CNTs复合材料制备及其在生物学领域潜在应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs),因其存在优异的物理和化学性能而备受关注。近年来,通过对碳纳米管进行适当修饰,然后将其应用到生物学领域成为新的研究热点。本文系统的研究了对碳纳米管的化学修饰,通过对碳纳米管的多步反应成功将柠檬酸、壳聚糖和亚铁离子逐步关联到碳纳米管的表面,对其进行FT-IR、UV-Vis、SEM、TEM、XRD和TGA等表征,并对其在生物学领域的潜在应用进行了研究。
     目前,对碳纳米管的化学修饰主要集中在氧化处理碳纳米管基础上,利用二氯亚砜对碳纳米管酰氯化,但是此方法工艺复杂、具有生物毒害性。本文利用柠檬酸来修饰氧化后的碳纳米管(CA-CNTs)。研究表明,柠檬酸通过酯化反应关联到碳纳米管的表面上,丰富了碳纳米管表面的含氧官能团,特别是羧基官能团。其表面含氧官能团占总量的7%(wt)。同时,经柠檬酸修饰后,碳纳米管相互缠绕现象得到进一步缓解,并降低了其表面电负性,增大其亲水性,有利于其在水中的分散。当柠檬酸比例为7:1时,柠檬酸修饰氧化碳纳米管的Zeta电位达到最小,为-42.6 mV。柠檬酸修饰氧化碳纳米管,提高了其表面活性,有利于后续反应的进行。
     通过研究壳聚糖共价接枝交联在柠檬酸修饰氧化碳纳米管,制备壳聚糖/柠檬酸修饰碳纳米管复合材料(CTS/CA-CNTs)。研究表明,壳聚糖通过酰胺键关联到碳纳米管表面上使得柠檬酸修饰氧化碳纳米管的物相结构发生变化,碳纳米管的石墨化峰降低,当壳聚糖比例达到7:1时,其石墨化峰几乎消失,此时壳聚糖包覆在碳纳米管上形成复合膜,壳聚糖约占总量的55%(wt)。同时,壳聚糖/柠檬酸修饰碳纳米管复合材料对葡萄糖氧化酶有良好的吸附性能,表明其在生物传感器领域具有潜在应用。
     通过研究利用壳聚糖/柠檬酸修饰碳纳米管吸附亚铁离子,制备亚铁-壳聚糖/柠檬酸修饰碳纳米管复合材料(Fe2+-CTS/CA-CNTs)。研究表明,壳聚糖/柠檬酸修饰碳纳米管通过壳聚糖的-NH2配位吸附亚铁离子,亚铁离子的最大担载量为3.394%(wt)。其具有超顺磁性,最大Ms为2.57 emu/g,远优于Gadonanotube的磁性,表明其在MRI领域具有潜在的应用。
Recently, as a novel nano material, carbon nanotubes (CNTs) have attracted great attention in the biology fields due to their unique physical and chemical properties. In this thesis, the chemical modifications of CNTs have been investigated. Citric acid (CA), chitosan (CTS) and ferrous ions (Fe2+) associated with the surface cf carbon nanotubes step by step by mutli-step reactions. And they were examined using FT-IR, UV-Vis, SEM, TEM, XRD and TGA. Further more, their potential applications in biology have been discussed.
     Currently, the chemical modification of CNTs mainly concentrates on the acylation process by thionyl chloride after the oxidation process of CNTs (o-CNTs). Though it is efficient, the whole craft is complex and toxic. In this thesis, CA instead of thionyl chloride is used to modify o-CNTs to prepare CA-CNTs. It is found that CA has been associated with the surface of o-CNTs by esterification. Thus the oxygen groups, especially the carboxyls, on the surface of CNTs have been enriched and they are 7%(wt) of total mass. At the same time, due to the modification by CA, the intertwining of CNTs has been further eased, and their surface electronegativity also reduces, which is conducives to increasing their hydrophilic property. When the ratio of CA to o-CNTs is 7:1, Zeta potential of the CA-CNTs is minimal, about-42.6 mV. So after CA modification, the reactivity of o-CNTs has been enhanced, which means it is beneficial to following reactions.
     In addition, in this thesis, the CTS/CA-CNTs are prepared through covalent bond and crosslink function. The results show that CTS is associated with the surface of CA-CNTs through amide bonds. And the phase structure of CA-CNTs has changed. The carbon graphite peak becomes lower when the amount of CTS increases. As the ratio of CTS to CA-CNTs getting to 7:1, the carbon graphite peak mostly disappears and CTS has coated CA-CNTs to form membrane. The CTS is about 55%(wt) of the total mass. Meanwhile the CTS/CA-CNTs composites have good absorption ability of GOD, which means they have a potential application in the field of biosensor.
     Moreover, in this thesis, Fe2+-CTS/CA-CNTs composites are prepared by using CTS/CA-CNTs to absorb Fe2+ions. The results show that the CTS on the surface of CA-CNTs absorbs Fe2+by its-NH2 groups. The maximum content of Fe2+is 3.394%(wt). Fe2+-CTS/CA-CNTs composites are superparamagnetic, and their maximum Ms is 2.57 emu/g, much better than the magnetism of Gadonanotube, indicating that they have a potential application in the field of MRI.
引文
[1]IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [2]BENJAMIN S. HARRISON, ANTHONY A. Carbon nanotube applications for tissue engineering [J]. Biomaterials,2007,28:344-353.
    [3]SOUZA A G, JORIO A, HAFNER J H, et al. Electronic transition energy E-ii for an isolated (n, m)single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio [J]. Physical Review B,2001,63(241404):1-4.
    [4]COLUCI V R, GALVAO D S, JORIO A. Geometric and electronic structure of carbon nanotube networks:'super'-carbon nanotubes [J]. Nanotechnology,2006,17(3):617-21.
    [5]ENDO M, HAYASHI T, KIM Y A, et al. History and structure in carbon nanotube [J].Chimica Oggi-Chemistry Today,2005,23(2):29-32.
    [6]SAITO R, FUJITA M, DRESSELHAUS G, et al. Electronic structure of chiral graphene tubules [J].Appl Phys Lett,1992,60(18):2204-2206.
    [7]DRESSELHAUS M S, DRESSELHAUS G, SAITO R. Physics of carbon nanotubes [J]. Carbon,1995,33(7):883-889.
    [8]CHARLIER J C. Defects in carbon nanotubes [J].Acc Chem Res,2002,35:1063-1069.
    [9]TREACY MMJ, EBBESEN T W, GIBSON J M. Excep-tionally high young' s modulus observed for individual carbon nanotubes [J].Nature,1996,381(6584):678-680.
    [10]LU J P. Elastic properties of carbon nanotubes and nanoropes [J].Phys Rev Lett,1997,79(7):1297-1300.
    [11]ZHOU X, ZHOU J J, OU-YANG Z C. Strain energy and Young's modulus of single-wall carbon nanotubes cal-culated from electronic energy-band theory [J].Phys Rev B,2000,62(20):13692-13696.
    [12]WALTERS D A, ERISON L M, CASAVANT M J, et al. E-lastic strain of freely suspended single-wall carbon nanotube ropes [J].Appl Phys Lett,1999,74(25):3803-3805.
    [13]WAGNER HD, LOURIEO, FELDMAN Y, et al. Stress induced fragmentation of multiwall carbon nanotubes in a polymer matrix [J].Appl Phys Lett,1998,72(2):188-190.
    [14]徐明君.碳纳米管力学性能的研究进展及应用[J].北京工商大学学报(自然科学版),2005,23(4):32-35.
    [15]EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes [J],Nature,1996,382:54-56.
    [16]LIANG WJ, BOCKRATHM, BOZOBIC D, et al. Fabry-Perot interference in a nanotube electron waveguide [J]. Nature,2001,411:665-669.
    [17]FRANK S, PONCHARAL, WANG Z L, et al. Carbon nanotube quantum resistors [J]. Science,1998,280:1744-1746.
    [18]WEI B Q, VAJTAI R, AJAYAN P M. Reliability and current carrying capacity of carbon nanotubes [J].Appl Phys Lett 2001,79(8):1172-1174.
    [19]CHEN J W, CAGIN T, GODDARD W A. Thermal conductivity of carbon nanotubes [J].Nanotechnology,2000,11(2):65-69.
    [20]BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes [J].Phys Rev Lett,2000,84(20):4613-4616.
    [21]THES A, LEE R, NIKOLAEV P, et al. Cyrstalline ropes of metallic carbon naoutbes [J]. Science,1996,273:483-487.
    [22]SLEPYAN G Y, MAKSIMENKO S A, LAKHTAKIA A, et al. Electron magnetic responser of carbon nanotubes and nannotube rops [J]. Synthetic Metals,2001,124(1):121-123.
    [23]李明,万超瑛,张勇.水分散性碳纳米管的制备研究进展[J].高分子通报,2009,10:1-8.
    [24]ISLAM M F, ROJAS E, BERGEY D M, et al. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water [J].Nano Lett,2003,3(2):269-273.
    [25]YUREKLI K, MITCHELL C A, KRISHNAMOORTI R. Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes [J].J Am Chem Soc,2004,126:9902-9903.
    [26]ZHANG M, SU L, MAO L. Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid [J].Carbon,2006,44(2):276-283.
    [27]0'CONNELL M, BOUL P, ERICSON L, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping [J].Chem Phys Lett,2001,342 (3-4):265-271.
    [28]LIU A, HONMA I, ICHIHARA M, et al. Poly (acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water:definitive spectroscopic properties [J]. Nanotechnology,2006,17(12):2845-2849.
    [29]XUE C, SHI M, YAN Q, et al. Preparation of water-soluble multi-walled carbon nanotubes by polymer dispersant assisted exfoliation [J]. Nanotechnology,2008,19(11):115605-115611.
    [30]STEUERMAN D W, STAR A, NARIZZANO R, et al. Interaction between conjugated Polymers and single-walled carbon nanotubes [J].J Phys Chem B,2002,106:3124-3130.
    [31]CHEN R J, ZHANG Y, WANG D, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].J Am Chem Soc,2001,123:3838-3839.
    [32]PALONIEMI H, RITALO T, LAIHO T, et al. Water-Soluble Full-Length Single-Wall Carbon Nanotube Polyelectrolytes:Preparation and Characterization[J].Phys Chem B,2005,109(18):8634-8642.
    [33]KAVAKKA J S, HEIKKINEN S, KILPELAINEN I, et al. Noncovalent attachment of
    pyro-pheophorbide a to a carbon nanotube [J].Chem Commun,2007,5:519-521.
    [34]CHEN R J, BANGSARUNTIP S, DROUVALAKIS K. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].Proc Natl Acad Sci USA,2003,100 (9):984-4989.
    [35]MARTIN W, ZHU W, KRILOV G. Simulation Study of Noncovalent Hybridization of Carbon Nanotubes by Single-Stranded DNA in Water [J]. J Phys Chem B,2008,112(50):16076-16089.
    [36]NUMATA M, SUGIKAWA K, KANEKO K, et al. Creation of Hierarchical Carbon Nanotube Assemblies through Alternative Packing of Complementary Semi-Artificial b-1, 3-Glucan/Carbon Nanotube Composite [J].Chem Eur J,2008,14(8):2398-2404.
    [37]WANG Z H, WANG Y M, LUO G A. A selective voltammetric method for uric acid detection at b-cyclodextrin modified electrode incorporating carbon nanotubes [J].Analyst,2002,127:1353-358.
    [38]XIAO SUFANG, WANG ZONGHUA, WANG YIMING,et al. Voltammetric behavior of ascorbic acid at α-cyclodextrin incorporated carbon① nanotubes-coated electrode [J]. Journal of Qingdao University,2002,15(94):1-6.
    [39]王宗花,罗国安,肖素芳,等.α-环糊精复合碳纳米管电极对异构体的电催化行为[J].高等学校化学学报,2003,5:811-813.
    [40]肖素芳,王宗花,罗国安,等.L-半胱氨酸在环糊精复合碳纳米管电极上的伏安测定[J].高等学校化学学报,2004,10:1833-1835.
    [41]宋长文,颜红侠,李朋博,等.碳纳米管化学修饰的研究进展[J].炭素技术,2009,28(3):30-34.
    [42]柯刚,浣石,刘晓国.碳纳米管的有机化学修饰研究进展[J].科技导报,2007,243:76-80.
    [43]王宗花,赵凯,陈相康,等.共价功能化碳纳米管的应用研究进展[J].化学研究,2009,20:104-108.
    [44]宫斌,黄据芹,王怀友.碳纳米管的修饰研究进展[J].化学分析计量,2009,18:89-91.
    [45]TSANG S C, CHEN Y K, HARRIS P J F, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994,372:159-162.
    [46]LIU J, RINZLER A G, DAI H, et al. Fullerene Pipes [J]. Science,1998,280:1253-1255.
    [47]CHEN, J, HAMON MA, HUH, et al. Solution Properties of single-walled carbon nanotubes [J].Science,1998,282:95-98.
    [48]PAIVAMC, ZHOUB, FERNANDO K A S, et al. Mechanical and morphological characterization of polymer carbon nanocomposites from functionalized carbon nanotubes [J]. Carbon,2004,42:2849-2854.
    [49]LIN Y, HILL D E, BENTLEY J, et al. Controlled synthesis and modification of carbon nanotubes and C60:carbon nanostructures for advanced polymeric composite materials
    [J].Phys Chem B,2003,107:10453-10458.
    [50]QIN Y J, BASKARAN S. Load transfer and deformation mechanisms in carbon nanotubes-polystyrene composites [J].Phys Chem,2003,107:12899-12907.
    [51]王国建,郭建龙,曲泽华.碳纳米管的氨基化对环氧树脂力学性能的影响[J].工程塑料应用,2006,34(12):8-12.
    [52]王国建,郭建龙,曲泽华.乙二胺修饰的碳纳米管对环氧树脂力学性能的影响[J].玻璃钢/复合材料,2006,6:16-19.
    [53]曹春华,李家麟,贾志杰,等.用二胺在CNTs上引入胺基团的研究[J].新型炭材料,2004,19(2):137-140.
    [54]DYKE C A, TOUR J M J. Solvent-Free Functionalization of Carbon Nanotubes [J]. J Am Chem Soc,2003,125(5):1156-1157.
    [55]MICHELSON E T, HUFFMAN C B, RINZLER A G, et al. Surfactant directed polypyrrole/CNTs nonocables:Synthesis, characterization and enhanced electrical properties [J].Chem Phys Lett,1998,296:188-193.
    [56]DANG ZHIMIN, WANG LAN, ZHANG LIPEI. Surface fictionalization of multiwalled carbon nanotube with Trifluorophenyl [J]. Journal of Nanomaterials,2006,1:1-5
    [57]STEVENS J L, HUANG A Y, PENG H Q, et al. Chemically functionalized carbon nanotbe as substrates for neuronal growth [J].Nano Letters,2003,3(3):331-336.
    [58]HOLZINGER M, VOSTROWSKY 0, HIRSCH A, et al. Sidewall Functionalization of Carbon Nanotubes [J].Angew Chem Int Ed,2001,40(21):4002-4005.
    [59]BARTHOS R, DEMORTHIER A, PIERARD N, et al. Functionalization of single-walled carbon nanotubes by using alkyl-halides [J]. Carbon,2005,43(2):321-325.
    [60]BAHR J L, J YANG P, KOSYNKIN D V, et al. Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts:A Bucky Paper Electrode [J]. J Am Chem Soc,2001,123:6536-6542.
    [61]CHEN D Q, DAI L M, GAO M, et al. Plasma activation of carbon nanotube for chemical modification [J].J Phys Chem B,2001,105(3):618-622.
    [62]WANG X F, ZHANG Y F, ZHU Z Y, et al. Fabrication of Fullerene-Containing Hybrid Vesicles via Supramolecular Self-Assembly of a Well-Defined Amphiphilic Block Copolymer Incorporated with a Single C60 Moiety at the Diblock Junction Point [J]. Macromol Rapid Comm,2008,29 (4):340-346.
    [63]王平华,李凤妍,唐龙祥,等.RAFT聚合方法在碳纳米管表面接枝嵌段共聚物[J].高分子材料科学与工程,2007,6:36-38.
    [64]ZHAO XD, FANXH, CHENXF, et al. Surface modification of multiwalled carbon nanotubes
    via nitroxide-mediated radical polymerization [J].J Polym Sci Pol Chem,2006,44(15):4656-4667.
    [65]GIORDANO R, SERP P, KALCK P, et al. Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction [J].Eur J Inorg Chem,2003(4):610-617.
    [66]李泽全,张怀,张云怀,等.基于碳纳米管的生物传感器研究进展[J].2008,22:99-103.
    [67]LIMSH, WEI J, LIN J, et al. A glucose biosensor based on electrode position of palladium nanoparticles and glucose oxi-dase onto nafion-solubilized carbon nanotube electrode [J].Biosens Bioelectron,2005,20:2341-2346.
    [68]ZHANG M, GORSKI W. Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes [J].Anal Chem,2005,77:3960-3965.
    [69]YU XIN, CHATTOPADHYAY D, GALESKA I, et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes [J]. Electrochemistry Communications,2003,5:408-411.
    [70]CHEN XIAOLI, CHEN JINHUA, DENG CHUNYAN, et al. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode [J].Talanta,2008,76:763-767.
    [71]WANG S G, WANG R, SELLIN P J, et al. DNA biosensors based on self-assembled carbon nanotubes [J].Biochem Biophys Res Commun,2004,325(4):1433-1437.
    [72]廖静敏,李光,马念章.碳纳米管在生物传感器中的应用[J],传感技术学报,2004,3:467-470.
    [73]BOLSKAR R D, BENEDETTO A F, HUSEBO L 0, et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent [J]. J Am Chem Soc,2003,125:5471-54788.
    [74]TOTH E, BOLSKAR R D, BOREL A, Water-Soluble Gadofullerenes:Toward High-Relaxivity, pH-Responsive MRI Contrast Agents [J].J Am Chem Soc,2005,127:799-805.
    [75]SITHARAMAN B, KISSELL K R, HARTMAN K B, et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents [J].Chem Commun,2005,3915-3917.
    [76]KIM D G, JEONG Y I, CHOI C Y, et al. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles [J]. Int J Pharm,2006,319:130-138.
    [77]KIM E M, JEONG H J, KIM S L, et al. Asialoglycoprotein-receptor-targeted hepatocyte imaging using 99mTc galactosylated chitosan [J].Nucl Med Biol,2006,33(4):529-534.
    [78]QIU J D, XIE H Y, LIANG R P. Preparation of porous chitosan/carbon nanotubes film modified electrode for biosensor application [J]. Microchim Acta,2008,162(1-2):57-64.
    [79]PORTNEY N G, OZKAN M. Nano-oncology:drug delivery, imaging, and sensing [J].Anal Bioanal Chem,2006,384(3):620-630.
    [80]马如飞,李铁虎,庄强,等.静电自组装碳纳米管/壳聚糖复合材料[J].炭素技术,2009,28(2):9-12:
    [81]LIU Y L, CHEN W H, CHANG Y S. Preparation and properties of chitosan/carbon nanotube nanocomposites using poly(styrene sulfonic acid)-modified CNTs [J]. Carbohydrate Polymers,2009,76:232-238.
    [82]CHEN C S, CHEN X H, YI B, et al. Zinc oxide nanoparticle decorated multi-walled carbon nanotubes and their optical properties [J].Acta Materialia,2006,54(20):5401-5407.
    [83]CHEN C S, CHEN X, XU L S, et al. Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive [J]. Cabron,2005,43 (8):1660-1666.
    [84]LIU Y Y, TANG J, CHEN X Q, et al. Decoration of carbon nanotubes with chitosan [J]. Carbon,2005,43:3178-3180.
    [85]杨庆,梁伯润,窦丰栋,等.以乙二醛为交联剂的壳聚糖纤维交联机理探索[J].纤维素科学与技术,2005,13(4):13-19.
    [86]RANGRONG Y, MITSURU A, SIRIRATANA B, et al. Hydrophobic chain conjugation at hydroxyl group onto У-Ray irradiated chitosan [J]. Biomacromolecules,2001,2(3):1038-1044.
    [87]HITOSHI S, NORIOKI K, ATSUYOSHI N, et al. Chemical modification of chitosan.13. synthesis of organosoluble, palladium adsorbable, and biodegradable chitosan derivatives toward the chemical plating on plastics [J]. Biomacromolecules,2002,3 (5):1120-1125.
    [88]PENG F B, PAN F S, SUN H L, et al. Novel nanocomposite pervaporation membranes composed of poly (vinyl alcohol) and chitosan-wrapped carbon nanotube [J].J Membr Sci,2007,300(1-2):13-19.
    [89]CAO X D, DONG H, LI C M, et al. The enhanced mechanical properties of a covalently bound chitosan-multiwalled carbon nanotube nanocomposite [J].J Appl Polym Sci,2009,113:466-472.
    [90]CASSAGNEAU T, CARUSO F. Conjugated polymer inverse opals for potentiometric biosensing [J].Adv Mater,2002,14(24):1837-184.
    [91]HOLLAND B T, ABRAMS L, STEIN A. Dual templating of macroporous silicates with zeolitic microporous framework [J]. J Amer Chem Soc,1999,121(17):4305-430.
    [92]曾嘉,郑连英,余世清.壳聚糖微球固定化葡萄糖氧化酶的研究[J].食品工业科技,2002,23(1):29-31.
    [93]BLIN J L, GERARDIN C, CARTERET C, et al. Direct one-step immobilization of glucose oxidase in well-ordered mesostructured silica using a nonionic fluorinated surfactant [J].Chem Mater,2005,17:1479-1486.
    [94]黄雅钦,黄明智.壳聚糖及其衍生物作为固定化蛋白酶的载体[J].现代化工,2001,2:20-23.
    [95]李艳敬,周国伟,徐会颖,等.介孔材料及其改性材料中酶的固定化研究进展[J].化学通报,2009,4:326-333.
    [96]KIM D G, JEONG Y IL, CHOI C Y, et al. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles [J].Int J Pharm,2006,319:130-138.
    [97]KIM E M, JEONG H J, KIM S L, et al. Asialoglycoprotein-receptor-targeted hepatocyte imaging using 99mTc galactosylated chitosan [J].Nucl Med Biol,2006,33(4):529-534.
    [98]GAO Y H, LEE K H,OSHIMA M, et al. Adsorption behavior of metal ions on cross-linked chitosan and the determination of oxoanions after pretreatment with chitosan column [J].Anal Sci,2000,16(16):1303-1308.
    [99]丁纯梅,王芬华,李芳,等.Zr(Ⅳ)配合物的制备及催化氧化降解的研究[J].稀有金属,2007,31(2):232-236.
    [100]关怀民.钕(Ⅲ)与壳聚糖配位反应的研究[J].稀土,1999,20(1):27-30.
    [101]董岸杰,张晓丽,李军,等.超声波在壳聚糖降解反应中的作用[J].高分子材料科学与工程,2002,18(6):187-189.
    [102]刘石生,丘泰球,蔡纯,等.超声对壳聚糖降解作用的研究[J].广东工业大学学报,2002,19(3):83-86.
    [103]李瑾,杜予民,姚评佳,等.壳聚糖超声可控降解及降解动力学研究[J].高分子学报,2007,401-406.
    [104]张秀军,郎惠云,魏永锋,等.壳聚糖亚铁螯合物的合成及吸附动力学[J].应用化学,2003,20(8):749-753.
    [105]SAJITHA E P, PRASAD V, SUBRAMANYAM S V, et al. Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon [J]. Carbon,2004,42(14):2815-2820.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.