~60
    Kennedy AC, Smith KL. 1995. Microbial diversity and sustainability of agricultural soils. Plant Soil. 23 (2):69-79.
    Kennedy AC. 1999. Bacterial diversity in agroecosystems. Agriculture, Ecosystems and Environment. 74:65-76
    Kristi M Westover. 2001. Mechanisms of plant species coexistence:Roles of rhizosphere bacteria and root fungal pathogens. Ecology. 82:3285-3289.
    Latour X,Corberand T,Laguerre G,et al.1996. The composition of fluorescent Pseudomonas population associated with roots is influenced by plant and soil type.Appl.Environ.Microbiol.,62:2449-2456.
    Lijbert Brussaard. Soil biodiversity for agricultural sustainability. Agriculture. liossio, D. A. and Scow, K. M. 1998. Impacts of carbon and floodinn on soil microbial communities:phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology. 35:265 一 278
    Livia B?hme and Frank B?hme. 2006. Soil microbiological and biochemical properties affected by plant growth and different long-term fertilization. European Journal of Soil Biology, 42(1):1-12
    Lovell, R. D. , Jarvis, S. C. and Bardgett, R. D. 1995. Soil microbial biomass and activity in long-term grassland:effects of management change . Soil Biology and Biochemistry. 27:969-975.
     Lynch, J. M. and Panting, L. M. 1982. Effects of season cultivation and nitrogen fertilizer on the size of the soil microbial biomass. Journal of the Science of Food and Agriculture. 33:249-252.
    Maddalena Curci, Antonella Pellegrino. 2007. Soil microbial dynamics and genetic diversity in soil under monoculture wheat grown in different long-term management systems. Soil Biology and Biochemistry, 39:1391-1400
    Maguuran AE. 1988 Ecological diversity and its measurement[C]. Princeton. N. J Marschner P,Yang CH,Lieberei R,et al.2001. Soil and plant specific effects on bacterial community composition in the rhizospher.SoilBiol.Biochem.,33:1437-1445.
    Martin, J. K: 975. Comparison of agar media for counts of viable soil bacteria. Soil Biol Biochem. 7:401-402.
    Masciandaro, G, B, Ceccanti, S. Benedicto, H. C. Lee, and H. F. Cook. 2004. Enzyme activity and C and N pools in soil following application of mulches. Canadian Journal of Soil Sciencc 84:19-30
    Matthew R. Werner. 1997. Soil quality characteristics during conversion to organic orchard management. Applied Soil Ecology. 5:151-167
    Monreal, C. M. , and D. W Bergstrom. 2000. Soil enzymatic factors expressing the influence of land use, tillage system and texture on soil biochemical quality. Canadian Journal of Soil Science 80:419-428
     Muyzer G, 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology. 2:317-322
    Muyzer G, de Waal ED, Uitterlinden AC. 1993. Profiling of complex microbial populations by denatunng gradient gel relectrophoresis analysis of polymerase chain eaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 59:695-700.
    Ogram A, Sayler GS, Barkay T. 1987. The extraction and purification of microbial DNA from Sediments. Journal of Microbiological Methods. 7:57-66
    Pankhurst CE, Doube BM , Gupta VVSR. Biological indicators of soil health: Synthesis. In : Pankhurst CE , Doube BM , Gupta VVSR, eds. Biological Indicators of Soil Health. London , U K:CAB Internatoinal. 1997. 419~435
    Peacock, A. D. , Mullen, M. D. , Ringelberg, D. B. , Tyler, D. D. , et al. Soil microbial community responses to dairy manure or ammonium nitrate applications[J]. Soil Biology and Biochemistry, 2001, 33:1011-1019.
    Petucci, P. , U. Bonciarelli, R. Santilocchi, and A. A. Bianchi. 1997. Effect of rotation, nitrogen fertilization and management of crop residues on some chemical, microbiological and biochemical properties of soil. Biology and Fertility of Soils 24:311-3I6
    Piutti S, Hallet S, ousseaux S, et al. 2002. Accelerated mineralisation of atrazine in maize rhizosphere soil[J]. Biol & Fertil Soils, 36(6): 434-441.
    Plaza, D. Hernández, J. C. García-Gil and A. Polo. 2004. Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biology and Biochemistry, 36(10):1577-1585
    R. Ebhin Masto, P. K. Chhonkar, Dhyan Singh and A. K. Patra. 2006. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biology and Biochemistry, 38(7): 1577-1582
    Rouatt Jwand Hkatznelson. 1996. A study of the bacteriaon the roots surface and intherhizosphere soil of crop plants. J. Appl. Bacteriol. 24:164-171.
    Sanchez E E, Righetti T L, Sugar D, Lombard P B. Nitrogen variability among comeice pear fruits from trees having high and low nitrogen status [J]. Journal of Horticultural Science, 1991, 66: 43-50.
    Sara Elfstrand, Birgitta B?th and Anna M?rtensson. 2007. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Applied Soil Ecology, 36:70-82
    Sarathchandra, S. U. , Ghani, A. , Yeates, G. W. , Burch, G. and Cox, N. R. 2001. Effect of nitrogen and phosphate fertilizers on microbial and nematode diversity in pasture soils. Soil Biology and Biochemistry. 33:953-964
    Schnurer J, Rosswall T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environment Microbiology, 1982, 43:1256-1261
    Shengrui Yao, Ian A. Merwin. 2006. Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site. Soil Biology and Biochemistry. 38:587-599
    Stenberg B. Monitoring soil quality of arable land: Microbio-logical indicators. Acta Agric Scand Section B-Soil Plant Sci , 1999. 49(1):1~24
    T. M. Henriksen and T. A. Breland. 1999. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biology and Biochemistry, 31, (8):1121-1134
    Tabatabai, M. A. , Bremner, J. M. 1972. Assay of urease activity in soil. Soil Biol. Biochem. 4, 479-487
    Tiedie J M. 1999. Asuming-Brempong S, Nusslein K, Marsh T L, Flynn S J. Opening the black box of soil microbial diversity, Applied Soil Ecology:386:1-14.
    Torsvik V, Daae F L, Sandaa RA, Ovreas L. 1998. Review article:novel techniques for analyzing microbial diversity in natural and perturbed environments. Journal of Biotechno. l64:53-62
    Torsvik V, Gosksyr J, Daae FL. 1990a. High diversity in DNA of soil bacteria, Applied and Environmental Microbiology. 56:782-787
    Torsvik V, Salte K, Soerheim R, Goksoeyr J. 1990b. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Applied and Environmental Microbiology. 56:776-781
    Torsvik V. 2002. Microbial diversity and function in soil :From genes to ecosystems. Current Opinion Microbiol. 5:240-245
    Williams, J. Cz K. , Kubelik, A. R. , Livak, K. J. 1990. DNA polymorphisms amplified by arbitrary primeus are useful as genetic markers. Nucleic Acids Res. 18:6531-6535
    Xin Chen, Jianjun Tang. 2004. Effects of weed communities with various species numbers on soil features in a subtropical orchard ecosystem. Agriculture, Ecosystems & Environment. 102:377-388
    Yan He, Jianming Xu, Zhaohui Ma, Haizhen Wang and Yuping Wu. 2007. Profiling of PLFA: Implications for nonlinear spatial gradient of PCP degradation in the vicinity of Lolium perenne L. roots. Soil Biology and Biochemistry, . 39:1121-1129
    Yang, Y. H. , Yao, J. , Hu, S. andQi, Y. 2000. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community :a study with RAPD marker. Microbial Ecology. 39:72-79
    Yisong Yang, Han Wang, Jianjun Tang and Xin Chen. 2007. Effects of weed management practices on orchard soil biological and fertility properties in southeastern China. Soil and Tillage Research(J). 93:179-185
    Yu-Huan Gu and Mark Mazzola. 2003. Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Applied Soil Ecology. 24:57-72
    Zak J C, Willing M R, Moorhead D L. Functional diversity off microbial communities:A quantitative approach . Soil Biol. Biochem. , 1994, 26:1101-1108
    Zelles L. Fatty acid patterns of microbial phospholipids and lipopolysaccharides. In:Schinner F, Ohlinger R, Kandeler E, eds. Methods in Soil Biology. Berlin, Heidelberg, New York:Springer, 1996. 80-93
    Zelles, L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of m icrobial communities in soil: a review. Biology and Tercilicy of Soils. 29:111-129
    Zhang J E, Liu W G. Utilization of microbes resources and sustainable development of agriculture [J]. Soil and Environmental Sciences, 2001, 10:154-157
    Zhou J Z, Xia B C, Treves D. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 2002, 68:326-334.
    Zhou JZ, Xia BC, Huang H, Palumbo AV, Tiedje JM 2004. Microbial diversity and heterogeneity in sandy subsurface soils. Applied and Environmental Microbiology. 70:1723-1734
    Zhou, JZ. , Bruns, M. A. , Tiedje, J. M. . 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbial. 62:316-322
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.