生物质催化转化制备羧酸化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料的使用带来的环境危机和能源危机亟需研究人员开发替代化石能源的新能源。生物质是目前新能源领域中唯一能替代化石能源中碳来源的可再生资源。将其转化为液体燃料和化学品是目前国内外研究的热点。本论文着眼于研究利用生物质尤其是自然界中存在的木质纤维生物质制备一些燃料平台分子和化学品。论文的第一章首先对生物质的概念进行了简介,引出了生物质平台分子的概念并强调了羧酸类化合物是生物质平台分子中的主要成员。随后对所研究的三个羧酸分子:乙酰丙酸,甲酸和乙酸进行了简介。乙酰丙酸是生物质平台分子中重要的一员,本文主要对其工业生产工艺和进一步转化为先进液体燃料和燃料添加剂的研究进行了简介。其次,本文简要介绍了甲酸作为工业大宗化学品的用途,并对近期甲酸与二氧化碳,氢气间的可逆转化进行了简介,并预期以甲酸为中间体的生物质产氢过程可能是未来生物质转化的重要研究之一。最后,本文简要介绍了乙酸这种工业大宗化学品的用途,工业生产工艺以及其中存在的问题,为发展从生物质制备乙酸的工业生产工艺提供了指导意义。
     针对目前生物质制备甲酸过程存在的反应条件苛刻,需要额外碱的加入等问题,在第二章中,我们使用钒掺杂的杂多酸,首次实现了温和条件下生物质基碳水化合物氧化制备甲酸的过程。该过程具有以下的优点:(1)在373K的反应温度下,以葡萄糖作为反应原料,使用空气或氧气,即可实现52%的甲酸最高产率;(2)H5PV2Mo10040型杂多酸可以作为双功能催化剂催化纤维素降解为甲酸,在443K的反应温度下,空气作为氧化剂时,甲酸的产率最高可达35%。反应中间体的筛选过程证明了醛基是产生甲酸过程不可或缺的官能团,而所用杂多酸催化剂的活性中心为钒原子。
     随后,针对目前由生物质生产乙酰丙酸的路线中乙酰丙酸质量产率较低的问题,我们首次提出了在四氢呋喃和盐水的双相体系中,全转化木质纤维生物质中的碳水化合物生产乙酰丙酸的路线。本工作不仅通过模型反应证明了反应体系的可行性,还对真实生物质原料的转化进行了研究。THF和水的双相体系首先成功实现了生物质原料中六碳糖和五碳糖成分的一步水解,水解产率与前人报道结果相当。随后,一步减压蒸馏过程不仅可以有效地将由木质素和胡敏素组成的固体残余物与水解产物分离,还成功将水解产物中糠醛,甲酸与乙酰丙酸分离,从而便于进一步考察利用水解副产物甲酸还原糠醛的过程。使用Ru基催化剂不仅实现了甲酸还原糠醛的模型反应,反应体系还可以用于生物质水解液中副产物甲酸还原糠醛的过程。最终,所提出的集成策略获得了目前报道最高的由生物质原料生产乙酰丙酸的质量产量,与单水解六碳糖相比,乙酰丙酸的产率最多提高了68.9%,证明了本工作所提出的由生物质原料生产乙酰丙酸的集成策略具有很高的应用前景。
     最后,我们发展了一种生物质高选择性高产率制备乙酸的方法。反应过程只需要使用硫酸作为酸催化剂,氧气作为氧化剂,多种生物质原料可以被转化到乙酸,乙酸的最高质量收率为21.3%,且液体产物中乙酸的选择性高达90%。随后,关于生物质原料各组分转化到乙酸过程的研究证明了碳水化合物尤其是六碳糖,是乙酸的主要来源,乙酰丙酸是反应的重要中间体。最终,我们着重研究了反应工艺中催化剂回收使用,乙酸的纯化过程,从而对乙酸工业生产过程进行了初步探索。
Economic and geopolitical factors (high oil prices, environmental concerns, and supply instability) have certainly played a role in reviving interest in renewable resources. Biomass is currently the only renewable carbon source in the field of new energy. Therefore, the generation of liquid fuels and chemicals from it is currently a hot research topic. This paper focuses on the study of the utilization of biomass, especially lignocellulosic biomass to generate a number of commodity chemicals and biofuel platform molecules. In the first chapter, we first introduce the concept of biomass and biomass platform molecules, and we emphasize carboxylic acids is a key member of biomass platform molecules. Then we briefly introduce three carboxylic acids, levulinic acid, formic acid and acetic acid. Levulinic acid maybe is the most important biomass platform molecules. We primarily state the industrial technology for its generation, and then its conversion into liquid fuels and advanced fuel additives. Secondly, we briefly describe the industrial commodity chemical, formic acid. The reversible transformation of formic acid and carbon dioxide, hydrogen has emerged a hot area for fuel cell, and we propose that the production hydrogen from biomass with formic acid as intermediate is an important process in the future. Finally, we describe the industrial bulk chemical, acetic acid. Introduce the problems existing in the industrial generation of acetic acid will assist us developing industrial production of acetic acid from biomass.
     Currently, generation of formic acid from biomass needs harsh reaction conditions and/or the additional use of base. In the second chapter, for the first time, we achieve the generation of formic acid from biomass-derived carbohydrates under mild reaction conditions by the use of H5PV2Mo10O40. The highest yield of formic acid for glucose oxidation was55%when oxidized by oxygen and52%when oxidized by air. The X-ray photoelectron spectra and reactions of possible intermediates indirectly revealed the reaction mechanism to be electron and oxygen transfer processes. H5PV2Mo10O40can also be used as a bifunctional catalyst for the conversion of cellulose into FA at443K in9h with35%yield when using air as the oxidant.
     Then we reported the integrated conversion of lignocellulosic biomass to levulinic acid in a biphasic system consisting of THF and NaCl aqueous solution. The one-step hydrolysis of C6and C5carbohydrates in the lignocellulosic biomass was firstly achieved to give a product solution that contained furfural, formic acid, levulinic acid and lignin, and the hydrolysis process was operated with both model substrates and biomass raw materials. The yields of the hydrolysis products are comparable to values obtained in the literature using a mixed solvent of GVL and water. In contrast to processes using the high boiling point solvent GVL, the utilization of THF allowed a one-step distillation of the product solution into three fractions:furfural and formic acid; levulinic acid; lignin. This separation step not only removed the solid residue from the desired product effectively, but it also let us investigate the hydrogenation of furfural with by-product formic acid without any interference. The hydrogenation process was eventually achieved and the product furfuryl alcohol was finally hydrolyzed to levulinic acid to achieve the integrated conversion of lignocellulosic biomass to levulinic acid. The highest mass yield of levulinic acid was27.7%, which was promoted by68.9%with the additional conversion of the hemicellulose fraction. Thus, the utilization of a lower boiling point solvent, THF, not only achieves the simultaneous hydrolysis of C6and C5carbohydrates in lignocellulosic biomass, but as compared to GVL, it also offers an alternative operation procedure for the integrated conversion of biomass to levulinic acid.
     Finally, we develop a method for preparing a high yield with high selectivity of acetic acid from lignocellulosic biomass. While using sulfuric acid as the acid catalyst, oxygen as the oxidant, a variety of biomass materials can be converted to acetic acid with a highest mass yield of21.3%and highest liquid product selectivity of90%. The transformation of the components of the biomass feedstock demonstrated that the carbohydrates, especially hexoses are the main source of acetic acid, and levulinic acid is the main intermediate. Ultimately, we focus on the recycle of catalyst and the purification of acetic acid which are important factors in industrial processes for acetic acid production.
引文
[1]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007,107(6):2411-2502.
    [2]Holladay J E, Bozell J J, White J F, et al. Top value-added chemicals from biomass[J]. Volume Ⅱ-Results of Screening for Potential Candidates from Biorefinery Lignin, Report prepared by members of NREL, PNNL and University of Tennessee,2007.
    [3]Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "top 10" revisited[J]. Green Chemistry,2010,12(4):539-554.
    [4]Horvat J, Klaic B, Metelko B, et al. Mechanism of levulinic acid formation[J]. Tetrahedron letters,1985,26(17):2111-2114.
    [5]Fitzpatrick S W. Lignocellulose degradation to furfural and levulinic acid:U.S. Patent 4,897,497[P].1990-1-30.
    [6]Fitzpatrick S W. Production of levulinic acid from carbohydrate-containing materials:U.S. Patent 5,608,105[P].1997-3-4.
    [7]Bozell J J, Moens L, Elliott D C, et al. Production of levulinic acid and use as a platform chemical for derived products[J]. Resources, Conservation and Recycling,2000,28(3): 227-239.
    [8]Bozell J J, Patel M K. Feedstocks for the Future:Renewables for the Production of Chemicals and Materials[M]. Washington, DC:American Chemical Society,2006.
    [9]Joshi H, Moser B R, Toler J, et al. Ethyl levulinate:A potential bio-based diluent for biodiesel which improves cold flow properties[J]. Biomass and bioenergy,2011,35(7): 3262-3266.
    [10]Capelli C. A preservative composition and its use, a method of preparing it and formulations containing it:E.P. Patent 2,065,025 [P].2007-11-28.
    [11]Clarke L, Felix-Moore A, Louis J. Liquid fuel compositions:W.O. Patent 2010000761 [P]. 2010-1-7.
    [12]Le Van Mao R, Zhao Q, Dima G, et al. New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction[J]. Catalysis letters,2011,141(2):271-276.
    [13]Lake M A, Burton S W. Diesel fuel compositions containing levulinate ester:U.S. Patent Application 12/796,756[P].2010-6-9.
    [14]Hayes D J. An examination of biorefining processes, catalysts and challenges[J]. Catalysis Today,2009,145(1):138-151.
    [15]Texaco/NYSERDA/Biofine, Ethyl levulinate D-975 Diesel Additive Test Program,2000.
    [16]Ayoub P M. Process for the reactive extraction of levulinic acid:W.O. Patent 2005070867 [P].2005-8-4.
    [17]Giirbuz E I, Alonso D M, Bond J Q, et al. Reactive Extraction of Levulinate Esters and Conversion to y-Valerolactone for Production of Liquid Fuels[J]. ChemSusChem,2011, 4(3):357-361.
    [18]Peng L, Lin L, Li H, et al. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts[J]. Applied Energy,2011,88(12):4590-4596.
    [19]Ayoub P M, Lange J P. Process for converting levulinic acid into pentanoic acid:U.S. Patent Application 12/600,873 [P].2008-5-21.
    [20]Fagan P J, Manzer L E. Preparation of levulinic acid esters and formic acid esters from biomass and olefins:U.S. Patent 7,153,996[P].2006-12-26.
    [21]Pasquale G, Vazquez P, Romanelli G, et al. Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst[J]. Catalysis Communications,2012,18:115-120.
    [22]Yan K, Wu G, Wen J, et al. One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel[J]. Catalysis Communications, 2013,34:58-63.
    [23]Saravanamurugan S, Riisager A. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono-and disaccharides[J]. Catalysis Communications,2012, 17:71-75.
    [24]Hu X, Li C Z. Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery[J]. Green Chemistry,2011,13(7):1676-1679.
    [25]Mascal M, Nikitin E B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural[J]. Green Chemistry,2010,12(3):370-373.
    [26]Tominaga K, Mori A, Fukushima Y, et al. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose[J]. Green Chemistry,2011,13(4):810-812.
    [27]Peng L, Lin L, Zhang J, et al. Solid acid catalyzed glucose conversion to ethyl levulinate[J]. Applied Catalysis A:General,2011,397(1):259-265.
    [28]Dharne S, Bokade V V. Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay[J]. Journal of Natural Gas Chemistry,2011, 20(1):18-24.
    [29]Rataboul F, Essayem N. Cellulose reactivity in supercritical methanol in the presence of solid acid catalysts:Direct synthesis of methyl-levulinate[J]. Industrial & Engineering Chemistry Research,2010,50(2):799-805.
    [30]Manzer L. Preparation of levulinic acid esters from alpha-angelica lactone and alcohols: U.S. Patent Application 11/088,115[P].2005-3-23.
    [31]Manzer L. Preparation of levulinic acid esters from alpha-angelica lactone and alcohols: U.S. Patent Application 11/087,926[P].2005-3-23.
    [32]Manzer L. Preparation of levulinic acid esters from alpha-angelica lactone and olefins; use of ester compositions as fuel additives:U.S. Patent Application 10/768,276[P].2004-1-30.
    [33]Lange J P, van de Graaf W D, Haan R J. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts[J]. ChemSusChem,2009,2(5):437-441.
    [34]Horvath I T, Mehdi H, Fabos V, et al. y-Valerolactone-a sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry,2008,10(2):238-242.
    [35]Fegyverneki D, Orha L, Lang G, et al. Gamma-valerolactone-based solvents[J]. Tetrahedron,2010,66(5):1078-1081.
    [36]Alonso D M, Wettstein S G, Dumesic J A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass[J]. Green Chemistry,2013,15(3):584-595.
    [37]R. T. Morrison and R. N. Boyd, Organic Chemistry, Allyn and Bacon, Boston,1983.
    [38]Starodubtseva E V, Turova O V, Vinogradov M G, et al. Enantioselective hydrogenation of levulinic acid esters in the presence of the RuII-BINAP-HCl catalytic system[J]. Russian chemical bulletin,2005,54(10):2374-2378.
    [39]Serrano-Ruiz J C, West R M, Dumesic J A. Catalytic conversion of renewable biomass resources to fuels and chemicals[J]. Annual review of chemical and biomolecular engineering,2010,1:79-100.
    [40]Osakada K, Ikariya T, Yoshikawa S. Preparation and properties of hydride triphenyl-phosphine ruthenium complexes with 3-formyl (or acyl) propionate [RuH (ocochrchrcor')(PPh3)3 (R H, CH3, C2H5; R H, CH3, C6H5) and with 2-formyl (or acyl) benzoate [RuH (o-OCCOC6H4COR')(PPh3)3](R'H, CH3)[J]. Journal of Organometallic Chemistry,1982,231(1):79-90.
    [41]Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, y-valerolactone,1,4-pentanediol,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis,2008,48(1-4):49-54.
    [42]Chalid M, Broekhuis A A, Heeres H J. Experimental and kinetic modeling studies on the biphasic hydrogenation of levulinic acid to y-valerolactone using a homogeneous water-soluble Ru-(TPPTS) catalyst[J]. Journal of Molecular Catalysis A:Chemical,2011, 341(1):14-21.
    [43]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into γ-valerolactone without using an external H2 supply[J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [44]Tukacs J M, Kiraly D, Stradi A, et al. Efficient catalytic hydrogenation of levulinic acid:a key step in biomass conversion[J]. Green Chemistry,2012,14(7):2057-2065.
    [45]Li W, Xie J H, Lin H, et al. Highly efficient hydrogenation of biomass-derived levulinic acid to y-valerolactone catalyzed by iridium pincer complexes[J]. Green Chemistry,2012, 14(9):2388-2390.
    [46]Hengne A M, Biradar N S, Rode C V. Surface species of supported ruthenium catalysts in selective hydrogenation of levulinic esters for bio-refinery application[J]. Catalysis letters, 2012,142(6):779-787.
    [47]Manzer L E. Catalytic synthesis of a-methylene-y-valerolactone:a biomass-derived acrylic monomer[J]. Applied Catalysis A:General,2004,272(1):249-256.
    [48]Bourne R A, Stevens J G, Ke J, et al. Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to y-valerolactone in CO2[J]. Chemical communications,2007 (44):4632-4634.
    [49]Upare P P, Lee J M, Hwang D W, et al. Selective hydrogenation of levulinic acid to y-valerolactone over carbon-supported noble metal catalysts [J]. Journal of Industrial and Engineering Chemistry,2011,17(2):287-292.
    [50]Lange J P, Price R, Ayoub P M, et al. Valeric biofuels:a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition,2010,49(26): 4479-4483.
    [51]Hengne A M, Rode C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone[J]. Green Chemistry,2012,14(4):1064-1072.
    [52]Yan K, Liao J Y, Wu X, et al. RSC Adv.2013,3,3853[J]. DOI,10:C3RA22158J.
    [53]Deng L, Zhao Y, Li J, et al. Conversion of Levulinic Acid and Formic Acid into γ-Valerolactone over Heterogeneous Catalysts[J]. ChemSusChem,2010,3(10): 1172-1175.
    [54]Heeres H, Handana R, Chunai D, et al. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to γ-valerolactone using ruthenium catalysts[J]. Green Chemistry,2009,11(8):1247-1255.
    [55]Kopetzki D, Antonietti M. Transfer hydrogenation of levulinic acid under hydrothermal conditions catalyzed by sulfate as a temperature-switchable base[J]. Green Chemistry,2010, 12(4):656-660.
    [56]Serrano-Ruiz J C, Braden D J, West R M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Applied Catalysis B:Environmental,2010, 100(1):184-189.
    [57]Qi L, Horvath I T. Catalytic Conversion of Fructose to γ-Valerolactone in y-Valerolactone[J]. ACS Catalysis,2012,2(11):2247-2249.
    [58]Braden D J, Henao C A, Heltzel J, et al. Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid[J]. Green chemistry,2011,13(7): 1755-1765.
    [59]Alonso D M, Wettstein S G, Bond J Q, et al. Production of biofuels from cellulose and corn stover using alkylphenol solvents[J]. ChemSusChem,2011,4(8):1078-1081.
    [60]Girisuta B, Janssen L, Heeres H J. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid[J]. Industrial & engineering chemistry research,2007,46(6): 1696-1708.
    [61]Chia M, Dumesic J A. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to y-valerolactone over metal oxide catalysts[J]. Chemical Communications,2011,47(44):12233-12235.
    [62]Bui L, Luo H, Gunther W R, et al. Domino Reaction Catalyzed by Zeolites with Br(?)nsted and Lewis Acid Sites for the Production of γ-Valerolactone from Furfural[J]. Angewandte Chemie,2013,125(31):8180-8183.
    [63]Elliott D C, Frye J G. Hydrogenated 5-carbon compound and method of making:U.S. Patent 5,883,266[P].1999-3-16.
    [64]Upare P P, Lee J M, Hwang Y K, et al. Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts[J]. ChemSusChem,2011,4(12):1749-1752.
    [65]Du X L, Bi Q Y, Liu Y M, et al. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived y-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran[J]. Green Chemistry,2012,14(4):935-939.
    [66]Geilen F, Engendahl B, Harwardt A, et al. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system[J]. Angewandte Chemie,2010,122(32):5642-5646.
    [67]CarlosaSerrano-Ruiz J. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry,2010,12(4):574-577.
    [68]Buitrago-Sierra R, Serrano-Ruiz J C, Rodriguez-Reinoso F, et al. Ce promoted Pd-Nb catalysts for y-valerolactone ring-opening and hydrogenation[J]. Green Chemistry,2012, 14(12):3318-3324.
    [69]Chan-Thaw C E, Marelli M, Psaro R, et al. New generation biofuels:y-valerolactone into valeric esters in one pot[J]. RSC Advances,2013,3(5):1302-1306.
    [70]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of y-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [71]Bond J Q, Wang D, Alonso D M, et al. Interconversion between< i> y-valerolactone and pentenoic acid combined with decarboxylation to form butene over silica/alumina[J]. Journal of Catalysis,2011,281(2):290-299.
    [72]Sen S M, Gurbuz E I, Wettstein S G, et al. Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass:process synthesis and technoeconomic evaluation [J]. Green Chemistry,2012, 14(12):3289-3294.
    [73]Alonso D M, Bond J Q, Serrano-Ruiz J C, et al. Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes[J]. Green Chemistry, 2010,12(6):992-999.
    [74]Schwartz T J, van Heiningen A R P, Wheeler M C. Energy densification of levulinic acid by thermal deoxygenation[J]. Green Chemistry,2010,12(8):1353-1356.
    [75]Case P A, van Heiningen A R P, Wheeler M C. Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures[J]. Green chemistry,2012,14(1):85-89.
    [76]Formic Acid; BASF The Chemical Company:Ludwigshafen am Rhein, Germany, May 4, 2012; http://www.basf.com/group/corporate/er/brand/FORMIC_ACID.
    [77]McGinnis G D, Prince S E, Biermann C J, et al. Wet oxidation of model carbohydrate compounds[J]. Carbohydrate research,1984,128(1):51-60.
    [78]Jin F, Yun J, Li G, et al. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures[J]. Green Chemistry,2008,10(6):612-615.
    [79]Li J, Ding D J, Deng L, et al. Catalytic Air Oxidation of Biomass-Derived Carbohydrates to Formic Acid[J]. ChemSusChem,2012,5(7):1313-1318.
    [80]W6lfel R, Taccardi N, Bosmann A, et al. Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen[J]. Green Chemistry,2011,13(10): 2759-2763.
    [81]Albert J, Wolfel R, Bosmann A, et al. Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators[J]. Energy & Environmental Science,2012,5(7):7956-7962.
    [82]Wang W, Niu M, Hou Y, et al. Catalytic conversion of biomass-derived carbohydrates to formic acid using molecular oxygen[J]. Green Chemistry,2014,16(5):2614-2618.
    [83]Joo F. Breakthroughs in hydrogen storage-Formic acid as a sustainable storage material for hydrogen[J]. ChemSusChem,2008,1(10):805-808.
    [84]a) Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into y-valerolactone without using an external H2 supply[J]. Angewandte Chemie International Edition,2009,48(35):6529-6532. b) Deng L, Zhao Y, Li J, et al. Conversion of Levulinic Acid and Formic Acid into y-Valerolactone over Heterogeneous Catalysts[J]. ChemSusChem,2010,3(10):1172-1175.
    [85]a) Thananatthanachon T, Rauchfuss T B. Efficient Production of the Liquid Fuel 2, 5-Dimethylfuran from Fructose Using Formic Acid as a Reagent[J]. Angewandte Chemie, 2010,122(37):6766-6768. b) Thananatthanachon T, Rauchfuss T B. Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation[J]. ChemSusChem,2010, 3(10):1139-1141.
    [86]Tuteja J, Choudhary H, Nishimura S, et al. Direct Synthesis of 1,6-Hexanediol from HMF over a Heterogeneous Pd/ZrP Catalyst using Formic Acid as Hydrogen Source[J]. ChemSusChem,2013.
    [87]Zhou X, Huang Y, Xing W, et al. High-quality hydrogen from the catalyzed decomposition of formic acid by Pd-Au/C and Pd-Ag/C[J]. Chemical Communications,2008 (30): 3540-3542.
    [88]Johnson T C, Morris D J, Wills M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts[J]. Chemical Society Reviews,2010,39(1):81-88.
    [89]Boddien A, Loges B, Junge H, et al. Hydrogen generation at ambient conditions: application in fuel cells[J]. ChemSusChem,2008,1(8-9):751-758.
    [90]Loges B, Boddien A, Gartner F, et al. Catalytic generation of hydrogen from formic acid and its derivatives:useful hydrogen storage materials[J]. Topics in Catalysis,2010, 53(13-14):902-914.
    [91]Coffey R S. A catalyst for the homogeneous hydrogenation of aldehydes under mild conditions[J]. Chemical Communications (London),1967 (18):923a-923a.
    [92]Strauss S H, Whitmire K H, Shriver D F. Rhodium (Ⅰ) catalyzed decomposition of formic acid[J]. Journal of Organometallic Chemistry,1979,174(3):C59-C62.
    [93]Paonessa R S, Trogler W C. Solvent-dependent reactions of carbon dioxide with a platinum (Ⅱ) dihydride. Reversible formation of a platinum (Ⅱ) formatohydride and a cationic platinum (Ⅱ) dimer,[Pt2H3 (PEt3) 4][HCO2][J]. Journal of the American Chemical Society,1982,104(12):3529-3530.
    [94]King R B, Bhattacharyya N K. Catalytic reactions of formate 4. A nitrite-promoted rhodium (Ⅲ) catalyst for hydrogen generation from formic acid in aqueous solution[J]. Inorganica chimica acta,1995,237(1):65-69.
    [95]Shin J H, Churchill D G, Parkin G. Carbonyl abstraction reactions of Cp*Mo(PMe3)3H with CO2,(CH2O) n, HCO2H, and MeOH:the synthesis of Cp*Mo(PMe3)2(CO)H and the catalytic decarboxylation of formic acid[J]. Journal of organometallic chemistry,2002, 642(1-2):9-15.
    [96]Puddephatt R J, Yap G P A. An efficient binuclear catalyst for decomposition of formic acid[J]. Chemical Communications,1998 (21):2365-2366.
    [97]Gao Y, Kuncheria J K, Jenkins H A, et al. The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst[J]. Journal of the Chemical Society, Dalton Transactions,2000 (18):3212-3217.
    [98]Fukuzumi S, Kobayashi T, Suenobu T. Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H2 and H/D Exchange with a Water-Soluble Rhodium Complex in Aqueous Solution[J]. ChemSusChem,2008,1(10):827-834.
    [99]Himeda Y. Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4'-dihydroxy-2,2'-bipyridine[J]. Green Chemistry,2009,11(12): 2018-2022.
    [100]Fukuzumi S, Kobayashi T, Suenobu T. Unusually Large Tunneling Effect on Highly Efficient Generation of Hydrogen and Hydrogen Isotopes in pH-Selective Decomposition of Formic Acid Catalyzed by a Heterodinuclear Iridium-Ruthenium Complex in Water[J]. Journal of the American Chemical Society,2010,132(5):1496-1497.
    [101]Loges B, Boddien A, Junge H, et al. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells[J]. Angewandte Chemie International Edition,2008,47(21):3962-3965.
    [102]Junge H, Boddien A, Capitta F, et al. Improved hydrogen generation from formic acid[J]. Tetrahedron Letters,2009,50(14):1603-1606.
    [103]Fellay C, Yan N, Dyson P J, et al. Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation:A Mechanistic Study[J]. Chemistry-A European Journal,2009,15(15):3752-3760.
    [104]Boddien A, Loges B, Junge H, et al. Continuous hydrogen generation from formic acid: highly active and sTable ruthenium catalysts[J]. Advanced Synthesis & Catalysis,2009, 351(14-15):2517-2520.
    [105]Loges B, Boddien A, Junge H, et al. Hydrogen generation:catalytic acceleration and control by light[J]. Chemical Communications,2009 (28):4185-4187.
    [106]Gan W, Dyson P J, Laurenczy G. Hydrogen storage and delivery:immobilization of a highly active homogeneous catalyst for the decomposition of formic acid to hydrogen and carbon dioxide[J]. Reaction Kinetics and Catalysis Letters,2009,98(2):205-213.
    [107]Li X, Ma X, Shi F, et al. Hydrogen generation from formic acid decomposition with a ruthenium catalyst promoted by functionalized ionic liquids[J]. ChemSusChem,2010,3(1): 71-74.
    [108]Li X L, Shi F, Ma X Y, et al. Selective catalytic formic acid decomposition for hydrogen generation in ionic liquids[J]. Journal of Fuel Chemistry and Technology,2010,38(5): 544-553.
    [109]Berger M E M, Assenbaum D, Taccardi N, et al. Simple and recyclable ionic liquid based system for the selective decomposition of formic acid to hydrogen and carbon dioxide[J]. Green Chemistry,2011,13(6):1411-1415.
    [110]Boddien A, Loges B, Gartner F, et al. Iron-catalyzed hydrogen production from formic acid[J]. Journal of the American Chemical Society,2010,132(26):8924-8934.
    [111]Boddien A, Mellmann D, Gartner F, et al. Efficient dehydrogenation of formic acid using an iron catalyst[J]. Science,2011,333(6050):1733-1736.
    [112]Gan W, Fellay C, Dyson P J, et al. Influence of water-soluble sulfonated phosphine ligands on ruthenium catalyzed generation of hydrogen from formic acid[J]. Journal of Coordination Chemistry,2010,63(14-16):2685-2694.
    [113]Morris D J, Clarkson G J, Wills M. Insights into hydrogen generation from formic acid using ruthenium complexes[J]. Organometallics,2009,28(14):4133-4140.
    [114]Czaun M, Goeppert A, May R, et al. Hydrogen Generation from Formic Acid Decomposition by Ruthenium Carbonyl Complexes. Tetraruthenium Dodecacarbonyl Tetrahydride as an Active Intermediate [J]. ChemSusChem,2011,4(9):1241-1248.
    [115]Scholten J D, Prechtl M H G, Dupont J. Decomposition of Formic Acid Catalyzed by a Phosphine-Free Ruthenium Complex in a Task-Specific Ionic Liquid[J]. ChemCatChem, 2010,2(10):1265-1270.
    [116]Enthaler S, von Langermann J, Schmidt T. Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage?[J]. Energy & Environmental Science,2010, 3(9):1207-1217.
    [117]Hirota K, Kuwata K, Nakai Y. Infrared study of the adsorption of formic acid on copper, nickel and zinc[J]. Bull. Chem. Soc. Jpn,1958,31:861-866.
    [118]Sun Y K, Vajo J J, Chan C Y, et al. Kinetics and mechanism of formic acid decomposition on Ru (001)[J]. Journal of Vacuum Science and Technology A,1988,6(3): 854-855.
    [119]Ying D H S, Robert J M. Thermal desorption study of formic acid decomposition on a clean cu (110) surface[J]. Journal of catalysis,1980,61(1):48-56.
    [120]Aas N, Li Y, Bowker M. The adsorption and decomposition of formic acid on clean and oxygen-dosed Pd (110)[J]. Journal of Physics:Condensed Matter,1991,3(S):S281.
    [121]Peng X D, Barteau M A. Dehydration of carboxylic acids on the MgO (100) surface[J]. Catalysis Letters,1990,7(5-6):395-402.
    [122]Dilara P A, Vohs J M. TPD and HREELS investigation of the reaction of formic acid on zirconium dioxide (100)[J]. The Journal of Physical Chemistry,1993,97(49):12919-12923.
    [123]Gercher V A, Cox D F. Formic acid decomposition on SnO< sub> 2(110)[J]. Surface science,1994,312(1):106-114.
    [124]Stubenrauch J, Brosha E, Vohs J M. Reaction of carboxylic acids on CeO2(111) and CeO2 (100)[J]. Catalysis today,1996,28(4):431-441.
    [125]Larsson R, Jamroz M H, Borowiak M A. On the catalytic decomposition of formic acid. I. The activation energies for oxide catalysis[J]. Journal of Molecular Catalysis A:Chemical, 1998,129(1):41-51.
    [126]Popova G Y, Andrushkevich T V, Chesalov Y A, et al. In situ FTIR study of the adsorption of formaldehyde, formic acid, and methyl formiate at the surface of TiO2 (anatase)[J]. Kinetics and catalysis,2000,41(6):805-811.
    [127]Bandara A, Kubota J, Wada A, et al. Adsorption and reactions of formic acid on (2x 2)-NiO (111)/Ni (111) surface.2. IRAS study under catalytic steady-state conditions[J]. The Journal of Physical Chemistry B,1997,101(3):361-368.
    [128]Rasko J, Kecskes T, Kiss J. Formaldehyde formation in the interaction of HCOOH with Pt supported on TiO2 [J]. Journal of Catalysis,2004,224(2):261-268.
    [129]Shido T, Iwasawa Y. Reactant-Promoted Reaction Mechanism for Water-Gas Shift Reaction on Rh-Doped CeO2[J]. Journal of catalysis,1993,141(1):71-81.
    [130]Jacobs G, Patterson P M, Graham U M, et al. Low temperature water gas shift:the link between the catalysis of WGS and formic acid decomposition over Pt/ceria[J]. International journal of hydrogen energy,2005,30(11):1265-1276.
    [131]Jacobs G, Patterson P M, Graham U M, et al. Catalytic links among the water-gas shift, water-assisted formic acid decomposition, and methanol steam reforming reactions over Pt-promoted thoria[J]. Journal of Catalysis,2005,235(1):79-91.
    [132]Yasaka Y, Yoshida K, Wakai C, et al. Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction[J]. The Journal of Physical Chemistry A,2006,110(38):11082-11090.
    [133]Ojeda M, Iglesia E. Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures[J]. Angewandte Chemie International Edition,2009,48(26): 4800-4803.
    [134]Bulushev D A, Beloshapkin S, Ross J R H. Hydrogen from formic acid decomposition over Pd and Au catalysts[J]. Catalysis Today,2010,154(1):7-12.
    [135]Solymosi F, Koos A, Liliom N, et al. Production of CO-free H< sub> 2 from formic acid. A comparative study of the catalytic behavior of Pt metals on a carbon support[J]. Journal of Catalysis,2011,279(1):213-219.
    [136]Halasi G, Schubert G, Solymosi F. Photolysis of HCOOH over Rh Deposited on Pure and N-Modified TiO2[J]. Catalysis letters,2012,142(2):218-223.
    [137]Bulushev D A, Jia L, Beloshapkin S, et al. Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium[J]. Chemical Communications,2012,48(35): 4184-4186.
    [138]Williams R, Crandall R S, Bloom A. Use of carbon dioxide in energy storage[J]. Applied Physics Letters,2008,33(5):381-383.
    [139]Wiener H, Sasson Y, Blum J. Palladium-catalyzed decomposition of aqueous alkali metal formate solutions[J]. Journal of molecular catalysis,1986,35(3):277-284.
    [140]Zhou X, Huang Y, Liu C, et al. Available hydrogen from formic acid decomposed by rare earth elements promoted Pd-Au/C catalysts at low temperature[J]. ChemSusChem,2010, 3(12):1379-1382.
    [141]Huang Y, Zhou X, Yin M, et al. Novel PdAu@ Au/C core-shell catalyst:Superior activity and selectivity in formic acid decomposition for hydrogen generation[J]. Chemistry of Materials,2010,22(18):5122-5128.
    [142]Ting S W, Cheng S, Tsang K Y, et al. Low activation energy dehydrogenation of aqueous formic acid on platinum-ruthenium-bismuth oxide at near ambient temperature and pressure[J]. Chemical Communications,2009 (47):7333-7335.
    [143]Tedsree K, Li T, Jones S, et al. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst[J]. Nature nanotechnology,2011, 6(5):302-307.
    [144]Tedsree K, Chan C W A, Jones S, et al.13C NMR guides rational design of nanocatalysts via chemisorption evaluation in liquid phase[J]. Science,2011,332(6026):224-228.
    [145]Gu X, Lu Z H, Jiang H L, et al. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage[J]. Journal of the American Chemical Society,2011,133(31): 11822-11825.
    [146]Yadav M, Akita T, Tsumori N, et al. Strong metal-molecular support interaction (SMMSI):Amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid[J]. Journal of Materials Chemistry, 2012,22(25):12582-12586.
    [147]Bi Q Y, Du X L, Liu Y M, et al. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions[J]. Journal of the American Chemical Society,2012,134(21):8926-8933.
    [148]Olah G A, Goeppert A, Prakash G K S. Beyond oil and gas:the methanol economy[M]. John Wiley & Sons,2009.
    [149]Jessop P G, Ikariya T, Noyori R. Homogeneous hydrogenation of carbon dioxide[J]. Chemical Reviews,1995,95(2):259-272.
    [150]Jessop P G. Handb. Homogeneous Hydrogenation 2007,1,489-511.(f) Jessop, PG; Joo, F.; Tai, CC[J]. Coord. Chem. Rev,2004,248:2425-2442.
    [151]Roucoux A, Philippot K. Handbook of Homogeneous Hydrogenation; de Vries, CJ, Eds[J].2007.
    [152]Munshi P, Main A D, Linehan J C, et al. Hydrogenation of carbon dioxide catalyzed by ruthenium trimethylphosphine complexes:the accelerating effect of certain alcohols and amines[J]. Journal of the American Chemical Society,2002,124(27):7963-7971.
    [153]Elek J, Nadasdi L, Papp G, et al. Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium (Ⅱ) phosphine complexes[J]. Applied Catalysis A:General,2003,255(1):59-67.
    [154]Jessop P G, Ikariya T, Noyori R. Homogeneous catalytic hydrogenation of supercritical carbon dioxide[J]. Nature,1994,368(6468):231-233.
    [155]Fornika R, Gorls H, Seemann B, et al. Complexes [(P 2) Rh (hfacac)](P 2= bidentate chelating phosphane, hfacac= hexafluoroacetylacetonate) as catalysts for CO 2 hydrogenation:correlations between solid state structures,103 Rh NMR shifts and catalytic activities[J]. Journal of the Chemical Society, Chemical Communications,1995 (14): 1479-1481.
    [156]Tanaka R, Yamashita M, Nozaki K. Catalytic hydrogenation of carbon dioxide using Ir (III)-pincer complexes[J]. Journal of the American Chemical Society,2009,131(40): 14168-14169.
    [157]Himeda Y, Onozawa-Komatsuzaki N, Sugihara H, et al. Simultaneous tuning of activity and water solubility of complex catalysts by acid-base equilibrium of ligands for conversion of carbon dioxide[J]. Organometallics,2007,26(3):702-712.
    [158]Hull J F, Himeda Y, Wang W H, et al. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures[J]. Nature chemistry,2012,4(5):383-388.
    [159]Himeda Y. Conversion of CO2 into formate by homogeneously catalyzed hydrogenation in water:tuning catalytic activity and water solubility through the acid-base equilibrium of the ligand[J]. European Journal of Inorganic Chemistry,2007,2007(25):3927-3941.
    [160]Hayashi H, Ogo S, Fukuzumi S. Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions [J]. Chemical communications,2004 (23):2714-2715.
    [161]Ogo S, Kabe R, Hayashi H, et al. Mechanistic investigation of CO2 hydrogenation by Ru (Ⅱ) and Ir (Ⅲ) aqua complexes under acidic conditions:two catalytic systems differing in the nature of the rate determining step[J]. Dalton Transactions,2006 (39):4657-4663.
    [162]Maenaka Y, Suenobu T, Fukuzumi S. Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure[J]. Energy & Environmental Science,2012, 5(6):7360-7367.
    [163]Chinchen G C, Denny P J, Jennings J R, et al. Synthesis of methanol:part 1. Catalysts and kinetics[J]. Applied Catalysis,1988,36:1-65.
    [164]Kiennemann A, Idriss H, Hindermann J P, et al. Methanol synthesis on Cu/ZnA12O4 and Cu/ZnO-Al2O3 catalysts:influence of carbon monoxide pretreatment on the formation and concentration of formate species[J]. Applied catalysis,1990,59(1):165-184.
    [165]Bowker M, Hadden R A, Houghton H, et al. The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts [J]. Journal of Catalysis,1988,109(2):263-273.
    [166]Taylor P A, Rasmussen P B, Ovesen C V, et al. Formate synthesis on cu (100)[J]. Surface science,1992,261(1):191-206.
    [167]Nakano H, Nakamura I, Fujitani T, et al. Structure-dependent kinetics for synthesis and decomposition of formate species over Cu (Ⅲ) and Cu (110) model catalysts[J]. The Journal of Physical Chemistry B,2001,105(7):1355-1365.
    [168]Farlow M W, Adkins H. The hydrogenation of carbon dioxide and a correction of the reported synthesis of urethans[J]. Journal of the American Chemical Society,1935,57(11): 2222-2223.
    [169]Preti D, Resta C, Squarcialupi S, et al. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst[J]. Angewandte Chemie International Edition,2011, 50(52):12551-12554.
    [170]Wiener H, Blum J, Feilchenfeld H, et al. The heterogeneous catalytic hydrogenation of bicarbonate to formate in aqueous solutions[J]. Journal of Catalysis,1988,110(1):184-190.
    [171]Zhang Y, Fei J, Yu Y, et al. Silica immobilized ruthenium catalyst used for carbon dioxide hydrogenation to formic acid (Ⅰ):the effect of functionalizing group and additive on the catalyst performance[J]. Catalysis Communications,2004,5(10):643-646.
    [172]Zhang Z, Xie Y, Li W, et al. Hydrogenation of Carbon Dioxide is Promoted by a Task-Specific Ionic Liquid[J]. Angewandte Chemie International Edition,2008,47(6): 1127-1129.
    [173]Lancaster M. Green chemistry:An introductory text[M]. Royal Society of Chemistry, 2010.
    [174]Asian Chemical News,16 November 1998.
    [175]Kutenpov N. Himmele W Hohenshutz H[C]//Hydrocarbon Proc.1966,45:141.
    [176]Paulik F E, Roth J F. Novel catalysts for the low-pressure carbonylation of methanol to acetic acid[J]. Chemical Communications (London),1968 (24):1578a-1578a.
    [177]Grove H D. Lowest cost acetic via methanol[J]. Hydrocarbon Processing,1972,51(11): 76-&.
    [178]Hershman A. PRODUCTION OF CARBOXYLIC ACIDS AND ESTERS:U.S. Patent 3,769,329[P].1973-10-30.
    [179]SINGLETON R. Methanol carbonylation to acetic acid[J]. Applied Industrial Catalysis, 1983,1:275.
    [180]Howard M J, Jones M D, Roberts M S, et al. C1 to acetyls:catalysis and process[J]. Catalysis Today,1993,18(4):325-354.
    [181]Murphy M A, Smith B L, Torrence G P, et al. Iodide and acetate promotion of carbonylation of methanol to acetic acid:Model and catalytic studies[J]. Journal of organometallic chemistry,1986,303(2):257-272.
    [182]Smith B L, Torrence G P, Murphy M A, et al. The rhodium-catalyzed methanol carbonylation to acetic acid at low water concentrations:the effect of iodide and acetate on catalyst activity and stability[J]. Journal of molecular catalysis,1987,39(1):115-136.
    [183]Smith B L, Torrence G P, Aguilo A, et al. Methanol carbonylation process:E.P. Patent EP0161874 (A1)[P].1985-11-21.
    [184]Smith B L, Torrence G P, Aguilo A, et al. Carboxylic acid(s) prodn. by carbonylation of alcohol(s)-in liq. reaction medium contg. water, rhodium catalyst, iodide salt catalyst stabiliser, hydrocarbon iodide deriv. and ester:Japanese Patent Koukai 60-239434 [P]. 1985-5-2.
    [185]Daicel Cop. Japanese Patent Koukoku 04-69136 [P].1992-11-5.
    [186]Daicel Cop. Japanese Patent Koukoku 03-38256 [P].1991-6-10.
    [187]Daicel Cop. Japanese Patent Koukoku 07-23337 [P].1995-3-15.
    [188]Heck R F. The mechanism of the allyl halide carboxylation reaction catalyzed by nickel carbonyl[J]. Journal of the American Chemical Society,1963,85(13):2013-2014.
    [189]Rizkalla N. Acetic acid production via low-pressure, nickel-catalyzed methanol carbonylation[J]. Industrial Chemicals via C1 Processes,1987,5:61-76.
    [190]Holmes J D. Process for the production of carboxylic acids:U.S. Patent 4,133,963[P]. 1979-1-9.
    [191]Foster D. Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes[J]. Adv. Organomet. Chem.,1979,17:255-267.
    [192]Poulenc Cop. Japanese Patent Koukoku 06-340573[P].1994.
    [193]Garland C S, Giles M F, Sunley J G. Catalyst system:U.S. Patent 5,942,460[P]. 1999-8-24.
    [194]Garland C S, Giles M F, Poole A D, et al. Process for the production of a carboxylic acid: U.S. Patent 5,510,524[P].1996-4-23.
    [195]Garland C S, Giles M F, Sunley J G. Catalyst system:U.S. Patent 5,942,460[P]. 1999-8-24.
    [196]Kagakukougyou Nippou,12 July 1996.
    [197]Dekleva T W, ORSTER D F. Alcohol Carbonylations[J]. Advances in catalysis,1986,34: 81.
    [198]European Chemical News,26 May-1 June 1997.
    [199]Forster D, Singleton T C. Homogeneous catalytic reactions of methanol with carbon monoxide[J]. Journal of Molecular Catalysis,1982,17(2):299-314.
    [200]Forster D, Dekleva T W. Catalysis of the carbonylation of alcohols to carboxylic acids including acetic acid synthesis from methanol[J]. Journal of Chemical Education,1986, 63(3):204.
    [201]Chalk A J, Rylander P N, Greenfield H, et al. Catalysis of Organic reactions[J]. Catalysis of organic reactions,1988,22.
    [202]Cornils B, Herrmann W A. Applied homogeneous catalysis with organometallic compounds[M]. Weinheim etc.:VCH,1996.
    [203]Bohan Iron Cop. Japanese Patent Koukai 07-503489 [P].1995.
    [204]Hoechst Cop. Japanese Patent Koukoku 05-28212 [P].1993-4-23.
    [205]Hoechst Cop. Japanese Patent Koukai 62-72636 [P].1987.
    [206]Monsato Cop. Japanese Patent Koukai 46-5367 [P].1971-2-9.
    [207]Monsato Cop. Japanese Patent Koukoku 60-54294 [P].1985-11-29.
    [208]Hilton C B. Removal of iodide compounds from non-aqueous organic media:U.S. Patent 4,615,806[P].1986-10-7.
    [209]Maitlis P M, Haynes A, Sunley G J, et al. Methanol carbonylation revisited:thirty years on[J]. J. Chem. Soc, Dalton Trans.,1996 (11):2187-2196.
    [210]Schultz R G, Montgomery P D. Vapor phase carbonylation of methanol to acetic acid[J]. Journal of Catalysis,1969,13(1):105-106.
    [211]PRODUCTION OF CARBOXYLIC ACIDS AND ESTERS:U.S. Patent 3,717,670[P]. 1973-2-20.
    [212]Krzywicki A, Marczewski M. Formation and evolution of the active site for methanol carbonylation on oxide catalysts containing RhCl3[J]. Journal of Molecular Catalysis, 1979,6(6):431-440.
    [213]Schreck D J, Busby D C, Wegman R W. A highly efficient catalyst system for the isomerization of methyl formate to acetic acid[J]. Journal of molecular catalysis,1988, 47(1):117-121.
    [214]Luft G, Ritter G. Carrier-supported catalyst for making monocarboxylic anhydrides:U.S. Patent 4,657,884[P].1987-4-14.
    [215]Luft G, Ritter G. Carrier-supported catalyst and process for making mono-carboxylic anhydrides:U.S. Patent 4,776,987[P].1988-10-11.
    [216]Drago R S, Nyberg E D, El A'mma A, et al. Ionic attachment as a feasible approach to heterogenizing anionic solution catalysts. Carbonylation of methanol [J]. Inorganic Chemistry,1981,20(3):641-644.
    [217]Jarrell M S, Gates B C. Methanol carbonylation catalyzed by a polymer-bound rhodium (Ⅰ) complex[J]. Journal of Catalysis,1975,40(2):255-267.
    [218]Chen Y, Heinrich B. Methanol carbonylation in a liquid flow system catalyzed by a polymer-bound rhodium (Ⅰ) complex[J]. Applied catalysis,1990,67(1):269-278.
    [219]Marston C R, Goe G L. Process for acetic acid preparation and heterogeneous catalyst for same:E.P. Patent EP277824 (A2) [P].1988-08-10.
    [220]Asaoka S, Hamato K, Maejima T, et al. Process for the production of acetic acid from methanol and carbon monoxide using supported rhodium catalyst:U.S. Patent 5,334,755[P].1994-8-2.
    [221]Hamato K, Minami T, Shimokawa K, et al. Supported rhodium catalyst, method of preparing same and process of producing acetic acid by methanol carbonylation using same:U.S. Patent 5,364,963[P].1994-11-15.
    [222]Hamato K, Minami T, Shimokawa K, et al. Process for preparing organic carboxylic acid: U.S. Patent 5,576,458[P].1996-11-19.
    [223]Yoneda N, Minami T, Weiszmann J, et al. Science and technology in catalysis[C]//Proceedings of the Third Tokyo Conference on Advanced Catalytic Science and Technology.1998,93.
    [224]Kulprathipanja S, Leet W A, Sherman J D, et al. Method for treating an organic liquid contaminated with an iodide compound:U.S. Patent 5,962,735[P].1999-10-5.
    [225]Schreck D J, Busby D C, Wegman R W. A highly efficient catalyst system for the isomerization of methyl formate to acetic acid[J]. Journal of molecular catalysis,1988, 47(1):117-121.
    [226]Bub G, Hog H U. On the rhodium catalyzed formation of acetic acid from methyl formate-comparison with the rhodium catalyzed formation of acetic acid by direct carbonylation of methanol[J]. Journal of Molecular Catalysis A:Chemical,1995,95(1): 45-52.
    [227]Chiyoda Cop. Japanese Patent Koukai 07-60130 [P].1995-6-28.
    [228]Komatsu M, Yoneoka M. Kagaku Kougyo,1988,43,1134.
    [229]Shinoda S, Yamakawa T. One-step formation of methyl acetate with methanol used as the sole source and catalysis by RuII-SnII cluster complexes[J]. Journal of the Chemical Society, Chemical Communications,1990 (21):1511-1512.
    [230]Yamakawa T, Tsai P, Shinoda S. Acetic acid and methyl acetate formation from methanol alone over ruthenium (Ⅱ)-tin (Ⅱ) cluster complex catalysts supported on copper-containing oxides[J]. Applied Catalysis A:General,1992,92(1):L1-L5.
    [231]Joensen F, Voss B. Process for the preparation of acetic acid:U.S. Patent 5,728,871 [P]. 1998-3-17.
    [232]National Distillers. Japanese Patent Koukai 47-13221 [P].1972-4-21.
    [233]Frence Patent FR 1568742 (A) [P].1969-5-30.
    [234]Denko Cop. Japanese Patent Koukai 07-89896 [P].1995-10-4.
    [235]Denko Cop. Japanese Patent Koukai 09-67298 [P].1997.
    [236]Sano K, Uchida H. Shokubai,1999,41 (4):290.
    [1]Fukuoka A, Dhepe P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie International Edition,2006,45(31):5161-5163.
    [2]Ji N, Zhang T, Zheng M, et al. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts[J]. Angewandte Chemie,2008, 120(44):8638-8641.
    [3]Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079.
    [4]Holm M S, Saravanamurugan S, Taarning E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science,2010,328(5978):602-605.
    [5]Roman-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature,2007,447(7147):982-985.
    [6]a) Lange J P, Price R, Ayoub P M, et al. Valeric biofuels:a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition,2010,49(26):4479-4483. b) Palkovits R. Pentenoic acid pathways for cellulosic biofuels[J]. Angewandte Chemie International Edition,2010,49(26):4336-4338.
    [7]Vispute T P, Zhang H, Sanna A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science,2010,330(6008):1222-1227.
    [8]Rostrup-Nielsen J R. Conversion of hydrocarbons and alcohols for fuel cells[J]. Physical Chemistry Chemical Physics,2001,3(3):283-288.
    [9]Huber G W, Shabaker J W, Dumesic J A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons[J]. Science,2003,300(5628):2075-2077.
    [10]Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature,2002,418(6901):964-967.
    [11]a) Joo F. Breakthroughs in hydrogen storage-Formic acid as a sustainable storage material for hydrogen[J]. ChemSusChem,2008,1(10):805-808. b) Makowski P, Thomas A, Kuhn P, et al. Organic materials for hydrogen storage applications:from physisorption on organic solids to chemisorption in organic molecules[J]. Energy & Environmental Science, 2009,2(5):480-490.
    [12]a) Loges B, Boddien A, Junge H, et al. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells[J]. Angewandte Chemie International Edition,2008,47(21):3962-3965. b) Junge H, Boddien A, Capitta F, et al. Improved hydrogen generation from formic acid[J]. Tetrahedron Letters,2009,50(14): 1603-1606. c) Loges B, Boddien A, Junge H, et al. Hydrogen generation:catalytic acceleration and control by light[J]. Chemical Communications,2009 (28):4185-4187. d) Federsel C, Jackstell R, Beller M. State-of-the-Art Catalysts for Hydrogenation of Carbon Dioxide[J]. Angewandte Chemie International Edition,2010,49(36):6254-6257. e) Fellay C, Dyson P J, Laurenczy G. A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst[J]. Angewandte Chemie, 2008,120(21):4030-4032. f) Zhang Z, Hu S, Song J, et al. Hydrogenation of CO2 to Formic Acid Promoted by a Diamine-Functionalized Ionic Liquid[J]. ChemSusChem, 2009,2(3):234-238. g) Zhang Z, Xie Y, Li W, et al. Hydrogenation of Carbon Dioxide is Promoted by a Task-Specific Ionic Liquid[J]. Angewandte Chemie International Edition, 2008,47(6):1127-1129.
    [13]a) Federsel C, Boddien A, Jackstell R, et al. A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides[J]. Angewandte Chemie International Edition,2010,49(50):9777-9780. b) Boddien A, Gartner F, Jackstell R, et al. ortho-Metalation of Iron (0) Tribenzylphosphine Complexes:Homogeneous Catalysts for the Generation of Hydrogen from Formic Acid[J]. Angewandte Chemie International Edition,2010,49(47):8993-8996. c) Boddien A, Loges B, Gartner F, et al. Iron-catalyzed hydrogen production from formic acid[J]. Journal of the American Chemical Society,2010,132(26):8924-8934.
    [14]Boddien A, Mellmann D, Gartner F, et al. Efficient dehydrogenation of formic acid using an iron catalyst[J]. Science,2011,333(6050):1733-1736.
    [15]a) Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into y-valerolactone without using an external H2 supply[J]. Angewandte Chemie International Edition,2009,48(35):6529-6532. b) Deng L, Zhao Y, Li J, et al. Conversion of Levulinic Acid and Formic Acid into y-Valerolactone over Heterogeneous Catalysts[J]. ChemSusChem,2010,3(10):1172-1175.
    [16]a) Thananatthanachon T, Rauchfuss T B. Efficient Production of the Liquid Fuel 2, 5-Dimethylfuran from Fructose Using Formic Acid as a Reagent[J]. Angewandte Chemie, 2010,122(37):6766-6768. b) Thananatthanachon T, Rauchfuss T B. Efficient route to hydroxymethylfurans from sugars via transfer hydrogenation[J]. ChemSusChem,2010, 3(10):1139-1141.
    [17]Tuteja J, Choudhary H, Nishimura S, et al. Direct Synthesis of 1,6-Hexanediol from HMF over a Heterogeneous Pd/ZrP Catalyst using Formic Acid as Hydrogen Source[J]. ChemSusChem,2013.
    [18]Taccardi N, Assenbaum D, Berger M E M, et al. Catalytic production of hydrogen from glucose and other carbohydrates under exceptionally mild reaction conditions[J]. Green Chemistry,2010,12(7):1150-1156.
    [19]McGinnis G D, Prince S E, Biermann C J, et al. Wet oxidation of model carbohydrate compounds[J]. Carbohydrate research,1984,128(1):51-60.
    [20]Jin F, Yun J, Li G, et al. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures[J]. Green Chemistry,2008,10(6):612-615.
    [21]Khenkin A M, Neumann R. Oxidative C-C Bond Cleavage of Primary Alcohols and Vicinal Diols Catalyzed by H5PV2Mo10O40 by an Electron Transfer and Oxygen Transfer Reaction Mechanism[J]. Journal of the American Chemical Society,2008,130(44): 14474-14476.
    [22]a) de Vyver S V, Blochouse K. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communications, 2010,46(20):3577-3579. b) Palkovits R, Tajvidi K, Ruppert A M, et al. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols[J]. Chemical Communications,2011,47(1):576-578.
    [23]Shimizu K, Furukawa H, Kobayashi N, et al. Effects of Brensted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose[J]. Green Chemistry,2009,11(10):1627-1632.
    [24]Hanson S K, Baker R T, Gordon J C, et al. Aerobic Oxidation of Pinacol by Vanadium (V) Dipicolinate Complexes:Evidence for Reduction to Vanadium (III)[J]. Journal of the American Chemical Society,2008,131(2):428-429.
    [25]Littler J S, Waters W A.254. Oxidations of organic compounds with quinquevalent vanadium. Part I. General survey; and the oxidation of pinacol[J]. Journal of the Chemical Society (Resumed),1959:1299-1305.
    [26]Tsigdinos G A, Hallada C J. Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization[J]. Inorganic Chemistry,1968, 7(3):437-441.
    [27]Du Z, Ma J, Ma H, et al. Synergistic effect of vanadium-phosphorus promoted oxidation of benzylic alcohols with molecular oxygen in water[J]. Green Chemistry,2010,12(4): 590-592.
    [1]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007,107(6):2411-2502.
    [2]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J]. Chemical reviews,2006,106(9):4044-4098.
    [3]Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079.
    [4]Roman-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates [J]. Nature,2007,447(7147):982-985.
    [5]Corma A, de la Torre O, Renz M, et al. Production of High-Quality Diesel from Biomass Waste Products[J]. Angewandte Chemie,2011,123(10):2423-2426.
    [6]Alonso D M, Wettstein S G, Bond J Q, et al. Production of biofuels from cellulose and corn stover using alkylphenol solvents[J]. ChemSusChem,2011,4(8):1078-1081.
    [7]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into Y-valerolactone without using an external H2 supply[J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [8]Gurbiiz E I, Alonso D M, Bond J Q, et al. Reactive Extraction of Levulinate Esters and Conversion to γ-Valerolactone for Production of Liquid Fuels[J]. ChemSusChem,2011, 4(3):357-361.
    [9]Lange J P, Price R, Ayoub P M, et al. Valeric biofuels:a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition,2010,49(26): 4479-4483.
    [10]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [11]Bozell J J. Connecting biomass and petroleum processing with a chemical bridge[J]. Science,2010,329(5991):522-523.
    [12]Rackemann D W, Doherty W O S. The conversion of lignocellulosics to levulinic acid[J]. Biofuels, Bioproducts and Biorefining,2011,5(2):198-214.
    [13]a) Girisuta B, Janssen L, Heeres H J. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid[J]. Industrial & engineering chemistry research,2007,46(6): 1696-1708. b) Girisuta B, Danon B, Manurung R, et al. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid[J]. Bioresource technology,2008,99(17):8367-8375. c) Lai D, Deng L, Li J, et al. Hydrolysis of cellulose into glucose by magnetic solid acid[J]. ChemSusChem,2011,4(1):55-58. d) Lai D, Deng L, Guo Q, et al. Hydrolysis of biomass by magnetic solid acid[J]. Energy & Environmental Science,2011,4(9):3552-3557. e) MartinaAlonso D, Marcel R aGallo J. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts[J]. Catalysis Science & Technology,2013,3(4):927-931.
    [14]a)Wettstein S G, Alonso D M, Chong Y, et al. Production of levulinic acid and gamma-valerolactone (GVL) from cellulose using GVL as a solvent in biphasic systems[J]. Energy & Environmental Science,2012,5(8):8199-8203. b) Alonso D M, Wettstein S G, Bond J Q, et al. Production of biofuels from cellulose and corn stover using alkylphenol solvents[J]. ChemSusChem,2011,4(8):1078-1081.
    [15]Mamman A S, Lee J M, Kim Y C, et al. Furfural:Hemicellulose/xylosederived biochemical[J]. Biofuels, Bioproducts and Biorefining,2008,2(5):438-454.
    [16]a) Murat Sen S, Henao C A, Braden D J, et al. Catalytic conversion of lignocellulosic biomass to fuels:Process development and technoeconomic evaluation[J]. Chemical Engineering Science,2012,67(1):57-67.
    [17]Sen S M, Gurbuz E I, Wettstein S G, et al. Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass:process synthesis and technoeconomic evaluation[J]. Green Chemistry,2012, 14(12):3289-3294.
    [18]Cass O W. Chemical intermediates from furfural [J]. Industrial & Engineering Chemistry, 1948,40(2):216-219.
    [19]a) Roman-Leshkov Y, Dumesic J A. Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts[J]. Topics in Catalysis,2009,52(3):297-303. b) Amiri H, Karimi K, Roodpeyma S. Production of furans from rice straw by single-phase and biphasic systems[J]. Carbohydrate research,2010, 345(15):2133-2138.
    [20]Ranganathan S, Macdonald D G, Bakhshi N N. Kinetic studies of wheat straw hydrolysis using sulphuric acid[J]. The Canadian Journal of Chemical Engineering,1985,63(5): 840-844.
    [21]Karinen R, Vilonen K, Niemela M. Biorefining:heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural[J]. ChemSusChem, 2011,4(8):1002-1016.
    [22]Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782): 1933-1937.
    [23]Li J, Ding D J, Deng L, et al. Catalytic Air Oxidation of Biomass-Derived Carbohydrates to Formic Acid[J]. ChemSusChem,2012,5(7):1313-1318.
    [1]Lancaster M. Green chemistry:An introductory text[M]. Royal Society of Chemistry,2010.
    [2]Yoneda N, Kusano S, Yasui M, et al. Recent advances in processes and catalysts for the production of acetic acid[J]. Applied Catalysis A:General,2001,221(1):253-265.
    [3]a) Huber G W, Corma A. Synergies between Bio-and Oil Refineries for the Production of Fuels from Biomass[J]. Angewandte Chemie International Edition,2007,46(38): 7184-7201. b) Chheda J N, Huber G W, Dumesic J A. Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals[J]. Angewandte Chemie International Edition,2007,46(38):7164-7183. c) Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J]. Chemical reviews,2006,106(9):4044-4098. d) Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079.
    [4]Holladay J E, Bozell J J, White J F, et al. Top value-added chemicals from biomass[J]. Volume II-Results of Screening for Potential Candidates from Biorefinery Lignin, Report prepared by members of NREL, PNNL and University of Tennessee,2007.
    [5]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007,107(6):2411-2502.
    [6]Holm M S, Saravanamurugan S, Taarning E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science,2010,328(5978):602-605.
    [7]a) Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600. b) Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937. c) Binder J B, Raines R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5):1979-1985. d) Hu S, Zhang Z, Song J, et al. Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnC14 in an ionic liquid[J]. Green Chemistry,2009,11(11):1746-1749. e) Wu S, Fan H, Xie Y, et al. Effect of CO2 on conversion of inulin to 5-hydroxymethylfurfural and propylene oxide to 1,2-propanediol in water[J]. Green Chemistry,2010,12(7):1215-1219.
    [8]a) Ji N, Zhang T, Zheng M, et al. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts[J]. Angewandte Chemie,2008, 120(44):8638-8641. b) Li C, Zheng M, Wang A, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts:simultaneous conversion of cellulose, hemicellulose and lignin[J]. Energy & Environmental Science, 2012,5(4):6383-6390. c) Zheng M Y, Wang A Q, Ji N, et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010,3(1):63-66. d) Liu Y, Luo C, Liu H. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angewandte Chemie,2012,124(13):3303-3307.
    [9]Xing R, Qi W, Huber G W. Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries[J]. Energy & Environmental Science,2011,4(6):2193-2205.
    [10]Jin F, Enomoto H. Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions:chemistry of acid/base-catalysed and oxidation reactions[J]. Energy & Environmental Science,2011,4(2):382-397.
    [11]Jin F, Zhou Z, Moriya T, et al. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass[J]. Environmental science & technology, 2005,39(6):1893-1902.
    [12]Oasmaa A, Kuoppala E, Solantausta Y. Fast pyrolysis of forestry residue.2. Physicochemical composition of product liquid[J]. Energy & Fuels,2003,17(2):433-443.
    [13]Sen S M, Alonso D M, Wettstein S G, et al. A sulfuric acid management strategy for the production of liquid hydrocarbon fuels via catalytic conversion of biomass-derived levulinic acid[J]. Energy & Environmental Science,2012,5(12):9690-9697.
    [14]Ranganathan S, Macdonald D G, Bakhshi N N. Kinetic studies of wheat straw hydrolysis using sulphuric acid[J]. The Canadian Journal of Chemical Engineering,1985,63(5): 840-844.
    [15]Li J, Ding D J, Deng L, et al. Catalytic Air Oxidation of Biomass-Derived Carbohydrates to Formic Acid[J]. ChemSusChem,2012,5(7):1313-1318.
    [16]Mamman A S, Lee J M, Kim Y C, et al. Furfural:Hemicellulose/xylosederived biochemical[J]. Biofuels, Bioproducts and Biorefining,2008,2(5):438-454.
    [17]Rackemann D W, Doherty W O S. The conversion of lignocellulosics to levulinic acid[J]. Biofuels, Bioproducts and Biorefining,2011,5(2):198-214.
    [18]Fang Y, Zeng X, Yan P, et al. An acidic two-step hydrothermal process to enhance acetic acid production from carbohydrate biomass[J]. Industrial & Engineering Chemistry Research,2012,51(12):4759-4763.
    [19]Parten W D, Ure A M. Dehydration of acetic acid by azeotropic distillation in the production of an aromatic acid:U.S. Patent 5,980,696[P].1999-11-9.
    [20]Thananatthanachon T, Rauchfuss T B. Efficient Production of the Liquid Fuel 2, 5-Dimethylfuran from Fructose Using Formic Acid as a Reagent[J]. Angewandte Chemie, 2010,122(37):6766-6768.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.