新型半导体光催化剂的可控合成及半导体—多孔炭复合材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的发展,环境污染日益严重,因此环境污染问题,特别是室内污染问题日益引起人们的关注。众所周知,人生大约70%是在室内度过的,而室内的污染相对于室外高出很多倍。挥发性有机物(VOCs)被广泛的应用于工业和室内装修,其广泛的应用必然导致了水和空气的污染,特别是对室内污染更大。光催化剂在去除环境污染有很多优点,因此近年来采用光催化剂去除环境污染受到人们极大的重视。
     二氧化钛是一种比较常用的光催化剂,其具有稳定性高,催化活性高,无毒和便宜的优点,因此在环境污染处理中受到极大的关注。然而二氧化钛亦有很多缺点,太阳光利用率低,粒子回收困难,容易失活,而且当污染物浓度比较低的时候,光催化仅发生在催化剂附近等。因此需要研究新的催化剂和催化剂复合材料,以提高催化剂的性能。
     本文的主要研究内容和结果如下:
     (1)采用水热合成法,以Cu(NO3)2为原料,乙二醇为溶剂和还原剂,聚乙烯吡咯烷酮k30(PVP)为表面活性剂,一步合成具有可见光响应的Cu-Cu2+1O金属半导体复合材料。表征结果显示产物由两种不同尺寸粒子构成,其中大的粒了为Cu,直径为50nm,小的粒子为Cu2+10,直径为20nm。表面活性剂PVP的加入降低Cu2+1O的结晶度,提高了铜的含量,并影响两种粒子的尺寸分布和界面结合情况,因而影响产物的催化性能。催化活性测试结果表明,Cu-Cu2+1O金属半导体复合材料具有可见光催化活性,其对苯酚降解符合一级反应动力学。并采用Cu(NO3)2为原料,明胶为分散剂,Na2SO3为还原剂,活性炭为负载剂,采用原位沉淀法实现活性炭负载复合型Cu2O/AC光催化剂的制备,测试结果显示活性炭的加入影响了产物的相结构,而禁带宽度没有受到影响。以苯酚为模型,光催化测试结果显示,复合型Cu2O/AC光催化剂的催化活性高于Cu2O,原因可能是活性炭和Cu2O存在吸附催化协同作用,其导致了产物催化活性的提高。
     (2)合成两类不同的介孔氧化镍。以硝酸镍为原料,氢氧化钠为沉淀剂,十二烷基苯磺酸钠(SDBS)为表面活性剂,采用水热合成法制备具有介孔结构的纳米片状p型氢氧化镍,将介孔结构的纳米片状β型氢氧化镍焙烧即可以获得相同形貌的纳米氧化镍。XRD测试结果显示纳米片状氧化镍是体心立方结构,电子衍射显示其为单晶结构,而且氢氧化镍也是单晶结构,氧化镍的比表面积为85.98m2/g,具有介孔结构。以苯酚为模型,光催化测试结果显示,片状氧化镍具有一定的催化活性,但很容易失活。花状氧化镍的合成。在不添加任何模板和表面活性剂条件下,采用均匀沉淀法制备出具有自组装结构的花状α型Ni(OH)2,并以其为前驱体,通过焙烧即可获得同样具有花状结构的氧化镍。测试结果显示,所制备的氧化镍比表面积是125.2m2/g.其禁带宽度为4.43eV。光催化测试结果显示花状氧化镍对甲基橙的有较高的光催化降解性能。
     (3)控制合成氢氧化钢并制备氢氧化铟—活性炭复合材料。首先,以硝酸钢为原料,尿素为沉淀剂,十六烷基溴化铵(CTAB)为软模板剂,采用一步一点法制备具有介孔结构的纳米棒状氢氧化钢。测试结果显示:样品都是长度为300nm宽度为90nm的棒状有孔结构,低温液氮吸附技术证实了样品是具有介孔结构的材料,其平均孔径为3.1nm。光学测试显示,其禁带宽度为5.15eV,其具有较强的荧光性能,在紫外激发下具有两个比较强的光谱带。并且还探讨了纳米棒状成因和CTAB对形成氢氧化铟板状结构的作用。而后继工作发现通过控制反应条件,不使用CTAB作为模板,在低温条件下(70℃)也可获得形貌和尺、J‘可控的纳米氢氧化钢。例如时间、浓度以及沉淀剂种类,即可控制反应产物的形貌和粒了尺寸的大小。氢氧化铟可能的形貌控制机理也被讨论。催化测试显示:其对气态苯的光催化降解与二氧化钛相比,所制备的样品也显示出更高的催化活性。以In(NO3)3·4.5H2O和六亚甲基四胺(HMT)为原料,采用水热合成出具有介孔结构的块状氢氧化铟。其具有较高的比表面积,其比表面积为97.04m2/g。对甲苯的光催化测试结果显示,其具有较高的催化活性而且催化活性很稳定。最后,以In(NO3)3·4.5H2O和六亚甲基四胺为原料,采用水热合成法制备了氢氧化铟—活性炭复合材料。测试结果显示,活性炭的加入影响了晶体结构和粒径大小。活性炭的加入没有影响氢氧化钢粒子形貌。氢氧化钢是以化学键的形式负载在活性炭上而且多孔活性炭并没有影响氢氧化铟的禁带宽度。对甲苯的催化测试显示含量3%的氢氧化铟—活性炭复合材料具有最高的催化活性。
     (4)采用丝网印刷技术制备了二氧化钛/活性炭纤维复合光催化剂。通过XRD和SEM测试显示,复合催化剂内的二氧化钛的相是锐钛矿结构,活性炭纤维的存在没有影响二氧化钛的相结构。SEM显示二氧化钛在活性炭纤维表面形成薄膜。对苯的光催化测试显示复合材料的光催化性能要高于二氧化钛的催化活性。
The environmental pollution is increasingly serious with the development of human society so that the pollution of the environment, especially in door, caused the attention of people increasingly. It has been well known that majority of people spend approximately70%of their time in the indoor environments, such as residences, public buildings and offices. The levels of indoor air pollutants can be several hundred times higher than that of outdoor ones. The volatile organic compounds (VOCs) are widely used in industrial process and domestic activities. These extensive uses lead to water and air pollution, particularly in indoor pollution. The photocatalytic oxidation technology has increasingly been paid great attention to in recent years because photocatalysts in the removal of environmental pollution have a lot of advantages.
     Titanium dioxide(TiO2) have been extensively studied for environmental purification applications, due to its good characteristics of powerful oxidation strength, chemicalstability, nontoxicity and inexpensiveness. However, there are certain shortcomings associated with conventional TiO2powders catalysts, including an inefficient use of light, difficulty experienced during both stirring and separation of the catalyst from the reaction medium, rapidly losed activation, and the occurrence of low-concentration contamination near TiO2during the photocatalytic process. It may be a good strategy to extend the research using other classes of photocatalysts for improvement of the system efficiency or using the new composite materials.
     The main research contents and results were summarized as follows:
     1.Visible-light response Cu-Cu2+1O metal-semiconductor nanocrystals composites were successfully synthesized by using hydrothermal synthesis methods with Cu(NO3)2as starting materials, ethylene glycol (EG) as the solvent and reducing agent, and polyvinypyrrolidone k30(PVP) as surfactant. The photocatalytic performance was tested through the degradation of phenol under xenon lamp irradiation. The characterization results showed that the products were composed of two different sizes of particles. The larger particle with the diameter of50nm was Cu and the smaller particle with the diameter of20nm was Cu2+1O. The content of Cu2+1O was decreased and that of Cu was improverd when PVP was added. The distribution and integration of Cu and CU2+1O particles were also affected so that the photocatalytic activity was affected. Activity results showed that Cu-Cu2+1O particles could degrade phenol and the kinetics fits a first-order reaction. Cu2O/AC (porous activated carbon) composite photocatalysts were also prepared by an insitu method with Cu(NO3)2as starting materials, glutin as dispersant, and AC as a carrier of Cu2O. The crystal structure, spectra characteristics, and surface properties of the obtained catalysts were characterize in order to study the influence of AC on the composite photocatalysts. The results showed that the adding of actived carbon can affect the phase structure of composite photocatalysts. The energy band of Cu2O was had no effect on when actived carbon was added. The photocatalytic activity of the prepare Cu2O/AC and Cu2O for phenol degradation were investigated under visible light irradiation. The results showed the photocatalytic activity of the prepare Cu2O/AC was higher than that of the prepare CU2O/AC under visible light irradiation. It was attributed to the synergistic effect between porous activated carbon and Cu2O.
     2. The single-crystalline nickel oxide (NiO) mesoporous nanosheets and the flowerlike nickel oxide (NiO) were prepared, respectively. At first, the mesoporous nanosheets of single-crystalline β-nickel hydroxide (β-Ni(OH)2) were successfully synthesized via a facile hydrothermal method using Ni(NO3)2·6H2O as precursor in a mixed solution of sodium hydroxide (NaOH) and sodium dodecylbenzenesulfonate (SDBS). Then, single-crystalline nickel oxide (NiO) mesoporous nanosheets could be obtained through a thermal decomposition method using β-Ni(OH)2mesoporous nanosheets as precursor. The prepared NiO was body centred cubic structure.The prepared NiO was single-crystalline and its specific surface area was85.98m2/g. The photocatalytic degradation of phenol showed that the prepared NiO has the photocatalytic activity but it lose catalytic activity soon. The flowerlike nickel oxide (NiO) was also synthesized. The flowerlike a-nickel hydroxide (Ni(OH)2), being used as the precursor of the nickel oxide, was successfully synthesized by homogeneous precipitation method without using any templates or surfactants. Flowerlike nickel oxide (NiO) with the similar flowerlike structure can be obtained by further calcination of the prepared Ni(OH)2at400℃for2h. The results showed that the specific surface area of flowerlike NiO was125.2m2/g and the band gap energy of it was4.43eV. The flowerlike NiO have higher photocatalytic property to decompose Methyl orange pollutant.
     3. The morphology-and size-controlled ln(OH)3and ln(OH)3/AC (porous activated carbon) composite photocatalysts were successfully prepared. First, Mesoporous indium hydroxide nanorods were successfully synthesized by a mild one-step one-pot method.There are some pores in the samples, which are mainly composed of rod-like shapes with length of300nm and diameter of90nm. N2adsorption/desorption measurements confirmed that the prepared powder is mesoporous with average pore diameter of3.1nm. The ultraviolet-visible absorption spectroscopy analysis indicated that the band gap energy of the samples is5.15eV. Photoluminescence spectrum showed that there are two stronger emissions under ultraviolet light irradiation. The growth mechanism of indium hydroxide nanorods and the role of cetyltrimethyl ammonium bromide were also discussed. Then, the morphology-and size-controlled In(OH)3nanocrystals have been synthesized via a novel, low-cost and low-temperature(70℃) route without using CTAB as surfactant. The morphology and size of In(OH)3nanostructures can be controlled by adjusting the reaction conditions, such as the reaction time, concentration of the alkali and the alkaline source. A possible mechanism for the evolution of the morphology-and size-controlled In(OH)3was proposed. The photocatalytic degradation of phene showed that the ln(OH)3have higher photocatalytic activity than TiO2(p-25). Mesoporous nanosheets of ln(OH)3with high specific surface area were also successfully synthesized via a facile hydrothermal method using In(NO3)3and hexamethylene tetramine(HMT) as raw materials. The photocatalyst sample is highly photoactive and stable for gas-phase removal of toluene under UV irradiation.In the end, In(OH)3/AC (porous activated carbon) composite photocatalysts were prepared via a facile hydrothermal method using In(NO3)3and hexamethylene tetramine(HMT) as raw materials and AC as a carrier. The results showed that the doped of actived carbon can affect the crystal structure and the size of In(OH)3. TEM results showed that the morphology of In(OH)3were not affected when actived carbon was added.The DRS results showed that the energy band of In(OH)3was had no effect on when actived carbon was added. Results of FT-IR showed that the AC and In(OH)3were connected by chemical bond. The photocatalytic degradation of toluene showed that In(OH)3/AC catalysts with optimal AC content3%exhibited higher activity than other In(OH)3/AC catalysts,
     4. The TiO2/ACF composite photocatalyst was prepared by using the screen printed technology. The results of XRD showed the TiO2/ACF composite photocatalyst is confirmed anatase as the only phase present and ACF has no effects on the phase structures of TiO2. The results of SEM showed that TiO2can form thin film on ACF surface. Benzene was chosen as the model of the volatile organic compounds (VOCs) to investigate the capability of TiO2/ACF composite photocatalyst. The results showed that the TiO2/ACF composite photocatalyst have higher activity for benzene removal than only TiO2photocatalyst.
引文
[1]连红芳.室内空气污染的净化治理.内蒙古石油化工,2011,20:42-44
    [2]程静,占建波,唐岱琨,等.室内空气中总挥发性有机物污染防治研究进展.公共卫生与预防医学,2011,Vol22(2):66-68
    [3]韩巧叶.室内空气污染对人体健康的影响.内蒙古科技与经济,2010,2:67-67
    [4]尹明静.浅谈室内污染的危害与治理.资源与人居环境,2007,2:79-81
    [5]马超.室内空气污染净化技术的现状与发展趋势.环境工程,2011,29:168-170
    [6]张义,陈彪,杨宇锋室,等.内空气中苯系物污染及防治.四川建材,2009,35(2):91-92
    [7]Performance Criteria of Buildings for Health hand Comfort[S].ISIA,2000.
    [8]傅尧信,杨柳,白玛央金.室内污染控制方法及相关标准.四川环境,2003,22(1):55-59
    [9]戴芳天.活性炭在环境保护方面的应用.东北林业大学学报,2003,31(2):48-49
    [10]Ao C.H., Lee S.C.. Indoor air purification by photocatalyst TiO2 immobilizedon an activated carbon filter installedin an air cleaner. Chem. Eng. Sci.,2005,360:103-109
    [11]吴金涛,周建斌.活性炭净化空气技术发展综述.林业产业,2011,38(6):58-59
    [12]Aguado S.N., Polo A.C., Bemal M.P., et al. Removal of Pollutants from indoor air using zeolite membranes. J. Memb. Sci.,2004,240:159-166
    [13]Ching, W.H. Michae L., Dennis Y.C., et al. Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO2 thin film for enhancement of indoor air quality. Sol. Energy,2004,77:129-135
    [14]Hoffmann M.R., Martin S.T., Choi W., et al. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.,1995,95(1):69-96
    [15]盛梅,许淮,朱毅青.半导体光催化剂及其在环境保护中的应用.江苏石油化工学院学报,2001,13(13):40-43
    [16]Ghasemi S., Rahimnejad S., Setayesh S.R., et al. Synthesis, characterization and evaluation of efficiency of new hybrid P/Fe-TiO2 nanocomposite as photocatalyst for decolorization of methyl orange using visible light irradiation. J. Hazard. Mater.,2009, 172:1573-1578
    [17]刘听.几种高可见光催化活性的新型光催化剂的合成及性能研究.广西师范大学硕士论文.2006:2-7
    [18]Xu A.W., Gao L., Liu H.Q.. The Preparation, Characterization and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. J.Catal.,2002,207:151-157
    [19]Zhang Y.H., Zhang H.X., Xu Y.X., et al. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2 J. Solid State Chem.,2004, 177:3490-3498
    [20]孙剑,刘守新.La掺杂Ti02膜的制备及其对甲苯的去除性能.无机材料学报,2010,9:928-934
    [21]徐文国,贾燕,沙晶,李秀芳,等.铜钕共掺杂纳米Ti02光催化降解偏二甲肼废水.北京理工大学学报,2010,30(8):988-991
    [22]马正先,张宁,刘江.La3+和Fe3+共掺杂Ti02/天然沸石的制备与光催化性能.硅酸盐学报,2011,39(10):1564-1569
    [23]Estrellan C.R., Salim C., Hinode H.. Photocatalytic activity of sol-gel derived TiO2 co-doped with iron and niobium. React. Kinet. Catal.Lett.,2009,98:187-192
    [24]Nagaveni K., Hegde M.S., Ravishankar N., et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir,2004,20:2900-29071
    [25]Wang D., Xiao L.B., Qing Z., at al. Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than300 ℃. J. Hazard. Mater.,2011, 192:150-156
    [26]Sano T., Negishi N., Koike K., et al.Preparation of a visible light responsive photocatalyst from a complex of Ti4+with anit rogen-containing ligand. Chem. Mater., 2004,14:380-384
    [27]工智宇,赵彬,高春梅,等.S掺杂Ti02光催化剂的可见光催化降解甲基橙研究.武汉理工大学学报,2007,29(1):243-247。
    [28]Lin L., Zheng R.Y., Xie J.L., et al. Synthesis and characterization of phosphor and nitrogen co-doped titania. Appl. Catal. B:Environ.,2007,76:196-202
    [29]Yang X.X., Cao C. D., Erickson L., et al. Synthesis of visible-light-active TiO2 based photocatalysts by carbon and nitrogen doping. J.Catal.,2008,260:128-133
    [30]Yang X.X., Cao C. D., Hohn K., et al. Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde. J. Catal.,2007,252:296-302.
    [31]Shen Y.F., Xiong T. Y., Li T.F., et al. ungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response. Appl.Catal.B:Environ.,2008,83:177-185
    [32]Bessekhouad Y., Robert D., Weber J.V.. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for Photocatalytic degradation of organic Pollutant. J.Photochem. PhotobioA:Chem,2004,163:569-580
    [33]李昱昊,毛立群,张顺利,等CdS/TiO2复合半导体的表面态及光催化性能,河南大学学报(自然科学版),2004,34(2):28-32
    [34]Bessekhouad Y., Robert D., Weber J.V.. Photocatalytic activity of Cu2O/TiO2 Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal. Today,2005,101:315-321
    [35]李跃军,曹铁平,工长华,等.Ce02/Ti02复合纳米纤维的制备及光催化性能研究,化学学报,2011,69(21):2597-2602
    [36]王韵芳,焦爱峰,丁光月,等CuO/SnO2/TiO2复合光催化剂.人工晶体学报,2010, 39(2):401-406
    [37]肖奇,邱冠周,徐兢,等.纳米Ti02表面修饰理论与实践.功能材料,2002,33(1):9-11
    [38]安立超,曾衍,李海燕.载银Ti02催化剂的制备与性能研究.环境污染与技术设备,2001,2(4):30-33.
    [39]刘守新,陈广胜,陈孝云Ag/TiO2对含酚废水的光电催化降解.应用化学,2005,22(8):840-843.
    [40]Yang Y.F., Sangeetha P., Chen Y.W.. Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream. Int. J. Hydrogen Energy,2009,3 4:8912-8920
    [41]吴湘江,蒋耀辉,彭振山,等Au/TiO2催化剂的制备及低级醇类的光催化消除.中国有色金属学报,2009,19(1):139-147
    [42]Stylid I.M., KondaridesD I., Verykios X.E.. Visible light induced photocatalytic degradation of acid orange inaqueous TiO2 suspensions. Appl. Catal. B:Environm, 2004,47(3):189-201.
    [43]尚静,赵凤伟,朱彤,等.染料敏化Ti02可见光光催化降解罗丹明B.中国科学,2010,40(12):1787-1793
    [44]郭苗苗,李越湘,彭绍琴,等.Fe3+偶联吨染料敏化Ti02可见光催化制氢活性.功能材料,2009,5(40):802-805
    [45]王虎,谢娟,段明.特殊形貌的ZnO晶体:水热法生长及光催化性能.无机化学学报,2011,27(2):321-326
    [46]徐晓虹,刘淑洁,吴建锋,等.水热合成六方柱状氧化锌及其光催化性能研究.陶瓷学报,2011,32(3):341-346
    [47]Li D., Haneda H.. Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere,2003,51(2):129-137
    [48]Chen S.F., Zhao W., Zhang S.J., et al. Preparation, characterization and photocatalytic activity of N-containing ZnO powder. J. Chem. Eng.,2009,148:263-269
    [49]Mohan r., Krishnamoorthy K., Kim K.J.. Enhanced photocatalytic activity of Cu-doped ZnO nanorods. Solid State Commun.,2012,152:375-380
    [50]井立强,蔡伟民,孙晓君Pd/ZnO, Ag/ZnO复合粒子的制备、表征及广催化活性.催化学报,2002,23(4):337-340
    [51]Xie J.S., Wu Q.S.. One-pot synthesis of ZnO/Ag nanospheres with enhanced photocatalytic activity. Mater. Lett.,2010,64:389-392
    [52]王英连,曾仁芬,叶君.贵金属Ag沉积ZnO薄膜的光催化性能研究.中国陶瓷,2011,47(3):18-21
    [53]李莉,陆丹,赵月红,等.纳米复合材料ZnO/TiO2-ZrO2的制备及其微波辅助光催化降解甲基橙.化学通报,2011,74(12):1150-1155
    [54]余长林,杨凯,YU Jimmy C,等.水热合成Bi2W06/ZnO异质结型光催化剂及其光催化性能.无机化学学报,2011,26(11):1157-1163
    [55]Haneda H.. Photocatalysis of sprayed nitrogen-containing Fe2O3-ZnO and WO3-ZnO composite powders in gas-phase acetaldehyde decomposition. J. Photochem. Photobio A:Chem.,2003,155(1-3):171-178
    [56]张宇,孙丰强,王红娟.花状纳米结构Sn02颗粒的低温水浴合成及其光催化性能.华南师范大学学报(自然科学版),2012,44(1):90-93
    [57]吴利瑞,胡强,潘康,等.Sn02纳米粒子的制备与降解甲醛效果研究.建筑热能通风空调,2011,30(6):1-4
    [58]李跃军,曹铁平,工长华,等.Sn02/Ti02复合纳米纤维的制备及光催化性能.高等学校化学学报,2011,32(4):822-827
    [59]Ishii T., Kato H., Kudo A., et al. H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalumions under visible light irrdaiation. J. Photochem. Photobio A:Chem.,2004,163:181-186
    [60]桑丽霞,钟顺和,傅希贤,等LaBO3(B=Fe, Co)中氧的迁移与光催化反应活性.高等学校化学学报,2003,24:320-323
    [61]王伟鹏,杨华,县涛,等BaTiO3纳米颗粒的聚丙烯酰胺凝胶法合成及光催化降解甲基红性能.催化学报,2012,33(2):354-359
    [62]杨淼,薛丽红,李元元,等.燃烧合成Ti掺LaNiO3及其可见光光催化性能.复合材料学报,2012,Vol29(1):117-121
    [63]Spinicci R., Faticanti M., Marini P., et al. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion. J. Mol. Catal. A:Chemical,2003,197:147-155
    [64]Zou Z.G., Ye J.H., Oshikiri M., et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. J. Chem Phy Lett.,2002,356:221-226
    [65]Zou Z. G, Ye J. H., Sayamaa K., et al. photocatalytic hydrogen and oxygen formation under nado Visible light irradiation with M-doped InTaO4(M=Mn, Fe, Co, Ni and Cu)photocatalysts. J.Photochem. Photobio. A:Chem.,2002,48:65-69
    [66]Zou Z. G., Ye J.H., Arakawa H. Photocatalytic water splitting into H2 and /or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Int. J. Hydrogen Energy,2003,28:663-669
    [67]王韵芳,樊彩梅.Ag3P04的可见光光催化性能及机理分析.无机化学学报,2012,28(2):347-351
    [68]王敏,王里奥,孙玉凤.Ba2+掺杂FeVO4光催化剂的制备及光催化性能.硅酸盐学报,2010,38(7):1241-1246
    [69]刘坤杰,常志东,李文军,等.磁性BiVO4可见光催化材料的制备及光催化性能.无机化学学报,2011,27(8):1465-1470
    [70]Domen K., Ikeda S.g., Takata T., et al. Mechano-catalytic overall water-splitting into hydrogen and oxygen on some metal oxides. Applied Energy,2000,67:159-179
    [71]李琴,柳云骐,周永敏,等.烯烃与羧酸酯化反应中固体酸催化剂的应用.工业催化,2007,15:67-69.
    [72]岳斌,许静玉,金松林.多酸的光化学和光催化(下).上海化工,2002,(14):15-17
    [73]王伟平,张义军,杨水金.杂多酸光催化降解染料废水的研究进展.化工文摘,2009,2:52-55
    [74]工崇太,孙振范,华英杰,等Keggin型铁取代杂多阴离子PW11039Fe(Ⅲ)(H20)4—光催化降解硝基苯.化学学报,2010,68(11):1037-1042
    [75]工崇太,孙振范,华英杰,等.铬取代杂多阴离子PW11039Cr(Ⅲ)(H20)P4-可见光催化降解罗丹明B.化学学报,2010,Vol70(4):399-404
    [76]刘鼎,许宜铭.杂多酸存在下X3B染料光降解和Cr(Ⅵ)光还原的协同反应机理. 物理化学学报,2008,24(9):1584-1588
    [77]Hara M.C., Kondo a.K.. CuO2 as a photocatalyst for overall water aplitting under visible light irradiation.Chem.Commum,1998,3:357-358.
    [78]Ma lili,Li jialin, Sun haizhen et al. Self-assembled Cu2O flowerlike architecture:Polyol synthesis, photocatalyticactivity and stability under simulated solar light. Mater. Res. Bull.,2010,45(8):961-968
    [79]陈善亮,应鹏展,顾修全,等.Cu20薄膜的制备及其光催化活性.化工环保,2011,31(5):469-473
    [80]黄智,李玉英,龙腾发,等Cu2O- CNTs的制备及其光催化性能研究.现代化工,2010,30(1):57-59
    [81]梁宇宁,黄智,覃思晗,等.Cu02光催化降解水中对硝基苯酚的研究.环境污染治理技术与设备,2003,4(10):36-39
    [82]Bandara J., Udawatta C. P. K., Rajapakse C. S.K.. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem. Photobiol. Sci.,2005,4(11):857-861
    [83]Wei S.Q., Chen Y.Y., MaY.Y. Fabrication of CuO/ZnO composite films with cathodic co-electrodeposition andtheir photocatalytic performance. J. Mol. Catal. A: Chemical,2010,331:112-116
    [84]王俊恩,王岩玲,张玉洲,等.p-CuO/n-Bi12TiO20可见光催化剂的制备及催化性能研究.人工晶体学报,2011,Vol40(3):716-721
    [85]于波,张平,张磊,等.活性氧缺位铁酸铜的制备及其在热化学分解水制氢中的应用.中国科学,2008,38(6):550-556
    [86]Younsi M.. Visible light-induced hydrogen over CuFeO2 via S2O32- oxidation. Sol. Energy,2005.78, (5):574-580
    [87]Shankar M.V., Anandan S., Venkatachalam N., et al. Fine route for an efficient removal of 2 4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2, Chemosphere,2006,63:1014-1021
    [88]MarugaJ., Hufschmidt D., Lopez-Munoz M.J., et al. Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts. J.Appl. Catal. B:Environ,2006,62:201-207
    [89]Zhang X., Zhou M., Lei L., et al. Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. J.Appl.Catal. A:General, 2005,282:285-293
    [90]Yazawa T., Machida F., Kubo N., et al. Photocatalytic activity of transparent porous glass supported TiO2. Ceramics International,2009,35:3321-3325
    [91]张静,张惠灵,袁修彬,等.微波诱导催化剂Fe203/沸石氧化处理印染废水.环境工程学报,2011,5(12):2778-2782
    [92]Yu Y, Yu J.C., Yu J.G., et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. J.Appl. Catal.A:General,2005,289:186-196.
    [93]刘子全,姜付义,马霞,等.光催化剂载体及其固定化方法的研究进展.无机盐工业,2010,43(11):6-8
    [94]Aruldoss U., Kennedy L.J., J, Vijaya J.J., et al. Photocatalytic degradation of phenolic syntan using TiO2 impregnated activated carbon. J. Colloid Interface Sci., 2011,355:204-209
    [95]朱曜峰,丁艳杰,傅雅琴.碳纤维负载Ti02光催化薄膜的制备及其性能.纺织学报,2010,31(4):1-6
    [96]Gu L., Z.X., Sun C., et al. Photocatalytic degradation of 2,4-dichlorophenol using granular activated carbon supported TiO2. Desalination,2010,263:107-112
    [97]敏世雄,吕功煊.CdS/石墨烯复合材料的制备及其可见光催化分解水产氢性能.物理化学学,2011,27(9):2178-2184
    [98]陈金毅,李念,李晶,等.交联累托石/Cu20纳米复合材料的制备及可见光催化性能.物理化学学,2011,27(4):932-938
    [99]张伟,施周,张茜,等.复合光催化剂(Ti02/多壁碳纳米管)制备工艺条件对甲基橙光催化降解动力学的影响.环境化学,2011,30(2):549-554
    [100]Cao X.Y., Oda Y., Shiraishi F.M. Photocatalytic and adsorptive treatment of 2,4-dinitrophenol using a TiO2 film covering activated carbon surface. J. Chem. Eng., 2010,156:98-105
    [101]许德平,黄正宏,工永刚,等.活性炭纤维布担载纳米Ti02的三种方法. 炭素技术,2004,23(5):12-16
    [102]黄徽,杜伟,顾云勇.Ti02/AC的制备及光催化降解四氯乙烯性能.南通职业大学学报,2006,20(4):106-108
    [103]胡昌义,李靖华.化学气相沉积技术与材料制备.稀有金属,2001,25(5):364-67.
    [104]范金山.微乳液法制备Ti02纳米粉体及其光催化性能研究.人工晶体学报,2006,35(2):347-350
    [105]任成军,钟本和,周大利,等.水热法制备高活性Ti02光催化剂的研究进展.稀有金属,2004,28(5):903-906
    [106]张林,张连生,刘宜华Fe-In2O3纳米复合颗粒膜的制备和磁特性研究微细加工技术,2005,3(1):54-57
    [107]蔡志猛,周志文,李成,等.硅基外延锗金属-半导体-金属光电探测器及其特性分析.光电子·激光,2008,19(5):587-590
    [108]梅长松,钟顺和.负载金属对MoO3-TiO2光催化剂结构与催化性能的影响.燃料化学学报,2005,33(2):229-234
    [109]黄宝歆.用射频磁控溅射法制备金属/半导体颗粒膜.大学物理,2007,26(9):43-45
    [110]Hofmann M. R., Martin S. T., Cho W., et al. Environmental Applications of Semiconductor Photocatalysis. J. Chem. Rev.,1995,95:69-96
    [111]Hihiro Y., Kazuo K., Noriyuki W., et al. Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. J. Thin Solid Films,2008, 516:5881-5884
    [112]胡春,王怡中,汤鸿霄.多相光催化氧化的理论与实践发展.环境工程学报,1995,3(1):55-64
    [113]黄智,张爱苗,韩朔暌,等.Cu20光催化降解对氯硝基苯.环境化学,2003,20(2):150-153,
    [114]刘小玲,陈金毅,周元涛,等.华中师范大学学报(自然科学版),2002,36(4):475-477
    [115]李长玉,马跃,刘守新.可见光响应Cu-Cu2+1O复合材料的水热法一步合成.物理化学学报,2009,25(8):1555-1560
    [116]刘守新,陈孝云,陈曦.酸催化水解法制备可见光响应N掺杂纳米Ti02.催化剂催化学报,2006,27(8):697-702
    [117]Sharma P. K., Dutta R. K., Kumar M., et al. Luminescence studies and formation mechanism of symmetrically dispersed ZnO quantum dots embedded in SiO2 matrix. J. Lumin.,2009,129:605-610
    [118]Demeestere K., Dewulf J., Ohno T., et al. Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide. Appl. Catal. B-Environ.,2005,61:140-149
    [119]楚广,熊志群,刘伟,等.自悬浮定向流法制备纳米Cu粉的微结构和性能表征.中国有色金属学报,2007,17(4):623-628.
    [120]Yao C. Z., Wang L. C, Liu Y. M., Wu G. S., et al. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. Appl. Catal. A,2006,297:151-158
    [121]Ghodselahi T., Vesagh M. A., Shafiekhan A., et al. XPS study of the Cu@Cu2O core-shell nanoparticles. Appl. Surf. Sci.,2008,255:2730-2734
    [122]齐世学,邹旭华,刘雪梅,等Au-TiO2光催化剂的制备及其催化性能化学通报,2005,10:785-787
    [123]刘守新,曲振平,韩秀文,等.Ag担载对Ti02光催化活性的影响.催化学报,2004,25(2):133-137
    [124]Luo Y. S., Li S. Q., Ren Q. F., et al. Facile Synthesis of Flowerlike Cu2O Nanoarchitectures by a Solution Phase Route. Cryst. Growth Des.,2007,7(1):87-92
    [125]Bessekhouad Y, Robert D., Weber J. V. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal. Today,2005.101:315-320
    [126]何星存,梁伟夏,黄智,等.可见光响应的“Cu核-Cu20壳”型光催化剂性能的研究现代化工,2005,25(11):38-42
    [127]Ao C.H., Lee S.C. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl. Catal. B, 2003(44):191-205
    [128]隆金桥,黎远成,杨汉雁,等.Cu20光催化降解苯酚.化工设计,2004,14(6):42-45
    [129]Kang Z.H., Wang E.B., Gao L., et al. One-Step Water-Assisted Synthesis of High-Quality Carbon Nanotubes Directly from Graphite J. Am. Chem. Soc,2003. 125:13652-13653
    [130]Lian S.Y., Wang E.B., Kang Z.H., et al. Growth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process. Solid State Commun.,2004,132:375-378
    [131]Lei Z.B., Ma G.J., Liu M.Y., et al. Sulfur substituted and zinc doped In(OH)3:a new class of catalyst for photocatalytic H? production from water under visible light illumination. J.Catal.,2006,237:322-329.
    [132]Kresge T., Leonowicz M.E., Roth W.J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359:710-712
    [133]Navrotsky A., Trofymluk O., Andrey A., et al. Selective covalent protein immobilization:strategies and applications.Chem. Rev.,2009,109 (9):4025-4053
    [134]Hu W.K., Noreus D. Chem. Alpha Nickel Hydroxides as Lightweight Nickel Electrode Materials for Alkaline Rechargeable Cells. Mater, chem.,2003,15:974-978
    [135]He X.M., Li J.J., Cheng H.W., et al. High-rate discharge properties of nickel hydroxide/carbon compositeas positive electrode for Ni/MH batteries. J. Power Sources,2005,152:285-290
    [136]Zhang W.G., Jiang W.Q., Yu L.M., et al. Effect of nickel hydroxide composition on the electrochemical performance of spherical Ni(OH)2 positive materials for Ni-MH batteries. Int. J. Hydrogen Energy,2009,34:473-480
    [137]Liang Z.H., Zhu Y.J., Hu X.L. β-Nickel Hydroxide Nanosheets and Their Thermal Decomposition to Nickel Oxide Nanosheets. J. Phys. Chem. B,2004,108:3488-3491
    [138]Chen D.L., Gao L. a new and facile route to ultrafine nanowires, superthin nanoflakes and uniform nanodisks of nickel hydroxide. Chem. Phys. Lett.,2005, 405:159-164
    [139]Meyer M., Bee A., Talbo D.t., et al. Synthesis and dispersion of Ni(OH)2 platelet-like nanoparticles in water. J.Colloid Interface Sci.,2004,277:309-315
    [140]Bernard M.C., Cortes R., Keddam M., et al. Structural defects and electrochemical reactivity of β-Ni(OH)2. J. Power Sources,1996,63:247-254
    [141]Han X.J., Xu P., Xu C.Q., et al. Study of the effects of nanometer Ni(OH)2 in nickel hydroxide electrodes. Electrochim. Acta,2005,50:2161-2169
    [142]Liu X.H., Yu L. Influence of nanosized Ni(OH)2 addition on the electrochemical performance of nickel hydroxide electrode. J. Power Sources,2004,128:326-330
    [143]Li B.J., Ai M., Xu Z. Mesoporous β-Ni(OH)2:synthesis and enhanced electrochemical performance. Chem. Comm.,2010,46:267-6269
    [144]Wu M.S., Hsieh H.H.. Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors Electrochim. Acta,2008,53:3427-3435
    [145]He J.J., Lindstrol H., Hagfeldt A., et al. Dye-Sensitized Nanostructured p-Type Nickel Oxide Film as a Photocathode for a Solar Cell. J. Phys. Chem. B,1999,103:8940-8943
    [146]Song X.F., Gao L.. Facile Synthesis and Hierarchical Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties. J. Phys. Chem. C,2008,112:15299-15305
    [147]Ida S.N., Shiga D.S., Koinuma M.C., et al. Synthesis of Hexagonal Nickel Hydroxide Nanosheets by Exfoliation of Layered Nickel Hydroxide Intercalated with Dodecyl Sulfate Ions. J. am. chem. soc.,2008.130:14038-14039
    [148]Kong X.H., Liu X.B., He Y.D., et al. Hydrothermal synthesis of β-nickel hydroxide microspheres with flakelike nanostructures and their electrochemical properties. Mater. Chem. Phys.,2007,106:375-378.
    [149]Zhang S.M., Zeng C.. Self-Assembled Hollow Spheres of β-Ni(OH)2 and Their Derived Nanomaterials.Chem. Mater.,2009.21:871-883
    [150]Sun J.T., Cheng J.G., Wang C.W., et al. Synthesis and Morphological Control of NickelHydroxide for Lithium-Nickel Composite Oxide Cathode Materials by an Eddy Circulating Precipitation Method Ind. Eng. Chem. Res.,2006,6:2146-2149
    [151]Dong L.H., Chu Y., Sun W.D.. Controllable Synthesis of Nickel Hydroxide and Porous Nickel Oxide Nanostructures with Different Morphologies. Chem. Eur. J.,2008,14:5064-5072
    [152]Li Q.Y., Wang R.N., Nie Z.R.,et al. Preparation and Characterization of Nanostructured Ni(OH)2 Thin Films by a Simple Solution Growth ProcessJ. Colloid Interface Sci.,2008,320:254-258
    [153]Han X., Xie X., Xu C., et al Morphology and electrochemical performance of nano-scale nickel hydroxide prepared by supersonic coordination-precipitation method. Opt. Mater.,2003,23:465-470
    [154]Guan X.Y., Deng J.C.. Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Mater. Lett.,2007,61:621-625
    [155]Ramesh T.N.. Crystallite size effects in stacking faulted nickel hydroxide and its electrochemical behavior. Mater. Chem.Phys.,2009.114:618-623
    [156]Matsui K., Kyotani T., Tomita A.. Hydrothermal synthesis of single-crystal Ni(OH)2 nanorods in a carbon-coated anodic alumina film. Adv. Mater.,2002,14:1179-1216
    [157]Cao M. H., Liu T.F., Gao S., et al. Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3:Large-Scale Synthesis, FormationMechanism, and Properties. Angew. Chem. Int. Ed.,2005,44:4197-4201
    [158]Liu H. B., Xiang L., Jin Y. Hydrothermal modification and characterization of Ni(OH)2 with high discharge capability. Cryst. Growth Design,2006,6:283-286
    [159]Zhu J.X., Gui Z., Ding Y.Y.,e t al. A Facile Route to Oriented Nickel hydroxide Nanocolumns and Porous Nickel Oxide.J. Phys. Chem. C,2007,111:5622-5627
    [160]Zhou K.B., Li Y.D. Catalysis Based on Nanocrystals with Well-Defined Facets. Angew. Chem. Int. Ed.,2011,50:2-14
    [161]Fang Y.P., Wen XG, Yang S.H. Hollow and Tin-Filled Nanotubes of Single-Crystalline In(OH)3 Grown by a Solution-Liquid-Solid-Solid Route. Mater. Res. Bull.,2010,45:109-112
    [162]Liu X.X., Yu L. Synthesis of nanosized nickel hydroxide by solid state reaction at room temperature. Mater. Lett.,2004,58:1327-1330
    [163]Tao F., Wang Z.z., Yao L.Z., et al. Hydrothermal synthesis of 3D a-MnS flowerlike nanoarchitectures. Mater.Lett.,2007,61:4973-4975
    [164]Zhu H., Wang X.L., Wang Z.J., et al. Self-Assembled 3D Microflowery In(OH)3 Architecture and Its Conversion to In2O3. J. Phys. Chem. C.,2008,112:15285-15292
    [165]Bernard M. C., Cortes R., Keddam M., et al. Structural defects and electrochemical reactivity of p-Ni(OH)2. J. Power Sources,1996,63(2):247-254
    [166]Li B., Ai M., Xu Z. Mesoporous β-Ni(OH)2:synthesisand enhanced electrochemical performance. Chem. Commun.,2010,46(34):6267-6269
    [167]季益刚.?益明,邵阳.等β-Ni(OH)2的制备及电化学性能.电池.2006.36(6):456-458
    [168]Zhao D.D., Xu M.W., Zhou W.J., et al. Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route. Electrochim. Acta,2008,53:2699-2705
    [169]Zhu L.P., Liao G.H., yang Y., et al. Self-Assembled 3D Flower-Like Hierarchical β-Ni(OH)2 Hollow Architectures and their In Situ Thermal Conversion to NiO. Nanoscale Res Lett.,2009,4:550-557
    [170]Zhao D.D., Bao S.J., ZhouW.J., et al. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun.,2007.9:869-874
    [171]Xu P., Han X.J., Zhang B., et al. Characterization of an ultrafine-nickel hydroxide from supersonic co-precipitation method. Journal of Alloys and Compounds,2007, 436:369-374
    [172]Yang L. J., Gao X. P., Wu Q. D., et al. Phase Distribution and Electrochemical Properties of Al-Substituted Nickel Hydroxides. J. Phys. Chem. C,2007,111 (12):4614-4619
    [173]Xiang L., Yin Y.P., JinY. Preparation and characterization of NiO(core)/Fe2O3(shell)composite particles J.Solid State Chem.,2004,177:1535-1541
    [174]Cao M.H., He X.Y., Chen J.et al. Self-Assembled Nickel Hydroxide Three-Dimensional Nanostructures:A Nanomaterial for Alkaline Rechargeable Batteries Crystal Growth Design,2007,7:170-174
    [175]朱振峰,魏娜.刘辉.等.自组装花状结构Ni(OH)2的微波水热合成与表征.功能材料,2011,3(42):436-440
    [176]孙海峰,蒋文全,于丽敏,等.花瓣状和纳米片β-Ni(OH)2的水热法合成及其生长机制研究.稀有金属,2010,34(13):389-394
    [177]彭美勋,王零森,沈湘黔,等.β-球形氢氧化镍的微观结构及其形成机理.中国有色金属学报,2003,13(5):1130-1135
    [178]Rajamathi M, Kamath P V. On the relationship between a-nickel hydroxide and basic salts of nickel. J. Power Scource,1998,70:118-122
    [179]Xu L.P., Ding Y.S., Chen C.H., et al.3D Flowerlike a-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method. Chem. Mater.,2008,20:308-316
    [180]Liu B.H., Yu S.H., Chen S.F., et al. Hexamethylenetetramine Directed Synthesis and Properties of a New Family of α-Nickel Hydroxide Organic-Inorganic Hybrid Materials with High Chemical Stability. J. Phys. Chem. B,2006,110:4039-4046
    [181]Chen X.Y., Zhang Z.J., Qiu Z.G., et al. A facile biomolecule-assisted approach for fabricating α- Fe2O3 nanowires in solution. J. Solid State Commun,2006,140:267-269
    [182]Chen J.D., Wang Y.J., Wei K., et al. Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials,2007,28:2275-2280
    [183]Yang M., Pang G.S., Li J.X., et al. Preparation of ZnO nanowires in a neutral aqueous system:Concentration effect on the orientation attachment process. Eur. J. Inorg. Chem,2006:3818-3822
    [184]Liu F., Lu J., Jun S., et al. Preparation of mesoporous nickel oxide of sheet particles and its characterization. Mater Chem. Phys.,2009,113(1):18-20
    [185]邢伟,李丽,阎子峰,等.介孔氧化镍的合成、表征和在电化学电容器中的应用.化学学报,2005,65:1775-1781
    [186]Zhu H.L., Yao K.H., Wo Y.H., et al. Hyddrotheremal synethesis of single crystalline In(OH)3 and their characterization. Semicond. Sci. Technol.,2004,19:1020-1022
    [187]Huang J.H., Gao L.. Anisotropic Growth of In(OH)3 Nanocubes to Nanorods and Nanosheets via a Solution-Based Seed Method. Cryst. Growth Des.,6 (2006) 1528-1532
    [188]马晶,强亮生,唐翔波,等.Ti02/SBA-15的快速合成法及其催化性能.无机化学学报,26(6):963-969
    [189]Avivi S., Mastai Y, Gedanken A.. Sonohydrolysis of In3+ Ions:Formation of Needlelike Particles of Indium Hydroxide. Chem. Mater.,2000,12 (5):1229-1233
    [190]Yang J., Lin C.K., Wang Z.L., Lin L.. In(OH)3 and In2O3 Nanorod Bundles and Spheres:Microemulsion-Mediated Hydrothermal Synthesis and Luminescence Properties. Inorg. Chem.,2006,45:8973-8979
    [191]Tang Q., Zhou W.J., Zhang W., et al. Size-Controllable Growth of Single Crystal In(OH)3 and In2O3 Nanocubes. Cryst. Growth Des.,2005,5:147-150
    [192]Fu X.L., Wang X.X., Ding Z.X., et al. Hydroxide ZnSn(OH)6:A promising new photocatalyst for benzene degradation. Appl.Catal., B:Environmental,2009,91:67-72
    [193]陈友三,王绪绪,李旦振,等.高活性低失活In(OH)3纳米晶光催化剂的制备和表征.高等化学学报,2007,28(2):355-357
    [194]Chen L.Y., Zhang Y.G., Wang W.Z., et al. Tunable Synthesis of Various Hierarchical Structures of In(OH)3 and In2O3 Assembled by Nanocubes. Eur. J. Inorg. Chem.,2008, 1445-1451
    [195]Poznyak S.K., KulakA.I. Characterization and photoelectrochemical properties of nanocrystalline In2O3 film electrodes. Electrochim. Acta,2000,45:1595-1605
    [196]Lei Z.B., Ma G.J., Liu M.Y., et al. Sulfur substituted and zinc doped In(OH)3:a new class of catalyst for photocatalytic H2 production from water under visible light illumination. J.Catal., 2006,237:322-329
    [197]Bayon R., Herrero J. Reaction mechanism and kinetics for the chemical bath deposition of In(OH)xSy thin films.Thin Solid Films,2001,387:111-114
    [198]Yan T.J., Wang X.X., Long J.L., et al. Urea-based hydrothermal growth, optical and photocatalytic properties of single-crystalline In(OH)3 nanocubes. J. Colloid Interface Sci.2008,325:425-431
    [199]Yan T.J., Long J.L., Chen Y.S, et al. Indium hydroxide:A highly active and low deactivated catalyst for photoinduced oxidation of benzene. C.R. Chimie., 2008,11:101-106
    [200]Zhang X.H., Xie S.Y., Ni Z.M., et al. Controllable growth of In(OH)3 nanorods with rod-in-rodstructure in a surfactant solution. Inorg. Chem. Commun.,2003,6:1445-1447
    [201]Du J., Yang M., Cha S.N., et al. Indium Hydroxide and Indium Oxide Nanospheres, Nanoflowers, Microcubes, and Nanorods:Synthesis and Optical Properties. J. Cryst. Growth. Des.,2008,8:2312-2317
    [202]Zhong L.S., Hu J.S., Liang H.P., et al. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. Adv. Mater.,2006,18, 2426-241
    [203]Chen W.H., Zhang J.S., Zhang Z.H.. Performance of air cleaners for removing multiple volatile organic compounds in indoor air. Ashrae Transactions,2005,111(1): 1101-1114
    [204]叶建平,赵建国,杨丽娴,等.石化行业发展现状及VOCs控制技术研究.广州化工,2011,39(24):11-13
    [205]陈孝云,刘守新,陈曦,等.TiO2/wAC复合光催化剂的酸催化水解合成及表征.物理化学学报,2006,22(5):517-522
    [206]Chen L.Y., Zhang Y.G., Wang W.Z., et al. Tunable Synthesis of Various Hierarchical Structures of In(OH)3 and In2O3 Assembled by Nanocubes. Eur. J. Inorg. Chem.,2008, 1445-1451
    [207]Webbook.nist.gov/chemistry
    [208]Zhang Y.Z., Deng S.H., Sun B.Y., et al. Preparation of TiO2-loaded activated carbon fiber hybrids and application in a pulsed discharge reactor for decomposition of methyl orange. J. Colloid Interface Sci.,2010,347:260-66
    [209]戴磊,吴印林,郭强强,等.La0.8Sro.2Co03基阻抗谱型厚膜N02传感器的研究.稀有金属材料与工程,2009,38:935-938
    [210]陈向强,何苗,施汉昌,等.基于丝网印刷碳电极的微囊藻毒素-(亮氨酸-精氨酸)的电流型免疫传感器.分析化学,2011,4:443-448
    [211]刘守新,陈曦,陈孝云,等.Ti02/活性炭的协同作用机制.化学通报,2006,69(2):15-23
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.