黄曲霉菌特异单链抗体及其基因的分离鉴定和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄曲霉菌(Aspergillus flavus)是一种重要的植物病原真菌,造成玉米、花生、棉花等多种农作物的减产和粮食的霉变,导致重大的经济损失。黄曲霉菌也是一种重要的人和动物致病菌引起严重的曲霉病。黄曲霉菌和寄生曲霉菌(Aspergillus parasiticus)产生的次级代谢产物黄曲霉毒素(aflatoxin)是一种剧毒的真菌毒素,具有强烈地致癌和致畸作用。被黄曲霉菌污染的农产品中通常有大量的黄曲霉毒素残留,被人和动物误食会导致严重的中毒事件,长期摄入会诱发肝癌等疾病,严重威胁人和动物的健康。因此对黄曲霉菌进行快速、灵敏地检测对于预防黄曲霉菌引起的动植物病害,监测黄曲霉毒素的污染具有重要的意义。
     免疫学检测技术利用了抗体和抗原之间的特异性互作,已经被广泛应用于各种病原菌的快速诊断。传统的免疫学检测方法主要利用多克隆抗体和单克隆抗体,但这2种抗体的制备依赖于动物免疫和杂交瘤细胞融合技术,生产成本较高。利用噬菌体展示技术可以从抗体文库中筛选到高亲和力单链抗体,并且同时获得抗体的编码基因。单链抗体具有易于原核表达和基因工程改造等优点,在免疫学检测领域中有显著的优势。本研究以黄曲霉菌细胞壁蛋白为靶标,选到了高亲和力单链抗体,所取得的主要成果如下:
     1.将黄曲霉细胞壁蛋白免疫小鼠,通过杂交瘤细胞融合技术筛选到了4株黄曲霉菌特异单克隆抗体杂交瘤细胞。对4种从小鼠腹水中纯化的单克隆抗体进行了ELISA分析,结果表明rnAb2A8抗体对黄曲霉细胞壁蛋白的亲和力最高,可以用于免疫学检测。
     2.将黄曲霉细胞壁蛋白免疫鸡,构建了库容量为1.2×107的鸡源单链抗体文库,并利用噬菌体展示技术对抗体文库进行了筛选。通过表达ELISA从筛选后的单链抗体文库中鉴定出了35个阳性克隆,对所属的4种类型高亲和力抗体AfSA4、AfSA5、 AfSA8和AfSD10进行原核表达和纯化。
     3.对筛选到的单链抗体氨基酸序列进行分析,结果表明抗体CDR区序列的组成和长度存在较大差异。间接ELISA分析表明AfSA4对黄曲霉菌和寄生曲霉菌的亲和力最高。对AfSA4、AfSA5、AfSA8和AfSD10的空间结构进行了预测,结构比较分析表明AfSA4的L-CDR2和H-CDR3结构域之间存在氢键等紧密的相互作用,该部位独特的致密空间结构可能与AfSA4的高亲和力密切相关。免疫荧光分析表明AfSA4可以与黄曲霉和寄生曲霉细胞壁表面结合,而AfSA5、AfSA8和AfSD10不能识别细胞壁表面。免疫印迹分析也进一步证明了不同单链抗体之间存在抗原识别特性的差异。
     4.利用phage ELISA方法对淘选后的抗体文库进行鉴定,对筛选到的阳性克隆序列进行了分析,并与表达ELISA的鉴定结果进行比较。从中筛选到了高亲和力单链抗体AfPD12,并进行原核表达和纯化。免疫荧光实验证明AfPD12识别黄曲霉和寄生曲霉细胞壁表面抗原。免疫印迹实验证明AfPD12识别细胞壁蛋白。
     5.将AfSA4和AfPD12与碱性磷酸酶(AP)构建成融合蛋白AfSA4-AP和AfPD12-AP,并进行原核表达和纯化。ELISA和免疫印迹分析表明scFv抗体和scFv-AP融合蛋白具有相同抗原识别特性,特异性识别曲霉属病原真菌。表面等离子共振(SPR)分析表明AfSA4-AP亲和力比AfSA4提高了约6倍,AfPD12-AP亲和力比AfPD12提高了约14倍。间接ELISA实验表明scFv-AP融合蛋白检测抗原的灵敏度更高。
     6.将AfPD12与生物素化标签蛋白构建了Bio-AfPD12融合蛋白,并进行原核表达和纯化。Western blot分析表明链霉亲和素特异性识别原核表达的Bio-AfPD12证明Bio-AfPD12被成功生物素化。间接ELISA实验表明Bio-AfPD12能够用于检测黄曲霉菌和寄生曲霉菌。
     7.利用包被抗体mAb2A8和检测抗体AfSA4-AP建立了夹心ELISA(ds-ELISA)检测体系,可以同时对黄曲霉菌和寄生曲霉菌进行高灵敏度检测,对两者的最低检测限达到10q-3μg/mL。在玉米和花生基质中对两种真菌检测的灵敏度达到1μg/g。该检测方法对健康的玉米、花生材料和非曲霉属的常见植物病原真菌没有交叉反应,可以用于对黄曲霉毒素产生菌的免疫学检测。
     8.利用包被抗体AfPD12和检测抗体AfPD12-AP建立的ds-ELISA可以检测黄曲霉菌和寄生曲霉菌,灵敏度达到10-2μg/mL,该方法可以避免对单克隆抗体的使用。利用AfPD12和Bio-AfPD12建立了夹心荧光免疫吸附(ds-FLISA)检测方法,对黄曲霉菌和寄生曲霉菌的检测灵敏度为10-1μg/mL
     综上所述,本研究利用噬菌体展示技术筛选得到了多种类型黄曲霉菌特异单链抗体,并从空间结构和免疫识别等多个方面对抗体的特性进行了分析。将高亲和力单链抗体构建了scFv-AP和Bio-scFv融合蛋白,获得了双功能抗体融合蛋白。将单克隆抗体、单链抗体及其融合蛋白相互结合建立了ds-ELISA和ds-FLISA检测方法。本研究建立的免疫学检测方法可以对黄曲霉毒素产生菌进行有效检测,对保障农作物生产和食品生产安全具有重要的意义。
The Aspergillus flavus is important plant pathogen that infects agricultural crops before harvest and during storage. Usually, A. flavus usually infects maize, peanuts and cotton causing crop yield loss, food mildew and huge economic losses. Additionally, A. flavus is also a human and animal pathogen, which leads to serious aspergillosis disease. A. flavus and A. parasiticus are the predominant producers of aflatoxins, which are secondary metabolites with carcinogenic and mutagenic effects to human and animals. The infection of A. flavus in agricultural products usually leads to high-level aflatoxin contamination, which is a severe threaten to human and animal health. High concentrations of aflatoxins intake will cause acute aflatoxicosis, and daily intake of low dose of aflatoxins will induce liver cancer and other diseases. Thus detection of A. flavus fast and sensitively will play a critial in prevention of disease caused by A. flavus and monitoring the contamination of aflatoxins.
     Immunoassay has been widely used in the detection of various pathogens. Immunoassay is based on the specific recognition between antigen and antibody, so antibody with high affinity palys an essential role in this system. Traditional immunoassay relies on polyclonal and monoclonal antibody, which are produced by animal immunization and hybridoma cell technology, and the cost of production is usually high. High-affinity single-chain antibody (scFv) can be isolated from immune or naive antibody library through phage display. In addition, phage display selection system can immediately provide gene sequences of single-chain antibodies against the target. The single-chain antibody can be easily expressed in bacteria and fused to other moleculars by subcloning which have advantages in immunoassay. In this study, we aimed to isolate single-chain antibody against A. flavus cell wall target from an immunized chicken antibody library using phage display. Based on scFv fusion proteins, new kinds of Aspergillus pathogens immunoassay methods were developed. The main results of this study are as follows:
     1. A.flavus cell wall proteins were used as antigen to immunize Balb/c mice. Four A. flavus specific monoclonal antibodies were isolated through hybridoma cell technology and purified from ascitic fluids. Among them mAb2A8showed the strongest binding ability in indirect ELISA, and can be used in immunoassay.
     2. A. flavus cell wall proteins were used as antigen to immunize White Leghorn chickens. The genes of variable domians of heavy chain and light chain were cloned and constructed into a recombinant antibody library with a size of1.2×107. The antibody library was screened using phage display, and35positive clones were identified through expression ELISA. There were four types of antibodies named AfSA4, AfSA5, AfSA8and AfSD10according to their amino acid sequences. These scFv antibodies were expressed in bacteria and then purified using affinity chromatography.
     3. Alignment of amino acid sequences from AfSA4, AfSA5, AfSA8and AfSD10showed that there is variation in the composition of amino acid and length of CDR regions. Indirect ELISA showed that AfSA4exhibited the strongest binding activity towards A. flavus and A. parasiticus. The3D model prediction of scFv antibodies were also performed, and the comparison of structures showed that the interaction (e.g. hydrogen bond) between the loops of L-CDR2and H-CDR3of AfSA4facilitates the forming of a compact motif, which may play a critical role in high binding ability. Immunofluorescence showed that the binding of AfSA4localized to the cell wall of A. flavus and A. parasiticus. Whereas, antibodise AfSA5, AfSA8and AfSD10were not able to bind to the surface of cell wall. Immunoblot analysis showed that the binding properties of different scFv antibodies are varied.
     4. Phage ELISA was also used to identify positive clones from library after panning. The sequences of positive clones were compared with those obtained by expression ELISA. A high reactive scFv antibody AfPD12was expressed in bacteria and purified consequently. Immunofluorescence showed that AfPD12also binds to the cell wall of A. flavus and A. parasiticus. Immunoblot demonstrated that AfPD12recognizes the cell wall proteins of A. flavus.
     5. The genes of AfSA4and AfPD12were fused to that of alkaline phosphatase (AP) to generate fusion protein AfSA4-AP and AfPD12-AP, which were expressed and purified in bacteria. ELISA and immunoblot showed that scFv and scFv-AP exhibited the same specificity towards Aspergillus, so AP did not interfere the binding property of scFv in this study. The simultaneous dimerization of AP molecular imparts avidity to scFv-AP, which would improve the binding performance of scFv-AP. Surface plasmon resonance (SPR) analysis showed that the affinity of AfSA4-AP fusion was about6-fold higher than AfSA4, and AfPD12-AP also exhibited14-fold higher affinity compared with AfPD12. Indirect ELISA demonstrated that scFv-AP fusions were more sensitive in immunoassay.
     6. The gene of AfPD12was fused to a protein tag that can be biotinylated when expressed in bacteria. The bio-AfPD12fusion protein was expressed in bacteria and purified consequently. Western blot analysis showed that bio-AfPD12was successfully biotinylated, and streptavidin specifically recognized bio-AfPD12. Indirect ELISA showed that bio-AfPD12could be used in the immunoassay.
     7. Monoclonal antibody mAb2A8was used as capture antibody, and AfSA4-AP fusion was used as detection antibody to set up a sensitive sandwich ELISA (ds-ELISA). This ds-ELISA was able to detect A. flavus and A. parasiticus simultaneously with a detection limit of10-3μg/mL. The sensitivity reached up to1μg/g when the ds-ELISA was used to detect fungi in maize and peanut matrix. The ds-ELISA had no cross reactivity towards health materials and non-Aspergillus fungi, so this immuassay can be used in the detection of aflatoxin producing fungi.
     8. Capture antibody AfPD12and detection antibody AfSA4-AP fusion were used to set up a sandwich ELISA, which showed a sensitivity of10-2μg/mL. The using of capture antibody AfPD12avoided the need of monoclonal antibody. A double sandwich fluorescence-linked immunosorbent assay (ds-FLISA) was developed based on AfPD12and bio-AfPD12. The detection limits of ds-FLISA against A. flavus and A. parasiticus were10-1μg/mL.
     In summary, different scFv antibodies were isolated from chicken antibody library using phage display, and their properties were analyzed through structure and immunorecognition in this study. ScFv antibodies with higher affinity were constructed into biofunctional scFv-AP and bio-scFv fusion. The well-matched monoclonal antibody, scFv and its fusion proteins were used to develope ds-ELISA and ds-FLISA method. The immunoassay developed in this study can be used in the detection of aflatoxin producing fungi, and will play an important role in ensuring agricultural production and food safety.
引文
1.代岩石,吴子丹,伍松陵,王松雪,宋慧,孙长坡.一株拮抗储粮真菌的细菌菌株鉴定和初步研究.中国粮油学报,2010,25:88-94
    2. 何维.医学免疫学.第二版.北京:人民卫生出版社,2011.57-70
    3.黄莉,任小平,张晓杰,陈玉宁,姜慧芳.ICRISAT花生微核心种质农艺性状和黄曲霉抗性关联分析.作物学报,2012,38:935-946
    4. 吕小林,章登珊,曹先伟.医院环境中曲霉菌监测及同源性分析.现代预防医学,2012,39:5620-5622
    5.索继江,邢玉斌,谢丽君,杜明梅,贾宁,高岩,邓春燕,陈孟莉,刘运喜.医院空气中黄曲霉菌含量分析研究.中华医院感染学杂志,2009,19:2832-2834
    6.王后苗,黄家权,雷永,晏立英,王圣玉,姜慧芳,任小平,娄庆任,廖伯寿.花生种子白藜芦醇含量与黄曲霉产毒抗性的关系.作物学报,2012,38:1875-1883
    7.王后苗,廖伯寿.农作物收获前黄曲霉毒素污染与控制措施.作物学报,2012,38: 1-9
    8.杨军,张明娟,强磊,苏宝山,王一理,司履生.抗HPV16L1 Ig(?)抗体的制备及活性检测.南方医科大学学报,2008,28:324-332
    9.张初署.中国四个生态区花生土壤中黄曲霉菌分布、产毒特征及遗传多样性研究.[博士学位论文].北京:国家农业图书馆,2013
    10.周启升,刘训理,张楠,宋振,仇念全,张本峰,国辉,吕常旭,于建.拮抗链霉菌S24发酵培养基的优化及其对黄曲霉的抑菌作用.生物工程学报,2011,27:203-211
    11. Abdalla M. Prevalence of airborne Aspergillus flavus in Khartoum (Sudan) Airspora with reference to dusty weather and inoculum survival in simulated summer conditions. Mycopathologia,1988,104:137-141
    12. Adhikari A, Sen MM, Gupta-Bhattacharya S, Chanda S. Airborne viable, non-viable, and allergenic fungi in a rural agricultural area of India: a 2-year study at five outdoor sampling stations. Sci Total Environ,2004,326:123-141
    13. Affeldt KJ, Brodhagen M, Keller NP. Aspergillus oxylipin signaling and quorum sensing pathways depend on G protein-coupled receptors. Toxins,2012,4:695-717
    14. Almquist KC, Niu Y, McLean MD, Mena FL, Yau KYF, Brown K, Brandle JE, Hall JC. Immunomodulation confers herbicide resistance in plants. Plant Biotechnol J, 2004,2:189-197
    15. Amaike S, Keller NP. Distinct Roles for VeA and LaeA in Development and Pathogenesis of Aspergillus flavus. Eukaryotic Cell,2009,8:1051-1060
    16. Amaike S, Keller NP. Aspergillus flavus. Annu Rev Phytopathol,2011,49:107-133
    17. Anand NN, Mandal S, MacKenzie C, Sadowska J, Sigurskjold B, Young N, Bundle D, Narang S. Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen. J Biol Chem, 1991,266:21874-21879
    18. Andris-Widhopf J, Rader C, Steinberger P, Fuller R, Barbas III CF. Methods for the generation of chicken monoclonal antibody fragments by phage display. J Immunol Methods,2000,242:159-181
    19. Asano R, Watanabe Y, Kawaguchi H, Fukazawa H, Nakanishi T, Umetsu M, Hayashi H, Katayose Y, Unno M, Kudo T, Kumagai I. Highly effective recombinant format of a humanized IgG-like bispecific antibody for cancer immunotherapy with retargeting of lymphocytes to tumor cells. J Biol Chem,2007,282:27659-27665
    20. Azzazy HME, Highsmith Jr WE. Phage display technology: clinical applications and recent innovations. Clin Biochem,2002,35:425-445
    21. Babickova J, Tothova L, Boor P, Celec P. In vivo phage display—A discovery tool in molecular biomedicine. Biotechnol Adv,2013,31:1247-1259
    22. Barbas III CF, Burton DR, Scott JK, Silverman GJ. Phage displays: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press,2001. 9.102-9.109
    23. Barderas R, Desmet J, Timmerman P, Meloen R, Casal JI. Affinity maturation of antibodies assisted by in silico modeling. Proc Nat Acad Sci USA,2008,105: 9029-9034
    24. Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell,2002,109:S45-S55
    25. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N-J, Keller NP, Yu J-H, Braus GH. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science,2008,320:1504-1506
    26. Bird R, Hardman K, Jacobson J, Johnson S, Kaufman B, Lee S, Lee T, Pope S, Riordan G, Whitlow M. Single-chain antigen-binding proteins. Science,1988,242: 423-426
    27. Bok JW, Keller NP. LaeA, a Regulator of Secondary Metabolism in Aspergillus spp. Eukaryotic Cell,2004,3:527-535
    28. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc,2008,4:1-13
    29. Bothmann H, Pluckthun A. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol,1998,16:376-380
    30. Bradbury ARM, Sidhu S, Dubel S, McCafferty J. Beyond natural antibodies:the power of in vitro display technologies. Nat Biotechnol,2011,29:245-254
    31. Bressac B, Puisieux A, Kew M, Volkmann M, Bozcall S, Bella Mura J, de la Monte S, Carlson R, Blum H, Wands J, Takahashi H, von Weizsacker F, Galun E, Kar S, Carr B, Schroder C, Erken E, Varinli S, Rustgi V, Prat J et al. p53 mutation in hepatocellular carcinoma after aflatoxin exposure. The Lancet,1991,338: 1356-1359
    32. Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP. Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol Microbiol,2008,67:378-391
    33. Brodhun F, Feussner I. Oxylipins in fungi. FEBS Journal,2011,278:1047-1063
    34. Brooks TD, Williams WP, Windham GL, Willcox MC, Abbas HK. Quantitative trait loci contributing resistance to aflatoxin accumulation in the maize inbred Mp313E Crop Sci,2005,45:171-174
    35. Brown RL, Chen ZY, Cleveland TE, Russin JS. Advances in the development of host resistance in corn to aflatoxin contamination by Aspergillus flavus. Phytopathology, 1999,89:113-117
    36. Brown SH, Zarnowski R, Sharpee W, Keller N. Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol,2008,74:5674-5685
    37. Brown SH, Scott JB, Bhaheetharan J, Sharpee WC, Milde L, Wilson RA, Keller NP. Oxygenase coordination is required for morphological transition and the host-fungus interaction of Aspergillus flavus. Mol Plant Microbe Interact,2009,22:882-894
    38. Busboom KN, White DG. Inheritance of resistance to aflatoxin production and Aspergillus ear rot of corn from the cross of inbreds B73 and Oh516. Phytopathology,2004,94:1107-1115
    39. Buss NAPS, Henderson SJ, McFarlane M, Shenton JM, de Haan L. Monoclonal antibody therapeutics:history and future. Curr Opin Pharmacol,2012,12:615-622
    40. Campbell KW, Hamblin AM, White DG. Inheritance of resistance to aflatoxin production in the cross between corn inbreds B73 and LB31. Phytopathology,1997, 87:1144-1147
    41. Candlish AAG, Wibowo MS, Smith JE. Immunoassay identification of Aspergillus flavus using monoclonal antibodies raised to the whole cell extracts. Biotechnol Tech, 1997,11:21-24
    42. Cao L, Chan KM, Chen D, Vanittanakom N, Lee C, Chan CM, Sirisanthana T, Tsang DNC, Yuen KY. Detection of cell wall mannoprotein Mplp in culture supernatants of Penicillium marneffei and in sera of penicilliosis patients. J Clin Microbiol,1999, 37:981-986
    43. Casey JL, Coley AM, Tilley LM, Foley M. Green fluorescent antibodies:novel in vitro tools. Protein Eng,2000,13:445-452
    44. Chadd HE, Chamow SM. Therapeutic antibody expression technology.Curr Opin Biotechnol,2001,12:188-194
    45. Chanda A, Roze LV, Linz JE. A possible role for exocytosis in aflatoxin export in Aspergillus paras iticus. Eukaryotic Cell,2010,9:1724-1727
    46. Chanda A, Roze LV, Kang S, Artymovich KA, Hicks GR, Raikhel NV, Calvo AM, Linz JE. A key role for vesicles in fungal secondary metabolism. Proc Nat Acad Sci USA,2009,106:19533-19538
    47. Chang PK, Scharfenstein LL, Li P, Ehrlich KC. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genet Biol,2013,58-59:71-79
    48. Chaturvedi AK, Kavishwar A, Shiva Keshava GB, Shukla PK. Monoclonal immunoglobulin G1 directed against Aspergillus fumigatus cell wall glycoprotein protects against experimental murine aspergillosis. Clin Diagn Lab Immunol,2005, 12:1063-1068
    49. Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, Battersby JE, Champion KM. High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol Bioeng,2004,85:463-474
    50. Chen ZY, Brown RL, Lax AR, Guo BZ, Cleveland TE, Russin JS. Resistance to Aspergillus flavus in corn kernels is associated with a 14-kDa protein. Phytopathology,1998,88:276-281
    51. Christensen SA, Kolomiets MV. The lipid language of plant-fungal interactions. Fungal Genet Biol,2011,48:4-14
    52. Coleman JE. Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct,1992,21:441-483
    53. Cotty P. Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology,1989,79:808-814
    54. Cotty P. Influence of field application of an atoxigenic strain of Aspergillus flavus on the populations of A. flavus infecting cotton bolls and on the aflatoxin content of cottonseed. Phytopathology,1994,84:1270-1277
    55. Creppy EE. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett,2002,127:19-28
    56. Criseo G, Bagnara A, Bisignano G. Differentiation of aflatoxin-producing and non-producing strains of Aspergillus flavus group. Lett Appl Microbiol,2001,33: 291-295
    57. Cronan JE. Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem,1990,265:10327-10333
    58. Crowther J. The ELISA guidebook. Methods in Molecular Biology. Totowa, NJ: Human Press,2001.153-193
    59. Cunningham S, Starr E, Shaw I, Glavin J, Kane M, Joshi L. Development of a convenient competitive ELISA for the detection of the free and protein-bound nonhuman galactosyl-α-(1,3)-galactose epitope based on highly specific chicken single-chain antibody variable-region fragments. Anal Chem,2013,85:949-955
    60. Danner S, Belasco JG. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Nat Acad Sci USA,2001,98: 12954-12959
    61. Darrah L, Lillehoj E, Zuber M, Scott G, Thompson D, West D, Widstrom N, Fortnum B. Inheritance of aflatoxin B1 levels in maize kernels under modified natural inoculation with Aspergillus flavus. Crop Sci,1987,27:869-872
    62. Das D, Allen TM, Suresh MR. Comparative evaluation of two purification methods of anti-CD19-c-myc-His6-Cys scFv. Protein Expr Purif,2005,39:199-208
    63. Dereszynski DM, Center SA, Randolph JF, Brooks MB, Hadden AG, Palyada KS, McDonough SP, Messick J, Stokol T, Bischoff KL. Clinical and clinicopathologic features of dogs that consumed foodborne hepatotoxic aflatoxins:72 cases (2005-2006). J Am Vet Med Assoc,2008,232:1329-1337
    64. Dolezal AL, Obrian GR, Nielsen DM, Woloshuk CP, Boston RS, Payne GA. Localization, morphology and transcriptional profile of Aspergillus flavus during seed colonization. Mol Plant Pathol,2013,14:898-909
    65. Donner M, Atehnkeng J, Sikora RA, Bandyopadhyay R, Cotty PJ. Molecular characterization of atoxigenic strains for biological control of aflatoxins in Nigeria. Food Addit Contam Part A,2010,27:576-590
    66. Dorner JW, Lamb MC. Development and commercial use of afla-Guard(?), an aflatoxin biocontrol agent. Mycotoxin Res,2006,22:33-38
    67. Dorner JW, Cole RJ, Wicklow DT. Aflatoxin reduction in corn through field application of competitive fungi. J Food Prot,1999,62:650-656
    68. Duran R, Cary J, Calvo A. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Microbiol Biotechnol,2007,73:1158-1168
    69. Eastman QM, Leu TMJ, Schatz DG. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature,1996,380:85-88
    70. Ehrlich KC. Predicted roles of the uncharacterized clustered genes in aflatoxin biosynthesis. Toxins,2009,1:37-58
    71. Ehrlich KC, Yu J. Aflatoxin-like gene clusters and how they evolved. In: Rai M, Varma A (eds.), Mycotoxins in Food, Feed and Bioweapons. Berlin: Springer,2010. 65-75
    72. Ehrlich KC, Scharfenstein LL, Montalbano BG, Chang PK. Are the genes nadA and norB involved in formation of aflatoxin G1? Int J Mol Sci,2008,9:1717-1729
    73. Ehrlich KC, Li P, Scharfenstein L, Chang PK. HypC, the anthrone oxidase involved in aflatoxin biosynthesis. Appl Environ Microbiol,2010,76:3374-3377
    74. Fakhoury A, Woloshuk C. Amyl, the a-amylase gene of Aspergillus flavus: involvement in aflatoxin biosynthesis in maize kernels. Phytopathology,1999,89: 908-914
    75. Farris LR, McDonald MJ. Computational analysis of non-covalent polymer-protein interactions governing antibody orientation. Anal Bioanal Chem,2012,402: 1731-1736
    76. Finlay WJJ, Shaw I, Reilly JP, Kane M. Generation of high-affinity chicken single-chain Fv antibody fragments for measurement of the Pseudonitzschia pungens toxin domoic acid. Appl Environ Microbiol,2006,72:3343-3349
    77. Finlay WJJ, DeVore NC, Dobrovolskaia EN, Gam A, Goodyear CS, Slater JE. Exploiting the avian immunoglobulin system to simplify the generation of recombinant antibodies to allergenic proteins. Clin Exp Allergy,2005,35: 1040-1048
    78. Frisvad JC, Skouboe P, Samson RA. Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Syst Appl Microbiol, 2005,28:442-453
    79. Gao X, Brodhagen M, Isakeit T, Brown SH, Gobel C, Betran J, Feussner I, Keller NP, Kolomiets MV. Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact,2009,22:222-231
    80. Gardner C, Darrah L, Zuber M, Wallin J. Genetic control of aflatoxin production in maize. Plant Dis,1987,71:426-429
    81. Gasser B, Mattanovich D. Antibody production with yeasts and filamentous fungi:on the road to large scale? Biotechnol Lett,2007,29:201-212
    82. Gautam P, Sundaram CS, Madan T, Gade WN, Shah A, Sirdeshmukh R, Sarma PU. Identification of novel allergens of Aspergillus fumigatus using immunoproteomics approach. Clin Exp Allergy,2007,37:1239-1249
    83. Geisen R. Multiplex polymerase chain reaction for the detection of potential aflatoxin and sterigmatocystin producing fungi. Syst Appl Microbiol,1996,19:388-392
    84. Giorni P, Camardo Leggieri M, Magan N, Battilani P. Comparison of temperature and moisture requirements for sporulation of Aspergillus flavus sclerotia on natural and artificial substrates. Fungal Biol,2012,116:637-642
    85. Giudicelli V, Lefranc M-P. IMGT-ontology 2012. Front Genet,2012,3:79
    86. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, Ni I, Mei L, Sundar PD, Day GMR, Cox D, Rajpal A, Pons J. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Nat Acad Sci USA,2009,106:20216-20221
    87. Glockshuber R, Malia M, Pfitzinger I, Plueckthun A. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry,1990,29:1362-1367
    88. Goodchild SA, Dooley H, Schoepp RJ, Flajnik M, Lonsdale SG. Isolation and characterisation of Ebolavirus-specific recombinant antibody fragments from murine and shark immune libraries. Mol Immunol,2011,48:2027-2037
    89. Gross-Steinmeyer K, Eaton DL. Dietary modulation of the biotransformation and genotoxicity of aflatoxin B1. Toxicology,2012,299:69-79
    90. Guo B, Chen ZY, Lee RD, Scully BT. Drought stress and preharvest aflatoxin contamination in agricultural commodity: genetics, genomics and proteomics. J Integr Plant Biol,2008,50:1281-1291
    91. Guo JQ, Li QM, Zhou JY, Zhang GP, Yang YY, Xing GX, Zhao D, You SY, Zhang CY. Efficient recovery of the functional IP10-scFv fusion protein from inclusion bodies with an on-column refolding system. Protein Expr Purif,2006,45:168-174
    92. Hackel BJ, Huang D, Bubolz JC, Wang XX, Shusta EV. Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiae. Pharm Res,2006,23:790-797
    93. Hadrich I, Drira I, Neji S, Mahfoud N, Ranque S, Makni F, Ayadi A. Microsatellite typing of Aspergillus flavus from clinical and environmental avian isolates. J Med Microbiol,2013,62:121-125
    94. Hakkinen ST, Raven N, Henquet M, Laukkanen ML, Anderlei T, Pitkanen JP, Twyman RM, Bosch D, Oksman-Caldentey KM, Schillberg S, Ritala A. Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnol Bioeng,2014,111:336-346
    95. Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, Zardi L, Neri D. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol,2002,20:264-269
    96. Hamblin AM, White DG. Inheritance of resistance to Aspergillus ear rot and aflatoxin production of corn from Tex6. Phytopathology,2000,90:292-296
    97. Han Z, Ren Y, Zhu J, Cai Z, Chen Y, Luan L, Wu Y. Multianalysis of 35 mycotoxins in traditional Chinese medicines by ultra-high-performance liquid chromatography-tandem mass spectrometry coupled with accelerated solvent extraction. J Agric Food Chem,2012,60:8233-8247
    98. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology,2007,153: 1677-1692
    99. Hell K, Cardwell KF, Setamou M, Poehling HM. The influence of storage practices on aflatoxin contamination in maize in four agroecological zones of Benin, west Africa. J Stored Prod Res,2000,36:365-382
    100. Hof D, Hoeke MO, Raats JMH. Multiple-antigen immunization of chickens facilitates the generation of recombinant antibodies to autoantigens. Clin Exp Immunol,2008,151:367-377
    101. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol,2005,23:1126-1136
    102. Hong SY, Linz JE. Functional expression and subcellular localization of the aflatoxin pathway enzyme Ver-1 fused to enhanced green fluorescent protein. Appl Environ Microbiol,2008,74:6385-6396
    103. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G. Multi-subunit proteins on the surface of filamentous phage:methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res,1991,19: 4133-4137
    104. Horn BW. Ecology and population biology of aflatoxigenic fungi in soil. Toxin Rev, 2003,22:351-379
    105. Horn BW, Greene RL, Dorner JW. Effect of corn and peanut cultivation on soil, populations of Aspergillus flavus and A. parasiticus in southwestern Georgia. Appl Environ Microbiol,1995,61:2472-2475
    106. Horn BW, Moore GG, Carbone I. Sexual reproduction in Aspergillus flavus. Mycologia,2009,101:423-429
    107. Horn BW, Sorensen RB, Lamb MC, Sobolev VS, Olarte RA, Worthington CJ, Carbone I. Sexual reproduction in Aspergillus flavus sclerotia naturally produced in corn. Phytopathology,2013,104:75-85
    108. Hron Sr R, Kuk M, Abraham G, Wan P. Ethanol extraction of oil, gossypol and aflatoxin from cottonseed. J Am Oil Chem Soc,1994,71:417-421
    109. Hu SZ, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, Shively JE, Wu AM. Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res,1996,56:3055-3061
    110.Hu ZQ, Li HP, Zhang JB, Huang T, Liu JL, Xue S, Wu AB, Liao YC. A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains. Anal Chim Acta,2013,764: 84-92
    111. Hudson PJ, Kortt AA. High avidity scFv multimers; diabodies and triabodies. J Immunol Methods,1999,231:177-189
    112. Hudson PJ, Souriau C. Engineered antibodies. Nat Med,2003,9:129-134
    113. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Nat Acad Sci USA,1988,85:5879-5883
    114. Jaime-Garcia R, Cotty PJ. Crop rotation and soil temperature influence the community structure of Aspergillus flavus in soil. Soil Biol Biochem,2010,42: 1842-1847
    115. Jiang J, Yan L, Ma Z. Molecular characterization of an atoxigenic Aspergillus flavus strain AF051. Appl Microbiol Biotechnol,2009,83:501-505
    116. Jobling SA, Jarman C, Teh M-M, Holmberg N, Blake C, Verhoeyen ME. Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotech,2003,21:77-80
    117. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature,1986,321:522-525
    118. Jones R, Duncan H, Hamilton P. Planting date, harvest date, and irrigation effects on infection and aflatoxin production by Aspergillus flavus in field corn. Phytopathology,1981,71:810-816
    119. Jung D, Alt FW. Unraveling V(D)J Recombination: Insights into Gene Regulation. Cell,2004,116:299-311
    120. Junttila T, Li G, Parsons K, Phillips G, Sliwkowski M. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat,2011,128:347-356
    121. Kale SP, Milde L, Trapp MK, Frisvad JC, Keller NP, Bok JW. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol,2008,45:1422-1429
    122. Kathuria S, Sriraman R, Nath R, Sack M, Pal R, Artsaenko O, Talwar GP, Fischer R, Finnern R. Efficacy of plant-produced recombinant antibodies against HCG. Hum Reprod,2002,17:2054-2061
    123. Kehoe JW, Kay BK. Filamentous phage display in the new millennium. Chem Rev, 2005,105:4056-4072
    124. Kelley R, Gresham C, Harper J, Bridges S, Warburton M, Hawkins L, Pechanova O, Peethambaran B, Pechan T, Luthe D, Mylroie J, Ankala A, Ozkan S, Henry W, Williams W. Integrated database for identifying candidate genes for Aspergillus flavus resistance in maize. BMC Bioinf,2010,11:S25
    125. Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, Ikle DN, Yazaki PJ, Chatziioannou AF, Gambhir SS, Williams LE, Shively JE, Colcher D, Raubitschek AA, Wu AM. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res,2005,65:622-631
    126. Kenji YI, Yamamoto K, Okada S. Purification and characterization of an intracellular alpha-D-Xylosidase II from Aspergillus flavus MO-5. Biosci. Biotech. Biochem, 1993,57:1281-1285
    127. Kensler TW, Roebuck BD, Wogan GN, Groopman JD. Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicol Sci,2011,120:S28-S48
    128. Kerschbaumer RJ, Hirschl S, Kaufmann A, Ibl M, Koenig R, HimmLer G. Single-chain Fv fusion proteins suitable as coating and detecting reagents in a double antibody sandwich enzyme-linked immunosorbent assay. Anal Biochem,1997,249: 219-227
    129. Khlangwiset P, Shephard GS, Wu F. Aflatoxins and growth impairment: A review. Crit Rev Toxicol,2011,41:740-755
    130. Kim G-B, Wang Z, Liu YY, Stavrou S, Mathias A, Goodwin KJ, Thomas JM, Neville DM. A fold-back single-chain diabody format enhances the bioactivity of an anti-monkey CD3 recombinant diphtheria toxin-based immunotoxin. Protein Eng Des Sel,2007,20:425-432
    131. Kim HJ, McCoy MR, Majkova Z, Dechant JE, Gee SJ, Tabares-da Rosa S, Gonzalez-Sapienza GG, Hammock BD. Isolation of alpaca anti-hapten heavy chain single domain antibodies for development of sensitive immunoassay. Anal Chem, 2012,84:1165-1171
    132. Klein PJ, Buckner R, Kelly J, Coulombe Jr RA. Biochemical basis for the extreme sensitivity of turkeys to aflatoxin B1. Toxicol Appl Pharmacol,2000,165:45-52
    133. Klich MA. Biogeography of Aspergillus species in soil and litter. Mycologia,2002, 94:21-27
    134. Klich MA. Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol, 2007,8:713-722
    135. Kobayashi N, Iwakami K, Kotoshiba S, Niwa T, Kato Y, Mano N, Goto J. Immunoenzymometric assay for a small molecule,11-Deoxycortisol, with attomole-range sensitivity employing an scFv-enzyme fusion protein and anti-idiotype antibodies. Anal Chem,2006,78:2244-2253
    136. Kong Q, Shan S, Liu Q, Wang X, Yu F. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. Int J Food Microbiol,2010, 139:31-35
    137. Krebber A, Bornhauser S, Burmester J, Honegger A, Willuda J, Bosshard HR, Pluckthun A. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J Immunol Methods,1997,201:35-55
    138. Kretzschmar T, von Ruden T. Antibody discovery: phage display. Curr Opin Biotechnol,2002,13:598-602
    139. Kwak BY, Shon DH, Kwon BJ, Kweon CH, Lee KH. Detection of Aspergillus and Penicillium genera by enzyme-linked immunosorbent assay using a monoclonal antibody. J Microbiol Biotechnol,2001,11:21-28
    140. Lagaert S, Belien T, Volckaert G Plant cell walls: Protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol,2009,20:1064-1073
    141. Lambert C, Leonard N, De Bolle X, Depiereux E. ESyPred3D:Prediction of proteins 3D structures. Bioinformatics,2002,18:1250-1256
    142. Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev,1999,12: 310-350
    143. Latge JP, Kobayashi H, Debeaupuis JP, Diaquin M, Sarfati J, Wieruszeski JM, Parra E, Bouchara JP, Fournet B. Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect Immun,1994,62: 5424-5433
    144. Leonard P, Safsten P, Hearty S, McDonnell B, Finlay W, O'Kennedy R. High throughput ranking of recombinant avian scFv antibody fragments from crude lysates using the Biacore A100. J Immunol Methods,2007,323:172-179
    145. Lewis L, Onsongo M, Njapau H, Schurz-Rogers H, Luber G, Kieszak S, Nyamongo J, Backer L, Dahiye AM, Misore A. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ Health Perspect,2005,113:1763-1767
    146. Li HP, Zhang JB, Shi RP, Huang T, Fischer R, Liao YC. Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Mol Plant Microbe Interact, 2008,21:1242-1248
    147. Lillo AM, Ayriss JE, Shou Y, Graves SW, Bradbury ARM. Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS One,2011,6:e27756
    148. Linke R, Klein A, Seimetz D. Catumaxomab: Clinical development and future directions. mAbs,2010,2:129-136
    149. Liu JL, Zabetakis D, Lee AB, Goldman ER, Anderson GP. Single domain antibody-alkaline phosphatase fusion proteins for antigen detection—Analysis of affinity and thermal stability of single domain antibody. J Immunol Methods,2013, 393:1-7
    150. Liu JL, Hu ZQ, Xing S, Xue S, Li HP, Zhang JB, Liao YC. Attainment of 15-Fold higher affinity of a Fusarium-specific single-chain antibody by directed molecular evolution coupled to phage display. Mol Biotechnol,2012,52:111-122
    151. Liu Y, Wu F. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect,2010,118:818-824
    152. Lu RM, Chang YL, Chen MS, Wu HC. Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials, 2011,32:3265-3274
    153. Ma JKC, Drake PMW, Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet,2003,4:794-805
    154. Magan N, Aldred D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int J Food Microbiol,2007,119:131-139
    155. Manis JP, Tian M, Alt FW. Mechanism and control of class-switch recombination. Trends Immunol,2002,23:31-39
    156. Marvin DA. Filamentous phage structure, infection and assembly. Curr Opin Struct Biol,1998,8:150-158
    157. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature,1990,348:552-554
    158. McCormack WT, Tjoelker LW, Thompson CB. Avian B-cell development: Generation of an immunoglobulin repertoire by gene conversion. Annu Rev Immunol,1991,9:219-241
    159. Mehl HL, Cotty PJ. Influence of plant host species on intraspecific competition during infection by Aspergillus flavus. Plant Pathol,2013,
    160. Mehl HL, Cotty PJ. Influence of the host contact sequence on the outcome of competition among Aspergillus flavus isolates during host tissue invasion. Appl Environ Microbiol,2011,77:1691-1697
    161. Mellon J, Cotty P. Purification and partial characterization of an elastinolytic proteinase from Aspergillus flavus culture filtrates. Appl Microbiol Biotechnol,1996, 46:138-142
    162. Miethe S, Meyer T, Wohl-Bruhn S, Frenzel A, Schirrmann T, Diibel S, Hust M. Production of single chain fragment variable (scFv) antibodies in Escherichia coli using the LEXTM bioreactor. J Biotechnol,2013,163:105-111
    163. Miller KD, Weaver-Feldhaus J, Gray SA, Siegel RW, Feldhaus MJ. Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Protein Expr Purif, 2005,42:255-267
    164. Mooney JL, Yager LN. Light is required for conidiation in Aspergillus nidulans. Genes Dev,1990,4:1473-1482
    165. Moragues MD, Omaetxebarria MJ, Elguezabal N, Sevilla MJ, Conti S, Polonelli L, Ponton J. A monoclonal antibody directed against a Candida albicans cell wall mannoprotein exerts three anti- C. albicans activities. Infect Immun,2003,71: 5273-5279
    166. Morgan J, Wannemuehler KA, Marr KA, Hadley S, Kontoyiannis DP, Walsh TJ, Fridkin SK, Pappas PG, Warnock DW. Incidence of invasive aspergillosis following hematopoietic stem cell and solid organ transplantation: interim results of a prospective multicenter surveillance program. Med Mycol,2005,43:49-58
    167. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Nat Acad Sci USA,1984,81:6851-6855
    168. Munkvold GP. Cultural and genetic approaches to managing mycotoxins in maize. Annu Rev Phytopathol,2003,41:99-116
    169. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme. Cell,2000,102:553-563
    170. Muyldermans S. Single domain camel antibodies: current status. Rev Mol Biotechnol,2001,74:277-302
    171. Muyldermans S. Nanobodies:natural single-domain antibodies. Annu Rev Biochem, 2013,82:775-797
    172. Nesbitt BF, O'Kelly J, Sargeant K, Sheridan ANN. Aspergillus Flavus and Turkey X Disease:Toxic Metabolites of Aspergillus flavus. Nature,1962,195:1062-1063
    173. Ni X, Wilson JP, Buntin GD, Guo B, Krakowsky MD, Lee RD, Cottrell TE, Scully BT, Huffaker A, Schmelz EA. Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn. Toxins,2011,3:920-931
    174. Ni X, Wilson JP, Toews MD, David Buntin G, Dewey Lee R, Li X, Lei Z, He K, Xu W, Li X, Huffaker A, Schmelz EA. Evaluation of spatial and temporal patterns of insect damage and aflatoxin level in the pre-harvest corn fields to improve management tactics. Insect Sci,2012, DOI 10.1111/j.1744-7917.2012.01531.x
    175. Nickel H, Kawchuk L, Twyman RM, Zimmermann S, Junghans H, Winter S, Fischer R, Prufer D. Plantibody-mediated inhibition of the Potato leafroll virus P1 protein reduces virus accumulation. Virus Res,2008,136:140-145
    176. Nielsen M, Lundegaard C, Lund O, Petersen TN. CPHmodels-3.0—remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res, 2010,38:W576-W581
    177. Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv,2010,28:849-858
    178. Pansri P, Jaruseranee N, Rangnoi K, Kristensen P, Yamabhai M. A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotech,2009,9:6
    179. Park JW, Shon DH, Kim YB. Application of an enzyme-linked immunosorbent assay for detecting mold contamination in agricultural commodities and comparison with conventional assays. Food Agric Immunol,2003,15:159-166
    180. Paschke M. Phage display systems and their applications. Appl Microbiol Biotechnol, 2006,70:2-11
    181. Pasqualotto AC, Xavier MO, Sanchez LB, de Oliveira Costa CD, Schio SM, Camargo SM, Camargo JJ, Sukiennik TC, Severo LC. Diagnosis of invasive aspergillosis in lung transplant recipients by detection of galactomannan in the bronchoalveolar lavage fluid. Transplantation,2010,90:306-311
    182. Passone MA, Rosso LC, Ciancio A, Etcheverry M. Detection and quantification of Aspergillus section Flavi spp. in stored peanuts by real-time PCR of nor-1 gene, and effects of storage conditions on aflatoxin production. Int J Food Microbiol,2010, 138:276-281
    183. Payne Q Cassel D, Adkins C. Reduction of aflatoxin contamination in corn by irrigation and tillage. Phytopathology,1986,76:679-684
    184. Pechanova O, Pechan T, Williams WP, Luthe DS. Proteomic analysis of the maize rachis:Potential roles of constitutive and induced proteins in resistance to Aspergillus flavus infection and aflatoxin accumulation. Proteomics,2011,11: 114-127
    185. Pedersen MW, Jacobsen HJ, Koefoed K, Hey A, Pyke C, Haurum JS, Kragh M. Sym004:a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res,2010,70:588-597
    186. Peethambaran B, Hawkins L, Windham GL, Williams WP, Luthe DS. Anti-fungal activity of maize silk proteins and role of chitinases in Aspergillus flavus resistance. Toxin Rev,2010,29:27-39
    187. Peschen D, Li HP, Fischer R, Kreuzaler F, Liao YC. Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat Biotechnol,2004,22:732-738
    188. Phillips TD, Kubena LF, Harvey RB, Taylor DR, Heidelbaugh ND. Hydrated sodium calcium aluminosilicate: a high affinity sorbent for aflatoxin. Poult Sci,1988,67: 243-247
    189. Pier AC. Major biological consequences of aflatoxicosis in animal production. J Anim Sci,1992,70:3964-3967
    190. Pitt JI, Hocking AD. Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia,2006,162:233-243
    191. Probst C, Njapau H, Cotty PJ. Outbreak of an acute aflatoxicosis in Kenya in 2004: identification of the causal agent. Appl Environ Microbiol,2007,73:2762-2764
    192. Qi H, Lu H, Qiu HJ, Petrenko V, Liu A. Phagemid vectors for phage display: Properties, characteristics and construction. J Mol Biol,2012,417:129-143
    193. Ratcliffe MJH. Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev Comp Immunol,2006,30:101-118
    194. Ren F, Li BC, Zhang NN, Cao M, Dan WB, Zhang SQ. Expression, purification and characterization of anti-BAFF antibody secreted from the yeast Pichia pastoris. Biotechnol Lett,2008,30:1075-1080
    195. Reverberi M, Punelli F, Scarpari M, Camera E, Zjalic S, Ricelli A, Fanelli C, Fabbri AA. Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl Microbiol Biotechnol,2010,85: 1935-1946
    196. Ricci F, Volpe G, Micheli L, Palleschi G. A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta,2007,605: 111-129
    197. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature,1988,332:323-327
    198. Robens J, Cardwell KF. The costs of mycotoxin management in the United States, in: Abbas HK (ed), Aflatoxin and food safety. Boca Raton, FL:CRC press,2005.1-12
    199. Robertson-Hoyt LA, Betran J, Payne GA, White DG, Isakeit T, Maragos CM, Molnar TL, Holland JB. Relationships among resistances to Fusarium and Aspergillus ear rots and contamination by fumonisin and aflatoxin in maize. Phytopathology,2007,97:311-317
    200. Robinson MK, Hodge KM, Horak E, Sundberg AL, Russeva M, Shaller CC, von Mehren M, Shchaveleva I, Simmons HH, Marks JD, Adams GP. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br J Cancer,2008,99:1415-1425
    201. Rodriguez-del-Bosque L. Impact of agronomic factors on aflatoxin contamination in preharvest field corn in northeastern Mexico. Plant Dis,1996,80:988-993
    202. Rooney S, Chaudhuri J, Alt FW. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev,2004,200:115-131
    203. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc,2010,5:725-738
    204. Roze LV, Arthur AE, Hong SY, Chanda A, Linz JE. The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Mol Microbiol,2007,66:713-726
    205. Sblattero D, Bradbury A. Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol,2000,18:75-80
    206. Schier R, Bye J, Apell G, McCall A, Adams GP, Malmqvist M, Weiner LM, Marks JD. Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J Mol Biol,1996,255:28-43
    207. Schmidt-Heydt M, Hackel S, Riifer C, Geisen R. A strain of Fusarium kyushuense is able to produce aflatoxin B1 and G1. Mycotoxin Res,2009,25:141-147
    208. Schoonbroodt S, Steukers M, Viswanathan M, Frans N, Timmermans M, Wehnert A, Nguyen M, Ladner RC, Hoet RM. Engineering antibody heavy chain CDR3 to create a phage display Fab library rich in antibodies that bind charged carbohydrates. J Immunol,2008,181:6213-6221
    209. Schroeder HW, Jr., Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol,2010,125:S41-52
    210. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res,2003,31:3381-3385
    211. Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindqvist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD. Efficient construction of a large nonimmune phage antibody library:the production of high-affinity human single-chain antibodies to protein antigens. Proc Nat Acad Sci USA,1998,95:6157-6162
    212. Shen HD, Tam M, Tang RB, Chou H. Aspergillus and Penicillium allergens: Focus on proteases. Curr Allergy Asthma Rep,2007,7:351-356
    213. Shieh MT, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, Dean RA. Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol,1997,63:3548-3552
    214. Simon-Nobbe B, Denk U, Poll V, Rid R, Breitenbach M. The spectrum of fungal allergy. Int Arch Allergy Immunol,2008,145:58-86
    215. Slot JC, Rokas A. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr Biol,2011,21:134-139
    216. Smith G Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science,1985,228:1315-1317
    217. Smith GP, Petrenko VA. Phage display. Chem Rev,1997,97:391-410
    218. Somashekar D, Rati ER, Anand S, Chandrashekar A. Isolation, enumeration and PCR characterization of aflatoxigenic fungi from food and feed samples in India. Food Microbiol,2004,21:809-813
    219. Squire R. Ranking animal carcinogens:a proposed regulatory approach. Science, 1981,214:877-880
    220. Stenske KA, Smith JR, Newman SJ, Newman LB, Kirk CA. Aflatoxicosis in dogs and dealing with suspected contaminated commercial foods. J Am Vet Med Assoc, 2006,228:1686-1691
    221. Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L, Calvo AM. Aspergillus nidulans VeA subcellular localization is dependent on the importin a carrier and on light. Mol Microbiol,2007,63:242-255
    222. Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol,2000,42:583-590
    223. Stynen D, Sarfati J, Goris A, Prevost MC, Lesourd M, Kamphuis H, Darras V, Latge JP. Rat monoclonal antibodies against Aspergillus galactomannan. Infect Immun, 1992,60:2237-2245
    224. Swain MD, Anderson GP, Serrano-Gonzalez J, Liu JL, Zabetakis D, Goldman ER. Immunodiagnostic reagents using llama single domain antibody-alkaline phosphatase fusion proteins. Anal Biochem,2011,417:188-194
    225. Tayel AA, El-Tras WF, Moussa SH, El-Agamy MA. Antifungal action of Pichia anomala against aflatoxigenic Aspergillus flavus and its application as a feed supplement. J Sci Food Agric,2013,93:3259-3263
    226. Thornton CR, Wills OE. Immunodetection of fungal and oomycete pathogens: Established and emerging threats to human health, animal welfare and global food security. Crit Rev Microbiol,2013,1-25
    227. Tsai GJ, Yu SC. An enzyme-linked immunosorbent assay for the detection of Aspergillus parasiticus and Aspergillus flavus. J Food Prot,1997,60:978-984
    228. Tsai GJ, Yu SC. Detecting Aspergillus parasiticus in cereals by an enzyme-linked immunosorbent assay. Int J Food Microbiol,1999,50:181-189
    229. Tsitsigiannis DI, Keller NP. Oxylipins as developmental and host-fungal communication signals. Trends Microbiol,2007,15:109-118
    230. Tsitsigiannis DI, Kunze S, Willis DK, Feussner I, Keller NP. Aspergillus infection inhibits the expression of peanut 13S-HPODE-forming seed lipoxygenases. Mol Plant Microbe Interact,2005,18:1081-1089
    231. Van Der Zijden ASM, Koelensmid WAAB, Boldingh J, Barrett CB, Ord WO, Philp J. Aspergillus flavus and turkey X disease: Isolation in crystalline form of a toxin responsible for turkey X disease. Nature,1962,195:1060-1062
    232. Van Egmond HP. Current situation on regulations for mycotoxins. Overview of tolerances and status of standard methods of sampling and analysis. Food Addit Contam,1989,6:139-188
    233. Van Gent DC, Ramsden DA, Gellert M. The RAG1 and RAG2 Proteins Establish the 12/23 Rule in V(D)J Recombination. Cell,1996,85:107-113
    234. Varga J, Frisvad JC, Samson RA. A reappraisal of fungi producing aflatoxins. World Mycotoxin J,2009,2:263-277
    235. Varga J, Frisvad JC, Samson RA. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol,2011,69:57-80
    236. Verhaert R, VAN DUIN J, Quax W. Processing and functional display of the 86 kDa heterodimeric penicillin G acylase on the surface of phage fd. Biochem J,1999,342: 415-422
    237. Villamizar R, Maroto A, Rius FX. Rapid detection of Aspergillus flavus in rice using biofunctionalized carbon nanotube field effect transistors. Anal BioanalChem,2011, 399:119-126
    238. Vujanovic V, Smoragiewicz W, Krzysztyniak K. Airborne fungal ecological niche determination as one of the possibilities for indirect mycotoxin risk assessment in indoor air. Environ Toxicol,2001,16:1-8
    239. Walker RD, White DG. Inheritance of resistance to Aspergillus ear rot and aflatoxin production of corn from CI2. Plant Dis,2001,85:322-327
    240. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Segal BH, Steinbach WJ, Stevens DA, van Burik JA, Wingard JR, Patterson TF. Treatment of aspergillosis:clinical practice guidelines of the infectious diseases society of America. Clin Infect Dis,2008,46:327-360
    241. Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y, Bazirgan O, Torkamani A, Raudsepp T, Mwangi W, Criscitiello MF, Wilson IA, Schultz PG, Smider VV. Reshaping antibody diversity. Cell,2013,153:1379-1393
    242. Wang JS, Huang T, Su J, Liang F, Wei Z, Liang Y, Luo H, Kuang SY, Qian GS, Sun G, He X, Kensler TW, Groopman JD. Hepatocellular carcinoma and aflatoxin exposure in Zhuqing village, Fusui county, People's Republic of China. Cancer Epidemiol Biomarkers Prev,2001,10:143-146
    243. Wang SH, Zhang JB, Zhang ZP, Zhou YF, Yang RF, Chen J, Guo YC, You F, Zhang XE. Construction of single chain variable fragment (ScFv) and biscFv-alkaline phosphatase fusion protein for detection of Bacillus anthracis. Anal Chem,2006,78: 997-1004
    244. Wang Y, Li P, Majkova Z, Bever CRS, Kim HJ, Zhang Q, Dechant JE, Gee SJ, Hammock BD. Isolation of alpaca anti-idiotypic heavy chain single domain antibody for the aflatoxin immunoassay. Anal Chem,2013,
    245. Wang ZY, Cai JP, Qiu LW, Hao W, Pan YX, Tung ET, Lau CC, Woo PC, Lau SK, Yuen KY, Che XY. Development of monoclonal antibody-based galactomannoprotein antigen-capture ELISAs to detect Aspergillus fumigatus infection in the invasive aspergillosis rabbit models. Eur J Clin Microbiol Infect Dis, 2012,31:2943-2950
    246. Warburton M, Brooks T, Windham G, Paul Williams W. Identification of novel QTL contributing resistance to aflatoxin accumulation in maize. Mol Breed,2011,27: 491-499
    247. Warburton ML, Brooks TD, Krakowsky MD, Shan X, Windham GL, Williams WP. Identification and mapping of new sources of resistance to aflatoxin accumulation in maize. Crop Sci,2009,49:1403-1408
    248. Wartenberg D, Lapp K, Jacobsen ID, Dahse HM, Kniemeyer O, Heinekamp T, Brakhage AA. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int J Med Microbiol,2011,301:602-611
    249. Whitehead M, Shieh M, Cleveland T, Cary J, Dean R. Isolation and characterization of polygalacturonase genes (pecA and pecB) from Aspergillus flavus. Appl Environ Microbiol,1995,61:3316-3322
    250. Whitlow M, Bell BA, Feng SL, Filpula D, Hardman KD, Hubert SL, Rollence ML, Wood JF, Schott ME, Milenic DE. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng,1993,6: 989-995
    251. Whittle JRR, Zhang R, Khurana S, King LR, Manischewitz J, Golding H, Dormitzer PR, Haynes BF, Walter EB, Moody MA, Kepler TB, Liao HX, Harrison SC. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Nat Acad Sci USA,2011,108:14216-14221
    252. Wicklow D, Wilson D, Nelsen T. Survival of Aspergillus flavus sclerotia and conidia buried in soil in Illinois or Georgia. Phytopathology,1993,83:
    253. Wildt S, Gerngross TU. The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol,2005,3:119-128
    254. Williams AF, Barclay AN. The immunoglobulin superfamily-domains for cell surface recognition. Annu Rev Immunol,1988,6:381-405
    255. Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr,2004,80:1106-1122
    256. Wu AHB. A selected history and future of immunoassay development and applications in clinical chemistry. Clin Chim Acta,2006,369:119-124
    257. Wu AM. Engineered antibodies for molecular imaging of cancer. Methods,2014,65: 139-147
    258. Xue S, Li HP, Zhang JB, Liu JL, Hu ZQ, Gong AD, Huang T, Liao YC. Chicken single-chain antibody fused to alkaline phosphatase detects Aspergillus pathogens and their presence in natural samples by direct sandwich enzyme-linked immunosorbent assay. Anal Chem,2013,85:10992-10999
    259. Yabe K, Nakajima H. Enzyme reactions and genes in aflatoxin biosynthesis. Appl Microbiol Biotechnol,2004,64:745-755
    260. Yajima W, Rahman MH, Das D, Suresh MR, Kav NN. Detection of Sclerotinia sclerotiorum using a monomeric and dimeric single-chain fragment variable (scFv) antibody. J Agric Food Chem,2008,56:9455-9463
    261. Yajima W, Verma SS, Shah S, Rahman MH, Liang Y, Kav NNV. Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. New Biotechnol,2010,27:816-821
    262. Yong RK, Cousin MA. Detection of moulds producing aflatoxins in maize and peanuts by an immunoassay. Int J Food Microbiol,2001,65:27-38
    263. Yoshikawa K, Yamamoto K, Okada S. Isolation of Aspergillus flavus MO-5 producing two types of intracellular alpha-D-xylosidases: purification and characterization of alpha-D-xylosidase I. Biosci Biotechnol Biochem,1993,57: 1275
    264. Yu J, Mohawed S, Bhatnagar D, Cleveland T. Substrate-induced lipase gene expression and aflatoxin production in Aspergillus parasiticus and Aspergillus flavus. J Appl Microbiol,2003,95:1334-1342
    265. Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol,2004,70:1253-1262
    266. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf,2008,9: 40
    267. Zhang Z, Li Y, Li P, Zhang Q, Zhang W, Hu X, Ding X. Monoclonal antibody-quantum dots CdTe conjugate-based fluoroimmunoassay for the determination of aflatoxin B1 in peanuts. Food Chem,2014,146:314-319
    268. Zorzete P, Reis TA, Felicio JD, Baquiao AC, Makimoto P, Correa B. Fungi, mycotoxins and phytoalexin in peanut varieties, during plant growth in the field. Food Chem,2011,129:957-964
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.