污水污泥中重金属去除方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快,城市污水处理率逐年提高,城市污水处理厂的污泥产量也急剧增加。未经恰当处理处置的污泥进入环境后,直接给水体和大气带来二次污染。污泥农用是最好的消纳污泥的方法,也是适合我国国情处置方法,而污泥中往往含有一些有害物质,特别是重金属元素,成为污泥农用的限制因子,所以如何处理污泥中所含的重金属成为污泥农用要解决的关键问题。本实验旨在寻找一些环境友好的去除污泥中重金属的方法。
     在国内外前人研究的基础上,通过比较分析生物淋滤法和化学法去除污泥中重金属的相关因素及机理,本研究分别选用了植物可吸收利用的铁元素:硫酸高铁(Fe~(3+))和易于在环境中降解的有机酸:柠檬酸(CTA)为浸提剂和萃取剂对两种不同污泥[分别取自长沙某污水处量厂(W1)和东莞市某污水净化厂(W2)]中的重金属进行了相关的实验研究。
     试验结果表明:在室温,污泥浓度20g·L-1条件下,向污泥中投加硫酸铁能导致污泥酸化和污泥中重金属的溶出。向W1中投加按Fe~(3+)计算为1.5 g·L-1硫酸铁时,其pH值降至3.02,Cd,Cu,Zn溶出率分别可达到82.5%、70.9%、89.0%;向W2中投加4.5 g·L-1Fe~(3+),其pH值降至3.19,Cd,Cu,Zn的溶出率分别达到80.0%、88.2%、92.1%。在相同pH条件下,Fe~(3+)比硫酸能更有效浸出污泥中重金属;用Fe~(3+)浸提污泥中重金属能达到与生物淋滤法同等的溶出效果,并缩短了反应时间。
     柠檬酸(CTA)对东莞市污水净化厂污泥中重金属的萃取实验结果表明:柠檬酸浓度、固液比与污泥中重金属的溶出量呈正相关性,即浓度越高,固液比越大,重金属的溶出量越多;而萃取时间对重金属的溶出在初始阶段呈正相关,随着时间延长,重金属的溶出量有所下降。CTA对污泥中的四种金属Pb、Cd、Cu和Zn均表现出较强的萃取能力。在室温条件下,用0.2 mol·L-1的CTA溶液萃取24h后,各金属的去除率分别达到56%、85.2%、65%、88.5 %,CTA不仅能萃取易溶态的金属,如交换态、吸附态、有机结合态和碳酸盐态的金属,还能萃取部分以硫化物结合态金属和少量残渣态的金属。
With the development of city and increase of treatment ratio of wastewater, a large amount of sludge has been produced. The sludge directly enter into environment will cause secondary pollution to waters, air, soil. Land application of sludge on agricultural lands, forest and disturbed lands was considered a best method to treat municipal sludge. Unfortunately, pollutants such as toxic organic compounds, heavy metals and pathogens in the sludge, especially heavy metals limit its use on land application. Now, the main problem is how to remove or control the heavy metals in sludge effectively and economically. The aim of this study is to look for some new methods which can remove heavy metals fast and effectively and are friendly to environment.
     Through analyzing the mechanism and factors which affect the removal of heavy metals from sludge by bioleaching and chemical method, In this work the ferric sulfate and citric acid were used to remove heavy metals in sludge.
     In the first experiment , The removal of heavy metals from two different kinds of sewage sludge(W1&W2) was conducted by using ferric sulfate at room temperature and sludge solid concentration is 20g·L-1. It was found that the addition of ferric sulfate to the sludge causes the acidification of the tested sludge and the dissolution of heavy metals from the sludge. For W1, the best amount of ferric ion added was 1.5g·L-1 with a low pH value 3.02 and high removal percents of Cd,Cu,Zn which are as follows: 82.5%、70.9%、89.0% respectively; while for W2 the best amount of ferric ion is 4.5g·L-1 and the pH values is 3.19 and the removal percents of heavy metals——Cd,Cu,Zn are 80.0%、88.2%、92.1% respectively. Ferric ion dissolved Cd,Cu,Zn more effectively than sulfuric acid at same pH value. The removal percents of Cd, Cu and Zn using ferric sulfate was equivalent to that by bioleaching and shorted the experiment time.
     In the second experiment, CTA was used to treat heavy metals of sludge(W2). The results indicated that both CTA concentration and sludge-liquid ratio have a positive relation with the elution quantity of heavy metals, while just at the early phase of extraction, the extracting time has a positive relation with the elution quantity, with the time prolonging, there is a little decrease in the quantity of extracted metals. And CTA can effectively extract Pb, Cd, Cu, Zn from sewage sludge. At room temperature, the remove percent of Pb, Cd, Cu, Zn can reach 56%,85.2%,65%,88.5%, respectively, by extracting with 0.2 mol·L-1CTA and a sludge-liquid ratio 1:20. CTA can extract not only exchangeable metals, adsorbed metals, organically bound metals and metal carbonates, but also some metal sulfides, and a little residual metals.
引文
[1] 王凯军主编.城市污水生物处理新技术开发与应用.北京:化学工业出版社,2001:482-483
    [2] Epstein E. Effects of sewage sludge and sludge compost applied to soil on some soil physical and chemical properties. J Environ Qual. 1976, 5: 416-422
    [3] Korentajer. A review of the agricultural use of sewage sludge: benefits and potential hazards. Water Research, 1991, 17: 96-189
    [4] 周立样,沈其荣,陈同斌等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态.环境科学学报,2000,20(3):269-274
    [5] 乔显亮,骆永明,吴胜春等.污泥的土地利用及其环境影响.土壤,2002,(2):79-85
    [6] 何培松,张继荣,陈玲等.城市污泥的特性研究与再利用前景分析.生态学杂志,2004,23(3):131-136
    [7] Brown MJ, Lester JW. Metal removal in activated sludge: The role of bacterial extracellular polymers. Water Research, 1979, 13(1): 817-837
    [8] 缪应祺,陈剑波,张波等.水污染控制工程.第 1 版.南京:东南大学出版社,2002:329-339
    [9] Banerfee S et al. Impulse drying sludge. Water Research, 1998, 32(1): 258-260
    [10] 顾国维.水污染治理技术研究.上海:同济大学出版社,1997:276-322
    [11] 张清敏,陈卫平,胡国臣等.污泥有效利用研究进展.农业环境保护,2000,19 (1):58-61
    [12] 吴吉夫,王淑坤,藏树良.城市污水处理厂污泥的有效利用和相关的环境问题研究.辽宁大学学报,2002,29(1):90-91
    [13] 薛澄泽.污泥制作堆肥及复合有机肥料的研究.农业环境保护,1997,16(1):11-15
    [14] 宋敬阳译.城市污水污泥的农田施用.国外环境科学技术,1993,(3):29-32
    [15] 姚刚.德国的污泥利用与处置(Ⅱ)(续).城市环境与城市生态,2000,13(2):24-26
    [16] Khanbilvardi R. sludge ash as fine aggregate for concrete mix. J Environment Engineering, 1995, 101(9): 635-638
    [17] Okuno N, Takahashi S. Full scale application of manufacturing bricks from sewage. Water Science Technology, 1997, 36(11): 243-250
    [18] 李艳霞,陈同斌,罗 维等.中国城市污泥有机质及养分含量与土地利用.生态学报,2003,23(11):2464-2473
    [19] Wong JWC, Jiang RF, Su DC. Boron availability in ash-sludge mixture and its uptake by corn seedlings (Zeamays L.). Soil Science, 1996, 161: 182-187
    [20] Bowen PT, Jacken MK, Corbitt RA, et al. Sludge treatment, utilization and disposal. Water Environ Research, 1992, 64: 378-386
    [21] Logan TJ, Harrison BJ. Physical characteristics of alkaline stabilized sewage sludge (N-Viro soil) and their effects on soil physical properties. J Environ Quality, 1995, 24: 153-164
    [22] Sims JT, Kline JS. Chemical fractionation and plant uptake of heavy metals in soil amended with co-composted sewage sludge. J Environ Quality, 1991, 20: 387-395
    [23] 周立祥.城市污泥土地利用研究.生态学报,1999,19(2):185-192
    [24] Debosz K, Petersen SO, Kure LK, et al. Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties. Appl. Soil Ecol., 2002, 19: 237-248
    [25] Sort X, Alcaniz JM. Contribution of sewage sludge to erosion control in the rehabilitation of limestone quarries. Land Degrad., 1996, 7: 69-76
    [26] Sort X, Alcaniz J M. Effects of sewage sludge amendment on soil aggregation. Land Degrad., 1999, 10: 3-12
    [27] 唐黎华,朱于彬,赵庆祥.活性污泥用作气化用型煤粘结剂,华东理工大学学报,1998,24(5):506-509
    [28] 胡光埙,洪云希.城市污泥合成燃料的应用研究.中国给水排水,1996,12(2):13-15
    [29] 赵书勤,吴星五.城市污水污泥堆肥化技术的研究进展.四川环境,2003,22(6):9-12
    [30] Willson GB, Dalmat D. Sewage sludge composting in the U. S. A. Biocycle, 1983, 24 (5): 20-23
    [31] Goldsteim N. Biocycle survey, sewage sludge composting as a medium amendment for chrysanthemum culture. J. Amer. Sco. Hort. Sci., 1985, 100 (3): 213-216
    [32] 张自杰主编.排水工程,第四版.北京:中国建筑工业出版社,2000.
    [33] 马志毅,候红娟.污水厂污泥作吸附剂的实验研究,中国给水排水,1997,13(4):10-13
    [34] 乔显亮,骆永明.污泥土地施用研究 I:施用污泥土壤中重金属的化学浸提性研究.土壤,2000,2:86-90
    [35] 魏永太,左耀太.利用城市污水处理厂污泥生产微生物肥料的研究.污染防治技术,1999,12(4):207-209
    [36] 朱小山,孟范平,赵希锦.城市污泥的处理技术及资源化展望.四川环境,2002,21(4):8-12
    [37] 牛樱,李季华.剩余污泥处理技术进展.工业用水与废水,2000,31(5):4-6
    [38] 赵由才.固体废物污染控制与资源化.北京:化学工业出版社,2002:88-102
    [39] HU WF. Synthesis of poly (3 - hydroxybutyrate - co - hydroxy2valerate) from activated sludge. Biotechnology Letters, 1997, 19 (7): 695-698
    [40] Dsvisb. Research and development for sludge disposal into the future. W &W T, 1991, 9: 100-101
    [41] Cecil LH, Peter M, Jura JN. Sludge management in highly urbanized areas. Water Science Technology, 1996, 34 (3/4): 517-524
    [42] Bode H, Imhoff KR. Current and planed disposal of sewage sludge and other waste production from the Ruhverband Wastewater Treatment, Water Science Technollogy, 1996, 33: 219-228
    [43] Mossakowska A, Hellstrom BG., Hultman B. Strategies for sludge handling in the Stockholm region. Water Science Technology, 1998, 38: 111-118
    [44] 张增强,薛澄泽.污泥堆肥对几种花卉的生长响应研究,环境污染与防治,1996,18(5):1-4
    [45] 莫测辉等.城市污泥对作物种子发芽及幼苗生长影响的初步研究.应用生态学报,1997,8(6):645-649
    [46] 郭眉兰等.城市污泥和污泥与垃圾堆肥的农田施用对土壤性质的影响.农业环境保护,1994,13(5):204-209
    [47] Chipasa KB. Accumulation and fate of selected heavy metals in a biological wastewater treatment system, Waste Management, 2003, 23: 135-143
    [48] Paulsrud B, Nedland K T. Strategy for land application of sewage sludge in Norway, Water Science Technology, 1997, 36: 283-290
    [49] Sajwan KS, Paramasivam S, Alva AK, et al. Assessing the feasibility of land application of fly ash, sewage sludge and their mixtures. Advance Environment Research, 2003, 8: 77-91
    [50] Speir TW, Van AP, Schaik HJ, et al. Heavy metals in soil, plant and groundwater following high-rate sewage sludge application to land, Water Air Soil Pollution, 2003, 150: 319-358
    [51] Fuentes L, Mercedes J, Saez A, et al. Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere, 2004, 54: 1039-1047
    [52] Leschber R, Spinosa L. Developments in sludge characterization in Europe, Water. Science Technology, 1998, 38: 1-7
    [53] Qiao XL, Luo YM, Christie P, et al. Chemical speciation and extractability of Zn, Cu and Cd in two contrasting biosolids-amended clay soils. Chemosphere, 2003, 50: 823-829
    [54] Cunningham SD, Berti WR, Huang JW. Phytoremediation of Hg contaminated soils.Trends in Biotechnology, 1995, 13: 393-397
    [55] Raskin I., Smith RD, Salt DE. Phytoremediation of metals: using plants to remove pollutants from the environment. Journal of Current Opinion in Biotechnology, 1997, 8(2): 221-226
    [56] Heatont ACP, Rugh CL, Wang NJ, et al. Phytoremediation of mercury and ethylmercury polluted soils using genetically engineered plants. Journal of Soil Contamination, 1998, 7 (4): 497-509
    [57] De Souza MP, Chu D, Zhao M, et al. Rhizosphere bacteria enhance Cr accumulation and volatilization by Indian mustard. Plant physiology, 1999, 119 (2): 565-573
    [58] Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 2001, 60: 193-207
    [59] 龙新宪.东南景天(Sedum aIfrediiHance)对锌的耐性和超积累机理研究.浙江大学博士学位论文,2002
    [60] Robisnon BH, Brooks RR, Howes AW, et al. The potential of high-biomass Zn hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geo-chemical Exploration, 1997, 60: 115-126
    [61] Wu J, Hsu FC, Cunningham SD. Chelate-assisted Pb Phytoextraction: Pb availability, uptake and translocation constraints. Environmental Scinece and Technology, 1999, 33: 1898-1904
    [62] Khan AQ, Kuek L, Chaudbry TM, et al. Roles of plants, mycorthizae and phytochelators in Cu contaminated land reclamation. Chemosphere, 2000, 41(1-2): 197-207
    [63] Blaylock MJ, Salt DE, Dushenkov S., et al. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environmental Science and Technology, 1997, 31: 860-865
    [64] Baker AJM, McGrath SP, Reeves RD, et al. Metal hyperaccumulator plants: a review of the ecology and physiology of biological resource for phytoremediation of metal-polluted soils. In Terry and Banuelos G (eds), Phytoremediation of Contaminated Soil and Water. CRC Press LLC, Boca Raton Florida, 1999, 85-107
    [65] Raskin I., Smith R., Salt DE. Phytoremediation of metals: using plants to remove Se from the environment. Current Opinion in Biotechnology, 1997, 8(2): 221-226
    [66] 庞金华.污泥对区域生态环境的影响.热带亚热带土壤科学,1994,3(1):41-47
    [67] 欧阳喜辉,崔晶,佟庆.长期使用污泥对农田土壤和农作物影响的研究.农业环境保护,1994,13(6):271-274
    [68] 李慧君,孟昭福,谷胜意.西安市污水处理厂污泥施用于赤红壤中的探讨.农业环境科学学报,2003,22(5):593-596
    [69] 温琰茂,鲁艳兵.施用城市污泥的土壤重金属生物有效性.中山大学学报(自然科学版),1999,38(4):97-101
    [70] 梁丽,赵秀兰.污水厂污泥堆肥前后养分及重金属的变化.环境科学与管理,2006,31(1):63-65
    [71] 杨玉荣,穆国俊,魏静.重金属在污泥堆肥过程中的变化.农业环境科学学报,2006,25(增刊):226-228
    [72] Andreu V, Gimeno-Garcia E. Evolution of heavy metals in marsh areas under rice farming. Environ Pollution, 1999, 104: 271-282
    [73] Romkens P, et al. Copper solution geochemistry in arable soils: field observations and model application. J. Environ. Quality, 1999, 28: 776-783
    [74] Salam AK, Helmke PA. The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution. Geoderma, 1998, 83(3-4): 281-291
    [75] McGrath SP, Shen ZG, Zhao FJ. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspicaerulescens and Thlaspiochroleucum grown in contaminated soils. Plant and Soil, 1997, 188: 153-159
    [76] 张淑香,高子勤.连作障碍与根际微生态研究Ⅱ:根系分泌物与酚酸物质.应用生态学报,2000,11(1):152-156
    [77] Wang MJ. Land application of sewage sludge in China. The Science of the Total Environment, 1997, 197: 149-160
    [78] Couillard D, Zhu SC. Bacterial leaching of heavy metals from sewage sludge for agricultural application. Water, Air and Soil Pollution, 1992, 63: 67-80
    [79] Tyagi RD, Blais JF, Auclair JC, et al. Bacterial leaching of toxic metals from municipal sludge: Influence of sludge characteristics. Water Environ Res., 1993, 65 (3): 196-204
    [80] Couillard D, Mercier G. Optimum residence time in (CSTR or Airlift reactor) for bacterial leaching of metals from anaerobic sewage sludge—bioreactor comparison. Water Research, 1991, 25: 221-231
    [81] Blais JF, Tyagi RD, Auclair JC. Bioleaching of metal from sewage sludge: microorganisms and growth kinetics. Water Research, 1993, 27: 101-110
    [82] Chan LC, Gu XY, Wong JWC. Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur-oxidizing bacteria. Advances in Environmental Research, 2003, 7: 603-607
    [83] Seidel H, Ondruschka J, Morgenstern P, et al. Bioleaching of heavy metals from contaminated aquatic sediments using indigenous sulfur-oxidizing bacteria: a feasibility study. Water Research Technology, 1998, 37(6-7): 387-394
    [84] Seidel A, Zimmels Y, Armon R. Mechanism of bioleaching of coal fly ash by Thibacillus Thiooxidans. Chemical Engineering Journal, 2001, 83: 123-130
    [85] Myerson AS, Klime PC. Continuous bacterial coal desulfurization employing Thiobacillus ferrooxidans. Biotechnology Bioengineering, 1984, 24: 92-99
    [86] Hallber KB, Dopson M, Lindstrom EB. Reduced sulfur compound oxidation by Thiobacillus caldus. J. Bacteriol., 1996, 178: 6-11
    [87] Blais JF, et al. Bioleaching of Metals from Sewage Sludge: Effects of Temperature. Water Research, 1993, 27(1): 111-120
    [88] Blais JF, et al. Bioleaching of Metals from Sewage Sludge: Microorganisms and Growth Kinetics. Water Research, 1993, 27(1):101-110
    [89] 陈勇生,孙启俊,陈 钧等.重金属的生物吸附技术研究.环境科学进展,1997,5(6):34-43
    [90] Tyagi RD, Blais JF, Sreekrishnan TR, et al. Kinetics of Heavy Metal Bioleaching from Sewage SludgeⅡ: Mathematical Model. Water Research, 1993, 27 (11): 1653-1661
    [91] Shoor F, Tyagi RD. Thermophilic microbial leaching of heavy metals from municipal sludge using indigenous sulfur – oxidizing microbial. Application Microbiology Biothnol., 1996, 45(3): 440-446
    [92] 赵一德,张 鹏,吴志超.生物浸沥去除污泥中的重金属.环 境 工 程,2002,20(1):47-51
    [93] Sreekrishnan TR, Tyagi RD, Blais JF, et al . Kinetics of heavy metal bioleaching from sewage sludgeI: effects of process parameters. Water Research, 1993, 27(11): 1641-1651
    [94] Tyagi RD, Seekrishnan TR, Balais JF, et al. Effect of dissolved oxygen on sludge acidification during the SSDMJL - process. Water, Air and Soil Pollution, 1998, 102(1-2): 139-155
    [95] Tyagi RD, Tran FT. Bacterial leaching of metal from digested sewage sludge by indigenous iron-oxidizing. Environment Pollution, 1993, 82: 9-12
    [96] Couillard D, Mercier G. Bacterial leaching of heavy metals from sewage sludge bio reactor comparison. Environment Pollution, 1992, 66: 237-253
    [97] Couillard D, Mercier G. An economic evaluation of biological removal of heavy metals from wastewater sludge. Water Environment Research, 1994, 66: 32-39
    [98] 朱南文,蔡春光,吴志超.污泥中重金属的生物沥滤及其机理分析.上海交通大学报,2003,37(5):801-804
    [99] Blais JF, Tyagi RD, Auclair JC. Bioleaching of metals from sew age sludge by sulfur oxidizing bacteria. J. Environ Engineering, 1992, 118 (5): 690-707
    [100] Kamada T, Asana T, Motsuhasi H. Removal of heavy metals from wastes by bacterialleaching. JCA section (Waste Treatment Disposal), 1994, 60: 123-127
    [101] 莫测辉,蔡全英,吴启堂.微生物方法降低城市污泥的重金属含量研究进展.应用与环境生物学报,2001,7(5):511-515
    [102] 陈玉成,郭颖,魏沙平.螯合剂与表面活性剂复合去除城市污泥中Cd、Cr.中国环境科学,2003,24(1):100-104
    [103] Wozniak DJ, Huang JYC. Variables affecting metals remove from sludge. J water pollution control fed, 1982, 54(12): 1574-1580
    [104] Jenkins RL, Scheybeler BJ, Smith ML. Metals removal and recovery from municipal sludge. J WPCF, 1981, 53(1): 25-32
    [105] 莫测辉,蔡全英,吴启堂.化学方法降低城市污泥的重金属含量及前景分析.土壤与环境,1999,8(4):309-313
    [106] 吴忠艳,由宏君,王丽影等.生化剩余活性污泥中重金属脱除技术的研究.石油 化 工 环 境 保 护,2002,25(2):43-46
    [107] 黄翠红,孙道华,李清彪等.利用柠檬酸去除污泥中镉、铅的研究.环境污染与防治,2005,27(1):73-76
    [108] 袁华山,刘云国,李 欣.电动力修复技术去除城市污泥中的重金属研究.中国给排水,2006,22(3):101-104
    [109] Wang JY, Zhang DS, Olena S. Evaluation of electrokinetic removal of heavy metals from sewage sludge. Journal of Hazardous Materials, 2005, B124: 139-146
    [110] Mathilde R. Jakobsen JFR, Signe N, et al. Electrodialytic removal of cadmium from wastewater sludge. Journal of Hazardous Materials, 2004, 106B: 127-132
    [111] 隋方功,李俊良主编.土壤农化分析实验.莱阳:莱阳农学院印刷出版社,2004.
    [112] Walder IF, Chavez Jr WX. Mineralogical and geochemical behavior of mill tailing material produced from lead-zinc skam mineralization. Hanovel Great County, New Mexico ,USA. Environ Geol., 1995, 26: 1-18
    [113] Adamo P, Dudka S, Wilson MJ, et al. Chemical and mineralogical forms of Cu and Ni in containminated soils from the Sudbury mining and smelting region. Canada Environ Pollution, 1996, 91(1): 11-19
    [114] Stover RC, Sommers LE, Silviera DJ. Evaluation of metals in wastewater sludge. J WPCF, 1976, 47(9): 2165-2175
    [115] Wang C, Hu X, Chen ML, et al. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants. Journal of Hazardous Materials, 2005, B119: 245-249
    [116] Angelidis M. Chemistry of metals in anaerobically treated sludge. Water Research, 1989, 23(1): 29-33
    [117]Sreektishman TR, Tyagi RD. Heavy metal leaching from sewage sludge: A techno-economic evaluation of the process options. Environment Technology, 1994, 15(6): 531-543
    [118] Brown MJ, Lester JW. Metal removal in activated sludge: The role of bacterial extracellular polymers. Water Research, 1979, 13(1): 817-837
    [118] 周顺桂,王世梅,余素萍等.污泥中氧化亚铁硫杆菌的分离及其应用效果.环境科学,2005,24(3):56-60.
    [119] Lombardia T, Garcia O. An evaluation into potential of biological processing for the removal of metals from sewage sludge. Critical Reviews in Microbiology, 1999, 25(4): 275-288
    [120] 华玉妹,陈英旭.污泥中重金属生物沥滤的工艺参数数优选和反应机制探讨.环境科学学报, 2004, 24(3): 423-427
    [121] Lombardia T, Garcia O. Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and it effect on metal partitioning. Water Research, 2002, 36(12): 3193-3202
    [122] Wasay SA. Bioremediation of soils polluted by heavy metals using organic acids. Ph.D. Thesis, McGill University, Montreal, Canada, 1998
    [123] Francis AJ, et al. Biodegradation of metal citrate complexes and Interactions for Toxic metal mobility. Nature, 1992, 356: 140-142
    [124] Maiz I, Esnaola MV, Millian E. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Science Total Environ., 1997, 206: 107-115
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.