不同维数铕(Ⅲ)配合物的可控合成、结构及荧光性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土配合物由于多变而迷人的拓扑结构日益受到人们的关注,在荧光材料、催化领域以及非线性光学材料等领域均有广泛的应用前景。Eu(Ⅲ)离子由于具有荧光强度高、荧光寿命长及发射谱带尖锐等特点更成为研究中的热点。当选择合适的有机配体与Eu(Ⅲ)离子形成配合物时,不但可以构筑结构新颖的配合物,而且可以由配体向Eu(Ⅲ)离子进行有效的能量传递,得到性能优良的发光材料。
     本论文选择5-(2′-吡啶)四唑、N-氧化烟酸、2,2′-联吡啶-3,3′二羧酸和草酸为配体,以Eu(Ⅲ)离子为中心离子,合成了四个具有不同结构和维数的新型铕配合物,并对它们进行了元素分析、红外和热重分析表征,解析了其单晶结构并研究了它们在室温条件下的固体荧光性质。同时考察了包括第二配体用量、金属离子的引入等因素对于配合物可控合成及结构的影响。
     1.对配体5-(2′-吡啶)四唑的合成工艺进行优化,得到了合成5-(2′-吡啶)四唑的最佳反应条件为:n_(叠氮化钠):n_(2-氰基吡啶):n_(三乙胺)=1.05:1:1.15,反应时间是12小时,5-(2′-吡啶)四唑产率可达78.1%。利用合成的5-(2′-吡啶)四唑作为配体,选择Eu(Ⅲ)离子作为中心离子,得到了配合物[Eu(C_6H_4N_5)_3(H_2O)_3](H_2O)_(3.5)(1),配合物1为零维结构,相邻的Eu(Ⅲ)离子通过配位水和晶格水的氢键作用,形成由Eu-O-Eu水链连接成的二维层状结构,同时配合物1具有良好的荧光性质。
     2.利用N-氧化烟酸为第一配体,草酸作为第二配体,在水热条件下合成了两个结构不同的铕(Ⅲ)配合物[Eu_2(NNO)_4(COO)_2(H_2O)_2](2)和Eu_2(NNO)_4(OOC-COO)(H_2O)_2(3)(HNNO=N-氧化烟酸,HOOC-COOH=草酸)。配合物2中Eu(Ⅲ)离子展示了一种畸变的五配位的几何构型,NNO配体通过采取双连接方式将相邻的Eu(Ⅲ)离子连接形成一维无限链,相邻的一维无限链进一步通过氢键作用形成了二维网状超分子结构。配合物3则首先通过配体NNO采取三连接方式将相邻的双核Eu(Ⅲ)离子连接成一维多孔双链,相邻的一维双链进一步通过NNO配体采取双连接方式与Eu(Ⅲ)离子配位连接成二维网状结构,每一个二维层由采取双连接方式的草酸根与Eu(Ⅲ)离子配位形成三维孔道状拓扑结构。荧光光谱显示配合物3的荧光强度高于配合物2,进一步证明了结构对性质的影响。同时,第二配体的用量和金属离子的引入因素对配合物单晶体的生成和结构起到一定的调控作用。
     3.以2,2′-联吡啶-3,3′二羧酸为有机配体,在水热条件下与Eu(Ⅲ)离子和Ag(Ⅰ)离子作用得到了结构新颖的高维数异核配合物[Eu_4Ag_2(C_(12)H_6O_4N_2)_5(OH)_4(H_2O)_3·10H_2O(4)。配体2,2′-联吡啶-3,3′二羧酸在配合物4中展现出五种不同的配位模式,关于该配体在同一化合物中存在五种配位模式目前还未见文献报道,其中发现2,2′-联吡啶-3,3′二羧酸四种新型配位方式,配合物4展现出良好的荧光特性。此外,反应原料配比、反应时间等因素对配合物单晶体的生成及配合物的结构具有一定的控制性。当反应原料中2,2′-联吡啶-3,3′二羧酸和Eu_2O_3的摩尔数分别固定为1mmol和0.5mmol,AgNO_3的摩尔数等于或是大于0.4mmol时,得到没有荧光的浅黄色微米管。
Considerable attentions have been paid to the rational design and synthesis of rare earth complexes in recent years,not only due to their intriguing variety of architectures and topologies but also for their potential applications as functional materials such as luminescence,catalysis and nonlinear optics.The fluorescence of Eu(Ⅲ) ion is well studied due to its intense,long lived excited states,its emission at long wavelengths with line-like emission bands and distinguishable long lifetimes.The appropriate ligands not only can construct the complex with novel structure,but also cause the energy transfer from ligands to Eu(Ⅲ) ion,resulting in good fluorescent materials.
     5-(2'-pyridyl)tetrazole,nicotinic acid N-oxide,2,2'-bipyridyl-3, 3'-dicarboxylic acid and oxalic acid are selected as the ligands,Eu(Ⅲ) ion and Ag(Ⅰ) ion as center ions to design and synthesize four novel rare earth complexes with different structures.Characterizations for complexes 1-4 by single crystal X-ray diffraction,IR,elemental analysis,thermal analysis and fluorescence have also been described.Furthermore,we also discuss how the dimensionality of the resulting coordination frameworks and fluorescence of Europium(Ⅲ) complexes can be manipulated by the factors of dosage of the second ligand or adding the other metal ion.
     1.The optimization of synthesis condition of 5-(2'-pyridyl)tetrazole is that the molar ratio of NaN_3:2-cyanopyridine:triethylamine is 1.05:1:1.15,the reaction time is 12h,and yield of 5-(2'-pyridyl)tetrazole is increased to 78.1% based on 2-cyanopyridine.Besides,[Eu(C_6H_4N_5)_3(H_2O)_3](H_2O)_(3.5)(1) was prepared with 5-(2'-pyridyl)tetrazole.In complex 1,Eu(Ⅲ) ions are linked together by hydrogen bond to form two-demensional network structure.The complex 1 exhibits great characteristic emission of Eu(Ⅲ) ion.
     2.N-oxide nicotinic acid and oxalic acid are selected as the first ligand and the second ligand,respectively,and two Europium(Ⅲ) complexes[Eu_2 (NNO)_4(COO)_2(H_2O)_2](2) and Eu_2(NNO)_4(OOC-COO)(H_2O)_2(3)(HNNO= nicotinic acid N-oxide,HOOC-COOH= oxalic acid) were synthesized under hydrothermal condition.In complex 2,the Eu(Ⅲ) ions are linked together by carboxyl groups of NNO ligands to form an infinite one-dimensional chain, which further construct the two-dimensional supramolecular network structure with hydrogen bond.Complex 3 holds three-dimensional topological structure linked by nicotinic acid N-oxide and oxalic acid.The complex 3 exhibits great characteristic emission of Eu(Ⅲ) ion,which is stronger than complex 2. Furthermore,the factors of dosage of the second ligand or adding the metal ion are discussed aiming at finding out the influence in structures of complexes.
     3.Europium(Ⅲ) complex[Eu_4Ag_2(C_(12)H_6O_4N_2)_5(OH)_4(H_2O_)3]·10H_2O(4) was synthesized by 2,2'-bipyridyl-3,3'-dicarboxylic acid under hydrothermal condition with Eu_2O_3 and AgNO_3,which possess an novel three-dimensional structure.The 2,2'-bipyridyl-3,3'-dicarboxylic acid shows five coordination modes in the complex,which is rare in rare earth complex reported. Furthermore,four new coordination modes are shown in the paper.Complex 4 exhibits great characteristic emission of Eu(Ⅲ) ion.Besides,we also discuss the factors of mole ratio of reactants,the reaction temperature and time to determinate the optimum conditions for the resulting structure of complex 4. Meanwhile,microtube was obtained when the molar of AgNO_3 is more than 0.4 mmol.
引文
[1]苏锵,张洪杰,张静筠.利用稀士的光谱和磁性研究化合物的组成、价态与结构[J].
    [2]Austin R H,Stem D L,Wang J.Terbium luminescence-lifetime heterogenty and protein equilidrium cOnformational dynamics[J].Pro.Natl.Sci.USA,1987,84(6):1541-1545.
    [3]Sipak J.Use of a terbium chelate as label in spectrofluorometric determination of protein traces[J].Anal Chim Acta,1989,218(1):143-149.
    [4]Forsberg J H.Gschneidner In:K.A.Jr,Eyring L.Handbook on the Physics and Chemistry of Rare Earths.Amsterdam,1996,23(153):1-68.
    [5]黄春辉.稀土配位化学[M].北京:科学出版社,1999.363.
    [6]雷光东,卢志云,朱卫国.有机荧光防伪材料的制备[J].化学研究与应用,1999,11(3):308-311.
    [7]田君,尹敬辉.稀土荧光防伪油墨的制备[J].精细化工,1999,16(2):31-32.
    [8]何晓东,冯嘉春.稀土有机转换剂技术概述[J].兰化科技,1997,15(3):202-204.
    [9]Eddaoudi M,Moler D B,H.LU,Chen B L.Modularehe chemistry:secondary bullding Units as a basis for the design of highly porous and robudt metal-organic carboxylate fameworks[J].Acc.Chem.Res,2001,34(4):319-330.
    [10]Kitagawa S,Noro S.Comprehensive Coordination Chemistry Ⅱ[M].Elsevier Science &Technology Books,2003,231-261.
    [11]Hu M,Wang Q L,Xu G F.Hydrothermal synthesis and characterization of ternary lanthanide-2,2'-bipyridine-3,3'-dicarboxylate coordination polymers[J].Inorganic Chemistry Communications,2007,10(3):381-384.
    [12]He Z,Wang Z M,Yan C H.Ligand-controlled dimensionality:1D,2D and 3D Gd(Ⅲ)coordination polymers based on SO_4~(2-)and pyridine carboxylate N-oxide ligands[J].CrystEngComm,2005,7(22):143-150.
    [13]Qin C,Wang X L,Wang E B.Synthesis,structures and thermal properties of three new two-dimensional coordination networks assembled by lanthanide salts and carboxylate ligand[J].Inorganica Chimica Acta,2006,359(2):417-423.
    [14]Liu M S,Yu Q Y,Cai Y P.One-,Two-,and Three-Dimensional Lanthanide Complexes Constructed from Pyridine-2,6-dicarboxylic Acid and Oxalic Acid Ligands[J].Crystal Growth & Design,2008,8(11):4083-4091.
    [15]Gu X J,Xue D F.Selected Controlled Synthesis of Three-Dimensional 4d-4f Heterometallic Coordination Frameworks by Lanthanide Carboxylate Subunits and Silver Centers[J].Crystal Growth & Design,2006,6(11):2551-2557.
    [16]Weng D F,Zheng X J,Li L C.Low pH hydrothermal synthesis and properties of lanthanide-organic frameworks with(4~(10),6~5)(4~9,6~6) topology constructed from Ln-Hbptc building blocks[J].Dalton Trans.,2007,42:4822-4828.
    [17]Huang W,Wu D Y,Zhou P.Luminescent and Magnetic Properties of Lanthanide-Thiophene-2,5-dicarboxylate Hybrid Materials[J].Crystal Growth & Design,2009,9(3):1361-1369.
    [18]Pan L,Woodlock E B,Wang X T.A New Porous Three-Dimensional Lanthanide Coordination Polymer[J].Inorg.Chem.2000,39(18):4174-4178.
    [19]Liu Z H,Qiu Y C,Li Y H.Synthesis,structures and luminescent properties of 4d-4f heterometallic coordination frameworks based on lanthanide oxalate substructures with nicotinate bridging ligands[J].Polyhedron,2008,27(17):3493-3499.
    [20]Wang C G,Xing Y H,Li Z P.A Series of Three-Dimensional Lanthanide-Rigid-Flexible Frameworks:Synthesis,Structure,and Luminescent Properties of Coordination Polymers with 2,5-Pyridine Dicarboxylic Acid and Adipic Acid[J].Crystal Growth & Design,2009,9(3):1525-1530.
    [21]Andrews P C,Beck T,Fraser B H,et al.Synthesis and structural characterisation of cationic,neutral and hydroxo-bridged lanthanoid(La,Gd,Ho,Yb,Y)bis5-(2-pyridyl)tetrazolate complexes[J].Polyhedron,2007,26(18):5406-5413.
    [22]Ren P,Shi W,Cheng P.Synthesis and Characterization of Three-Dimensional 3d-3d and 3d-4f Heterometallic Coordination Polymers with High Thermal Stability[J].Crystal Growth & Design,2008,8(4):1097-1099.
    [23].Sun Y Q,Zhang J,Chen Y M.Porous Lanthanide-Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains[J].Angew.Chem.Int.Ed.,2005,44(36):5814-5817.
    [24]George M R,Golden C A,Grossel M C.Modified Dipicolinic Acid Ligands for Sensitization of Europium(Ⅲ) Luminescence[J].Inorg.Chem,2006,45(4):1739-1744.
    [25]周夏英,黄永清,孙为银.2-(1H-1,2,4-三氮唑)乙酸-稀土配合物的合成及结构[J].无机化学学报,2008,24(11):1733-1737.
    [26]Qiu Y Q,Liu H,Ling Y,Deng H,Zeng R H,Zhou G Y,Zeller M.3D Ln-Ag(Ln=Nd;Eu) coordination polymers based on N- and O-donor ligands:Synthesis,crystal structures and luminescence[J].Inorganic Chemistry Communications,2007,10:1399-1403.
    [27]Weissman S I.Intramolecular energy transfer.The fluorescence of complexes of europium[J].Chem Phys.1942.10(4):214-217.
    [28]李建宁.稀土发光材料及其应用[M].第一版,北京:化学工业出版社,2003.156-157,166-167,177-178.
    [29]Sabbation N,Grardigle M,Lehn J M.Luminescent lanthanide complexes as photochemical supramolecular devices[J].Coordination Chemisty reviews,1993,123(1-2):201-228.
    [30]胡继明,陈观铨,曾云鹗.稀土配合物的发光机理和荧光分析特性研究(Ⅰ)--钐、铕、铽和镝配合物的发光机理[J].高等学校化学学报,1990,11(8):817-821
    [31]杨迟,杨燕生.发光镧系超分子的设计及应用[J].大学化学,1995,10(1):6-10.
    [32]李红玉,于贵,刘云圻.窄谱带稀土配合物发光材料及电致发光器件[J].稀土,2000,21(4):61-67.
    [33]江祖成,蔡汝秀,张华山.稀土元素分析化学[M].第二版,北京:科学出版社,2000.222-253.
    [34]于安池,应立明,赵新生.稀土配合物的发光特性及其能量传递研究[J].物理化学学报,1998,14(9):811-816.
    [35]李斌,张洪杰,马建芳.配体三重态能级的测定及其对稀土离子敏化作用的研究[J].华学物理学报,1998,11(2):152-155.
    [36]李媛媛,闫涛,王冬梅.稀土配合物的发光机理及其应用[J].济南大学学报(自然科学版)2005,19(2):113-119.
    [37]赵斯琴,王喜贵,吴红英.铕-苯甲酸-1,10-菲咯啉的合成及谱学性质[J].稀土,2003,24(4):1-4.
    [38]Liu M S,Yu Q Y,Cai Y P.One-,Two-,and Three-Dimensional Lanthanide Complexes Constructed from Pyridine-2,6-dicarboxylic Acid and Oxalic Acid Ligands[J].Crystal Growth & Design,2008,8(11):4084-4091.
    [39]吴惠霞,忻驰洋,何其庄.稀土掺杂铕(Ⅲ)二苯甲酰甲烷邻菲咯啉三元配合物的合成和荧光性质[J].光谱实验室,2005,22(2):260-263.
    [40]Liu Y,Ye C F,Qian G D.Enhanced luminescence of Eu~(3+) by Gd~(3+) internary chelate doped in gel glasses via in situ technique[J].Journal of Luminescence,2006,118(2):158-164.
    [41]赵永亮,赵风英.铕,镧苯甲酸α,α′-联吡啶配合物的合成及性质研究[J].光谱学与光谱分析,2002,22(6):987-989.
    [42]袁继兵,李嘉航,梁万里.含有不同结构第二配体的铕(Ⅲ)三元有机配合物的合成与发光[J].中国稀土学报,2004,22(5):600-604.
    [43]马瑞霞.铕芳香羧酸配合物的合成、晶体结构及发光性能研究[D].河北师范大学,2006.
    [44]Crosby G A,Luminescent organic complexes of the rare earth metals,Mol.Cryst,1966,1(1):37.
    [45]李文连.稀土有机配合物发光研究的新进展[J].化学通报,1991,1(8):1-8.
    [46]杨燕生,安保礼,龚孟濂.稀土有机鳌合物发光研究进展[J].中国稀土学报,2001,19(4):298-302.
    [47]苏锵.稀土有机化合物的发光与能量传递[J].发光学报,1986,7(1):1-5.
    [1]Facchetti A,Abbotto A,Beverina L.Novel coordinating motifs for lanthanide(Ⅲ) ions based on 5-(2-pyridyl) tetrazole and 5-(2-pyridyl-1-oxide) tetrazole.Potential new contrast agents[J].Chemical Communications,2004,4(15):1770-1771.
    [2]张苏杭,张玉清,王新德.四唑化合物的合成及其在农业上的应用[J].洛阳工业高等专科学校学报,2006,16(2):16-18.
    [3]陈财库,王明亮.四氮唑-L-樟脑磺酸盐的合成[J].化工时刊,2008,22(3):7-9.
    [4]Carlucci L,Ciani G,Proserpio D M.Interpenetrated and noninterpenetrated three-dimensional networks in the polymeric species Ag(tta) and 2Ag(tta)·AgNO_3(tta=tetrazolate):the first examples of the μ_4-η~1:η~1:η~1 bonding mode for tetrazolate[J].Angewandte Chemie,International Edition,1999,38(23):3488-3492.
    [5]Widrow B,Walach E.Adaptive Inverse Control[M].America:Prentice-Hail,Englewood Cliffs,1995.
    [6]Andrews P C,Beck T,Fraser B H,et al.Synthesis and structural characterisation of cationic,neutral and hydroxo-bridged lanthanoid(La,Gd,Ho,Yb,Y)bis5-(2-pyridyl)tetrazolate complexes[J].Polyhedron,2007,26(18):5406-5413.
    [7]Lin P,Clegg W,Harrington R W,Henderson R A.Synthesis and structures of 5-(pyridyl)tetrazole complexes of Mn(Ⅱ)[J].Dalton Transactions,2005,5(14):2388-2394.
    [8]Andrews P C,Junk P C,Massi M,Silberstein M.Gelation of La(Ⅲ) cations promoted by 5-(2-pyridyl)tetrazolate and Water[J].Chem.Commun,2006,31,3317-3319.
    [1](a) Fujita M,Kwon Y J,Washizu S,Ogura K.Preparation,Clathration Ability,and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(11)and 4,Y-Bipyridine[J].J.Am.Chem.Soc,1994,116:1151-1152.
    (b) Evans O R,Lin W B.Crystal engineering of NLO materials based on metal-organic coordination networks[J],Acc.Chem.Res,2002,35:511-522.
    (c) Kasai K,Aoyagi M,Fujita M.Flexible Coordination Networks with Fluorinated Backbones.Remarkable Ability for Induced-Fit Enclathration of Organic Molecules[J].J.Am.Chem.Soc,2000,122:2140-2141.
    [2](a) Berlinguette C P,Andrasi A D,Sieber A,Mascaros J R G,Gudel H U,Achim C,Dunbar K R.A Charge-Transfer-Induced Spin Transition in the Discrete Cyanide-Bridged Complex {[Co(tmphen)_2]_3[Fe(CN)_6]_2}[J],J.Am.Chem.Soc,2004,126(20):6222-6223.
    (b) Palii A V,Ostrovsky S M,Klokishner S I,Tsukerblat B S,Berlinguette C P,Dunbar K R,Mascaros J R G.Role of the Orbitally Degenerate Mn(Ⅲ) Ions in the Single-Molecule Magnet Behavior of the Cyanide Cluster[MnⅡ(tmphen)2]3[MnⅢ(CN)6]2.(tmphen)3,4,7,8-tetramethyl-1,10-phenanthroline)[J].J.Am.Chem.Soc,2004,126(51):16860-16867.
    [3](a) Leadbeater N E,Marco M.Preparation of Polymer-Supported Ligands and Metal Complexes for Use in Catalysis[J].Chem.Rev,2002,102(10) 3217-3273.(b) Boskovie C,Brechin E K,Streib W E.Single-Molecule Magnets:A New Family of Mn12 Clusters of Formula[Mn 12O8X4(O2CPh)8L6][J].J.Am.Chem.Soc,2002,124(14)3725-3736.
    (c) Tsuchida E,Oyaizu K.Oxovanadium(Ⅲ_/Ⅴ) mononuclear complexes and their linear assemblies bearing tetradentate Schiff base ligands:structure and reactivity as multielectron redox catalysts[J].Coord.Chem.Rev,2003,237:213-228.(d) Chifotides H T,Dunbar K R.Interactions of Metal-Metal-Bonded Antitumor Active Complexes with DNA Fragments and DNA[J].Acc.Chem.Res,2005,38(2) 146-156.
    (e) Tsukube H,Shinoda S.Lanthanide Complexes in Molecular Recognition and Chirality Sensing of Biological Substrates[J].Chem.Rev,2002,102(6) 2389-2403.
    [4](a) Batten S R,Robson R.Interpenetrating Nets:Ordered,Periodic Entanglement[J].Angew.Chem.Int.Ed,1998,37:1460-1494.
    (b) Kitagawa Kitaura S R,Noro S I.Functional Porous Coordination Polymers[J].Angew.Chem.Int.Ed,2004,43:2334-2375.
    (c) Eddaoudi M,Moler D B,Li H.Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J].Ace.Chem.Res,2001,34319-330.
    [5](a) Hagrman P J,Hagrman D,Zubieta J.Organic±Inorganic Hybrid Materials:From ~aSimple° Coordination Polymers to Organodiamine-Templated Molybdenum Oxides[J].Angew.Chem.Int.Ed,1999,38:2639-2684.
    (b) Evans O R,Ngo H L,Lin W.Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates[J].J.Am.Chem.Soc,2001,123:10395-10396.
    (c) Fang Q R,Zhu G S,Xue M,Sun J Y,Wei Y,Qiu S L,Xu R R.A Metal-Organic Framework with the Zeolite MTN Topology Containing Large Cages of Volume 2.5nm~3[J].Angew.Chem.Int.Ed,2005,44:3845-3848.
    [6]Lemmetyinen H,Vuorimaa E,Jutila A,Mukkala V M,Takalo H,Kankare J.A time-resolved study of the mechanism of the energy transfer from a ligand to the lanthanide(Ⅲ) ion in solutions and solid films[J].Luminescence 2000,15(6):341-350.
    [7]Hebbink G A,Reinhoudt D N,van Vegge F C J M.Increased Luminescent Lifetimes of Ln~(3+) Complexes Emitting in the Near-Infrared as a Result of Deuteration[J].Eur.J.Org.Chem.2001,21:4101-4106.
    [8]Fricker S P.The therapeutic application of lanthanides[J].Chem.Soc.ReV.2006,35(6):524-533.
    [9]De Lill D T,Cahill C L.An unusually high thermal stability within a novel lanthanide 1,3,5-cyclohexanetricarboxylate framework:synthesis,structure,and thermal data[J].Chem.Commun.2006,47:4946-4948.
    [10]Albrecht M,Osetska O,Klankermayer J.Enhancement of near-IR emission by bromine substitution in lanthanide complexes with 2-carboxamide-8-hydroxyquinoline[J].Chem.Commun.2007,18:1834-1836.
    [11]Wang C G,Xing Y H,Li Z.A Series of Three-Dimensional Lanthanide-Rigid-Flexible Frameworks:Synthesis,Structure,and Luminescent Properties of Coordination Polymers with 2,5-Pyridine Dicarboxylic Acid and Adipic Acid[J].Crystal Growth & Design,2009,9(3):1525-1530.
    [12]Liu Z H,Qiu Y C,Li Y H.Synthesis,structures and luminescent properties of 4d-4f heterometallic coordination frameworks based on lanthanide oxalate substructures with nicotinate bridging ligands[J].Polyhedron,2008,27(17):3493-3499.
    [13]De Sa G F,e Silva F R G,Malta O L.Synthesis,spectroscopy and photophysical properties of mixed ligand complexes of europium(Ⅲ) and terbium(Ⅲ)[J].J.Alloys Compd,1994.207-208:457-460.
    [14]Yan L,Liu J M.Wang X,Yang R D,Song F L.Synthesis and crystal structure of the dinuclear complex of 6-methylpicolinic acid N-oxide with lanthanum(Ⅲ).Polyhedron.1995,14(23):3545-3548.
    [15]Mao J G,Zhang H J,Ni J Z.Structural characterization and luminescence studies of new lanthanide(Ⅲ) complexes with nicotinic and isonicotinic acid N-oxides[J].Polyhedron,1998,17(23-24):3999-4009.
    [16]Gan K N,Pavlenko E S.Lanthanide compounds with nicotinic acid N-oxide[J].Sbornik Nauchnykh Trudov,Kuzbasskii Politekhnicheskii Institut,1974,36:1-4.
    [17]Hnatejko Z L S,But,Szyczewski A S,Elbanowski,M.Spectroscopic studies of the lanthanide(Ⅲ) ions with pyridine carboxylic acid N-oxide ligands and in mixed ligand complexes[J].Molecular Physics,2003,101(7):977-981.
    [18]He Z,Wang Z M,Yan C H.Ligand-controlled dimensionality:1D,2D and 3D Gd(Ⅲ)coordination polymers based on SO_4~(2-)and pyridine carboxylate N-oxide ligands[J].CrystEngComm,2005,7(22):143-150.
    [19]Ying S M,Mao J G.Introducing a Second Ligand:New Route to Luminescent Lanthanide Polyphosphonates[J].Crystal Growth & Design,2006,6(4):964-968.
    [20](a) Bu X H,Chen W,Hou W F,Du M,Zhang R H,Brisse F.Controlling the Framework Formation of Silver(Ⅰ) Coordination Polymers with 1,4-Bis(phenylthio)butane by Varying the Solvents,Metal-to-Ligand Ratio,and Counteranions[J].Inorg.Chem.,2002,41(13):3477-3482.
    (b) Lopez S,Keller S W.New Linear Coordination Polymers Based on Copper(Ⅰ) and 4,7-Phenanthroline:Structure Dependence on Solvent and Counteranion[J].Inorg.Chem.,1999,38(8):1883-1888.
    (c) Dobe D M.J,Benison C H,Blake A J,Fenske D,Jackson M S,Kay R D,Li W.Template Assembly of Metal Aggregates by Imino-Carboxylate Ligands[J].Angew.Chem.Int.Ed.,1999,38(13-14):1915-1918.
    [21]杨桂秋,于秀兰.N-氧化烟酸的合成[J].沈阳化工学院学报,2003,17(3):185-187.
    [22]Shao P C,Berg D J,Bushnell G W.Lanthanide Complexes of Bulky Siloxide Ligands Incorporating Pendant Amine Donors:Synthesis and Structural Characterization of a Volatile Tris(siloxide) Complex of Yttrium(Ⅲ) and a Novel Zwitterionic Tetrakis(siloxide) of Ytterbium(Ⅲ)[J].Inorg.Chem.1994,33:3452-3458.
    [23]Barnhart D M,Clark D L,Gordoo J C.Synthesis,Properties,and X-ray Structures of the Lanthanide η~6-Arene-Bridged Aryloxide Dimers Ln_2(O-2,6-i-Pr_2C_6H_3)_6 and Their Lewis Base Adducts Ln(O-2,6-i- Pr_2C_6H_3)_3(THF)_2(Ln=Pr,Nd,Sin,Gd,Er,Yb,Lu)[J].Inorg.Chem.1994,33:3487-3497.
    [24]黄春辉.稀土配位化学[M].北京:科技出版社,1997.
    [1](a) Liang Y C,Cao R,Su W P,Hong M C,Zhang W J.Syntheses,Structures,and Magnetic Properties of Two Gadolinium(ⅲ)-Copper(ⅱ) Coordination Polymers by a Hydrothermal Reaction[J].Angew.Chem.,Int.Ed.2000,39(18):3304-3307.
    (b) Tasiopoulos A J,O'Brien T A,Abbound K A,Christou G.Mixed Transition-Metal - Lanthanide Complexes at Higher Oxidation States:Heteronuclear Ce~Ⅳ-Mn~Ⅳ Clusters[J].Angew.Chem.,Int.Ed.2004,43(3):345-349.
    (c) Ma B Q,Gao S,Su G,Xu G X.Cyano-Bridged 4f-3d Coordination Polymers with a Unique Two-Dimensional Topological Architecture and Unusual Magnetic Behavior[J].Angew.Chem.,Int.Ed.2001,40(2):434-437.
    (d) Liu S,Meyers E A,Shore S G.An Inclusion Complex with[Gd(dmf)_8]~(3+) Ions Encapsulated in Pockets of an Anionic Array of[{Cu_6(CN)_9}~(3-)]_∞ Units;A Cyanide-Bridged Cu-Gd Layer Structure[J].Angew.Chem.,Int.Ed.2002,41(19):3609-3611.
    (e) Zaleski C M,Depperman E C,Kampf J W,Kirk M L,Pecoraro V L.Synthesis,Structure,and Magnetic Properties of a Large Lanthanide-Transition-Metal Single-Molecule Magnet[J].Angew.Chem.,Int.Ed.2004,43(30):3912-3914.
    [2](a) Shibasaki M,Yoshikawa N.Lanthanide Complexes in Multifunctional Asymmetric Catalysis[J].Chem.ReV.2002,102(6):2187-2210.
    (b)Inanaga J,Furuno H,Hayano T.Asymmetric Catalysis and Amplification with Chiral Lanthanide Complexes[J].Chem.ReV.2002,102(6):2211-2226.
    [3](a) Zhao B,Cheng P,Dai Y,Cai C,Liao D Z,Yan S P,Jiang Z H,Wang G L.A Nanotubular 3D Coordination Polymer Based on a 3d-4f Heterometallic Assembly[J].Angew.Chem.,Int.Ed.2003,42(8):934-936.
    (b)Zhao B,Cheng P Chen X Y,Cheng C,Shi W,Liao D Z,Yan S P,Jiang Z H.Design and Synthesis of 3d-4f Metal-Based Zeolite-type Materials with a 3D Nanotubular Structure Encapsulated "Water" Pipe[J].J.Am.Chem.Soc.2004,126(10):3012-3013.
    [4](a)Zhao B,Chen X Y,Cheng P,Liao D Z,Yan S P,Jiang Z H.Coordination Polymers Containing 1D Channels as Selective Luminescent Probes[J].J.Am.Chem.Soc.2004,126(47):15394-15395.
    (b) Pope S J A,Coe B J,Faulkner S,Bichenkova E V,Yu X,Douglas K.Self-Assembly of Heterobimetallic d-f Hybrid Complexes:Sensitization of Lanthanide Luminescence by d-Block Metal-to-Ligand Charge-Transfer Excited States[J].J.Am.Chem.Soc.2004, 126(31):9490-9491.
    [5]Plee'nik C E,Liu S,Shore S G.Lanthanide-Transition-Metal Complexes:From Ion Pairs to Extended Arrays[J].Acc.Chem.Res.2003,36(7):499-508.
    [6]杨育华,蔡强,孟继武.水杨酸-Tb~(3+)(Gd~(3+))络合物的高效发光[J].发光学报,1991,12(2):151-154.
    [7]李博,顾镇南,林建华.YTa04:Gd,Eu体系光致发光中的能量传递[J].物理化学学报,1999,15(9):794-798.
    [8]吴根华,陈荣,张启运.KalF_4:Ce,Tb磷光体的发光特性及Ce~(3+)对Tb~(3+)的敏化作用[J].光谱学与光谱分析,1997,17(3):6-9.
    [9](a) Gu X J,Xue D F.Selected Controlled Synthesis of Three-Dimensional 4d-4f Heterometallic Coordination Frameworks by Lanthanide Carboxylate Subunits and Silver Centers[J].Cryst.Growth & Des,2006,6(11):2551-2557.
    (b) Gu X J,Xue D F.Spontaneously Resolved Homochiral 3D Lanthanide-Silver Heterometallic Coordination Framework with Extended Helical Ln-O-Ag Subunits[J].Inorg.Chem,2006,45(23):9257-9268.
    (c) Zhao B,Chen X Y,Wang W Z,Cheng P,Ding B,Liao D Z,Yan S P,Jiang Z H.{[GdAg_2(dtpa)(H_2O)]·3H_2O}_n:the first 2D Gd-Ag coordination polymer with Ag-Ag interaction[J].Inorg.Chem.Commun,2005,8(2):178-181.
    [10](a) Patra G K,Goldberg I.Supramolecular Design of Coordination Complexes of Silver(Ⅰ)with Polyimine Ligands:Synthesis,Materials Characterization,and Structure of New Polymeric and Oligomeric Materials[J].Cryst.Growth & Des.2003,3(3):321-329.
    (b)Dong Yu B,Cheng J Y,Ma J P,Huang R Q.Self-Assembly of {Ag_2N_4}-Core-Containing Coordination Polymers from AgX(X=NO_3~-,ClO_4~-,and PF_6~-)and Oxadiazole-Bridged 4,4'- and 3,3'- Biphenylamine Ligands[J].Cryst.Growth & Des.2005,5(2):585-591.
    [11]Zhong Z J,You X Z,Yang Q C.Crystal structure and properties of a polymeric chain copper(Ⅱ) complex[Cu(bpc)(H_2O)_2](bpc=2,2'-bipyridyl-3,3'-dicarboxylate)[J].Polyhedron,1994,13(12):1951-1955.
    [t2]Zhang X M,Wu H S,Chen X M.Linear and Helical Chains in Hydrothermally Synthesized Coordination Polymers[Co(bpdc)(H_2O)_2]and[Ni(bpdc)(H_2O)_3]·H_2O Involving in situ Ligand Synthesis[J].Eur J.Inorg.Chem,2003,16:2959-2971.
    [13]Wimmer F,Wimmer S A.A Facil Synthesis of 2,2'-bipyridine3,3'-dicarboxylic acid[J].Org Prep.Proced Int,1983,15:368-369.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.