三维Ni(OH)_2、Co(OH)_2电极的制备及其电化学电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界性的能源危机和环境污染的加剧,人们对节能环保要求越来越高。作为一种新型的能量储存装置—电化学电容器,兼有传统电容器和二次电池的双重功能,一经问世,便受到了人们的极大青睐,成为当前国际性的研究热点。电极材料是决定电化学电容器性能的关键因素,因此,在电化学电容器的研究中,许多工作都是围绕着开发具有高比容量且廉价环保的电极材料而进行的。
     本论文综述了电化学电容器的基本原理、电极活性材料研究进展以及其应用前景,并以泡沫镍为基底制备了两种电化学电容器电极。利用XRD、FESEM等技术对电极材料进行了晶体结构分析和微观形貌表征。采用恒流充放电、循环伏安(CV)、电化学交流阻抗(EIS)等电化学技术对电极电容性能进行测试。具体开展的主要实验内容如下:
     1,在前期工作的基础上,以0.1 M Ni(NO3)2水溶液为电解液,采用直流电沉积的方法在泡沫镍基底上,制备了三维Ni(OH)2电极,通过循环伏安(CV)、恒流充放电、电化学交流阻抗(EIS)等电化学技术系统研究了电沉积条件(沉积温度,活性物质Ni(OH)2的负载量)对其电容性能的影响。结果表明:三维Ni(OH)2电极容量受电沉积温度和活性物质的负载量影响显著。当Ni(OH)2的沉积量为0.7 mg,沉积温度为65℃时所得到的三维Ni(OH)2电极容量特性和功率特性最为理想,获得了高达3887 F/g的平均单电极比容量。
     2,首次在Co(NO3)2水溶液中以泡沫镍为基体采用直流电沉积的方法制备了三维Co(OH)2电极,通过循环伏安(CV)、恒流充放电、电化学交流阻抗(EIS)等电化学技术对不同电沉积条件(沉积温度,活性物质Ni(OH)2的负载量)下制备的一系列的三维Co(OH)2电极进行了测试。在充放电电流密度为4 A/g时,其平均单电极比容量达2469 F/g,当充放电电流密度增加至32A/g时,其平均单电极比容量为2003 F/g,与充放电电流密度为4 A/g相比,其容量保持率高达81.12%,可见三维Co(OH)2电极具有很好的功率特性。
With the growth of the world energy crisis and the environmental pollution, there is increasing requirement on the energy saving and environment protecting. Electrochemical capacitor, which is one of the newest innovations in the field of electrical energy storage, combining the advantages of both dielectric capacitors and conventional rechargeable batteries, has attracted much attention and become an international hotspot, once appeared. The electrode material is a key factor which determines the performance of the electrochemical capacitors, therefore, much work focuses on developing electrode materials with high capacity, low cost and environmentally friendly character.
     In this dissertation, we have reviewed the basic principle of the electrochemical capacitors, the advances of research on electrode materials and the prospects of electrochemical capacitors. Two kinds of electrodes based on nickel foam for electrochemical capacitors were prepared. X-ray powder diffraction (XRD) and field emission scanning electronic microscopy (FESEM) were used to characterize the structure and morphology of the coatings on the electrodes. The cyclic voltammetry (CV), chronopotentiometry and electrochemical impedance spectra (EIS) were used to systematically investigate the capacitance of the electrodes. The main content is as follows:
     (1) Three-dimensional Ni(OH)2 coatings were directly electrodeposited on nickel foam from aqueous solution of Ni(NO3)2 for electrochemical capacitor electrodes. The cyclic voltammetry (CV), chronopotentiometry, electrochemical impedance spectra (EIS) were used to systematically study the effects of electrodeposition parameters such as deposition temperatures and active material loading on the electrochemical capacitor behavior. The investigation showed that the deposition temperatures and active material loading have obviously affected the capacitance of the three-dimensional Ni(OH)2 electrode. At a charge/discharge current density of 4 A/g, an average specific capacitance as high as 3887 F/g can be achieved at the optimum deposition temperature of 65℃with the Ni(OH)2 loading of 0.7 mg.
     (2) Three-dimensional Co(OH)2 coatings were directly electrodeposited on nickel foam from aqueous solution of Co(NO3)2 for electrochemical capacitor electrodes. The cyclic voltammetry (CV), chronopotentiometry, electrochemical impedance spectra (EIS) were used to systematically study the effects of deposition temperatures and the Co(OH)2 loading on the electrochemical capacitance of the electrode. An average specific capacitance as high as 2469 F/g was obtained at a charge/discharge current density of 4 A/g, and the average specific capacitance was still up to 2003 F/g when the charge/discharge current density augments to 32 A/g, which is 81.12% of the average specific capacitance at the charge/discharge current density of 4 A/g. Thus it is obvious that the three-dimensional Co(OH)2 electrode has excellent electrochemical capacitance property.
引文
[1]韩东娥,走向未来的战略,山西经济出版社,1996.
    [2]李国欣,新型化学电源导论,上海复旦大学出版社,1992.
    [3]Nagaura T, Tozawa K. Prog. Batteries Solar Cells,1990,9:209.
    [4]H. I. Becker, US Patent,2800616,1954.
    [5]D. L. Boos, US Patent,3536963,1970.
    [6]张丹丹,姚宗干,大容量高储能密度电化学电容器的研究进展,电子元件与材料,2000,19(1):34.
    [7]Burke. A, Ultracapacitors:why, how, and where is the technology. J. Power Sources.,2000,91(1):37-50.
    [8]Egashira M, Matsuno Y, Yoshimoto N, et al. Pseudo-capacitance of composite electrode of ruthenium oxide with porous carbon in non-aqueous electrolyte containing imidazolium salt. J. Power Sources.,2010,195(9):3036-3040.
    [9]马仁志,魏秉庆,徐才录等,应用于超级电容器的碳纳米管电极的几个特点,清华大学学报(自然科学版),2000,40(8):8.
    [10]南俊民,杨勇,林祖赓,电化学电容器及其研究进展,电源技术,1996,20(4):152.
    [11]张志安,邓梅根,胡永达等,电化学电容器的特点及应用,电子元件与材料,2003,22(11):1.
    [13]朱磊,吴伯荣,陈晖等,超级电容器研究及其应用,稀有金属,2003,27(3):385.
    [13]张步涵,王云玲,曾杰,超级电容器储能技术及其应用,水电能源科学,2006,24(5):50.
    [14]Von Helmhoz H L F,Ann.Physic,1853,89(2):211
    [15]吴浩青,李永舫,电化学动力学,高等教育出版社,2001.
    [16][加]B E康维 著,陈艾,吴孟强,张绪礼,高能武等译,电化学超级电容器——科学原理及技术应用,化学工业出版社,2005.
    [17]Fowler R H, Guggenheim E A, Statistical thermodynamics, Cambridge University Press,1939.
    [18]Gouy G, J Phys Radium,1910,9(4):457.
    [19]Stren O, Z Electrochem,1924,30:508.
    [20]Nishino A, Capacitors:operating principles, current market and technical trends, J. Power Sources.,1996,60(2):137-147.
    [21]Conway B E, Electrochemical Supercapacitors scientific fundamentals and technological applications, Plenum Press,1999.
    [22]王晓峰,解晶莹,孔祥华等,“超电容”电化学电容器研究进展,电源技术,2001,25(suppl):166.
    [23]Chang T Y, Wang X, Evans D A, et al. Tantalum oxide-ruthenium oxide hybrid(R) capacitors, J. Power Sources.,2002,110(1):138.
    [24]Yu N, Gao L, Zhao S, et al. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor, Electrochim. Acta.,2009,54(14):3835.
    [25]Chang T Y, Wang X, Evans D A, et al. Tantalum oxide-ruthenium oxide hybrid(R) capacitors, J. Power Sources.,2002,110(1):138.
    [26]Park J H, Park O O, Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes, J. Power Sources.,2002,111(1):185.
    [27]Ma S B, Nam K W, Yoon W S, et al. A novel concept of hybrid capacitor based on manganese oxide materials, Electrochem. Commun.,2007,9(12):2807.
    [28]田志宏,赵海雷,李玥等,非对称型电化学电容器的研究进展,电池,2006,36(6):469.
    [29]张熙贵,王涛,夏保佳,一种优秀的储能器件—超级电容器,世界产品与技术,2003,8:40.
    [30]苏岳锋,吴峰,赵淑红等,纳米碳材料改善电化学电容器性能研究,功能材料,2004,2(35):188.
    [31]桂长清,新型储能单元超级电容器,电池工业,2003,8(4):163.
    [32]李荐,钟晖,钟海云等,超级电容器应用设计,电源技术,2004,28(6):388.
    [33]杨盛毅,文芳,超级电容器综述,现代机械,2009,4:82.
    [34]朱修锋,景晓燕,张密林,金属氧化物超级电容器及其应用研究进展,功 能材料与器件学报,2002,8(3):325.
    [35]胡晓,超级电容器行业市场分析与技术现状研究,机电原件,2009,29(3):17.
    [36]戴贵平,刘敏,王茂章等,电化学电容器中炭电极的研究及开发Ⅰ电化学电容器,新型炭材料,2002,17(1):71.
    [37]王茂章,多孔炭材料在电双层电容中的应用,新型炭材料,1995,1:1.
    [38]王众,方瑛,双电层电容器电极材料和结构,电子元件与材料,1992,11(5):1.
    [39]Wei D, Ng T W, Application of novel room temperature ionic liquids in flexible supercapacitors, Electrochem. Commun.,2009,11(10):1996.
    [40]Arulepp M, Permann L, Leis J, et al. Influence of the solvent properties on the characteristics of a double layer capacitor. J. Power Sources.,2004,133(2):320.
    [41]Prabaharan S R S, Vimala R, Zainal Z. Nanostructured mesoporous carbon as electrodes for supercapacitors [J]. J. Power Sources.,2006,161(1):730.
    [42]Xue T, Xu C L, Zhao D D, et al. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. J. Power Sources.,2007,164(2):953.
    [43]Zhang H, Cao G, Wang W et al. Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochim. Acta.,2009,54(4):1153.
    [44]Pandolfo A G, Hollenkamp A F, Carbon properties and their role in supercapacitors, J. Power Sources.,2006,157(1):11.
    [45]Zhang H, Cao G, Yang Y, Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy& Environmental Science.,2009:2(9):932.
    [46]张玲,唐冬汉,熊奇,超级电化学电极材料的研究进展,重庆大学学报,2002,25(5):152.
    [47]王仁清,方勤,邓梅根,模板法制备超级电容器活性炭电极材料,电子元件与材料,2009,28(1):14.
    [48]杨红生,周啸,冯天富,电化学电容器最新研究进展I.双电层电容器,电 子元件与材料,2003,22(2),13.
    [49]张传祥,张睿,谢应波等,神华烟煤活化制备电化学电容器电极材料的研究,碳素技术,2008,4(27),14.
    [50]乔文明,查庆芳,刘朗,沥青基高比表面积活性碳的物理及化学结构,材料科学与工程,1995,13(1),41.
    [51]刘辰光,刘敏,王茂章等,电化学电容器中炭电极的研究及开发Ⅱ.炭电极,新型炭材料,2002,17(2),65.
    [52]王建立,刘文华,碳基电化学电容器及其研究进展,电源技术,2000,24(1),57.
    [53]李晶,赖延清,刘业翔,超级电容器碳电极材料的制备及性能,电池,2006,36(5):332.
    [54]Mayer S T, Pekala R W, Kaschmitter J L. The aerocapacitor:an electrochemical double-layer energy-storage device. J. Electrochem. Soc.,1993,140(2):446.
    [55]Leitner K, Lerf A, Winter M, et al.Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors. J. Power Sources.,2006,153(2): 419.
    [56]Richner R, Muller S, Wokaun alexander. Grafted and crosslinked carbon black as an electrode material for double layer capacitors. Carbon,2002,40(3):307.
    [57]马仁志,魏秉庆,徐才录等,应用于超级电容器纳米管电极的几个特点,清华大学学报(自然科学版),2000,40(8),7.
    [58]Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett., 2006,6(12):2690.
    [59]Melsheimer J, Ziegler D, The oxygen electrode reaction in acid solutions on RuO2 electrodes prepared by the thermal decomposition method, Thin Solid Films, 1998,163:301.
    [60]Zheng J P, Jow T R, High energy and high power density electrochemical capacitors, J. Power Sources.,1996,62(2):155.
    [61]杨惠,石兆辉,陈野,金属氧化物超级电容器的研究进展,电池,2005,35(6):477.
    [62]Jeong Y U, Athiram A, Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors. J. Electrochem. Soc.,2001,148(3):A189.
    [63]Wohlfahrt-Mehrens M, Schenk J, Wilde P M, et al. New materials for supercapacitors. J. Power Sources.,2002,105(2):182.
    [64]Pang S C, Anderson M A, Chapman T W. "Novel electrode materials for thin-film ultracapacitors:Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. J Electrochem Soc.,2000,147(2),444.
    [65]Xu, C L, Zhao Y Q, Yang G W, et al. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chem.Commun,2009, 48:7575.
    [66]Nam, K. and Kim K B. A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism. J. Electrochem. Soc.,2002,149(3):A346.
    [67]Srinivasan V, Weidner J W. An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc.,1997,144(8):L210.
    [68]Wang, Y, Xia Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim. Acta., 2006,51(16):3223.
    [69]Zhang Y, Gui Y, Wu X, et al. Preparation of nanostructures NiO and their electrochemical capacitive behaviors. Int. J. Hydrogen Energy.,2009,34(5):2467.
    [70]Nam, K W., Kim K H., Lee E S, et al. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. J. Power Sources.,2008,182(2):642.
    [71]Cao L, Xu F, Liang Y Y, et al, Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater.,2004,16(20):1853.
    [72]Kim, H K, Seong T Y, Lim J H, et al. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors. J. Power Sources.,2001,102(1-2),167.
    [73]Srinivasan V, Weidner J. W, Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J. Power Sources.,2002,108(1-2),15.
    [74]Hu, C., C. Huang C M, Chang K H, Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors. J. Power Sources.,2008,185(2),1594.
    [75]刘黎明,林志东,杨培志,V2O5复合电极材料的制备与表征,电子元件与材料,2006,25(9),28.
    [76]Lee S H, Cheong H M, Seong M J, et al. Raman spectroscopic studies of amorphous vanadium oxide thin films. Solid State Ionics,2003,165(1-4),111.
    [77]Liu K C, Anderson M A, Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc.,1996,143(1),124.
    [78]Zhao D D, Xu M W, Zhou W J, et al, Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route. Electrochim. Acta.,2008,53(6),2699.
    [79]景茂祥,沈湘黔,沈裕军等,超级电容器氧化物电极材料的研究进展,矿冶工程,2003,23(2),73.
    [80]张光敏,阎康平,严季新,用导电聚合物电极的超电容器研究概况,电子元件与材料,1999,18(5),42.
    [81]陈光铧,徐建华,杨亚杰等,超级电容器有机导电聚合物电极材料的研究进展,材料导报,2009,23(10),109.
    [82]Cao L, Kong L B, Liang Y Y, et al. Preparation of novel nano-composite Ni(OH)2/USY material and its application for electrochemical capacitance storage. Chem. Commun.,2004,14:1646
    [83]Liang Y Y, Cao L, Kong L B, et al.. Synthesis of Co(OH)2/USY composite and its application for electrochemical supercapacitors. J. Power Sources.,2004,136(1): 197.
    [84]Wang Y G, Li H Q, Xia Y Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater.,2006,18(19):2619.
    [1]Kalu E E, Nwoga T T, Srinivasan V, et al, Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide. J. Power Sources.,2001,92(1-2):163.
    [2]Xing W, Li F, Yan Z, et al, Synthesis and electrochemical properties of mesoporous nickel oxide. J. Power Sources.,2004,134(2):324.
    [3]Cheng J, Cao G P, Yang Y S, Characterization of sol-gel-derived NiOx xerogels as supercapacitors. J. Power Sources.,2006,159(1):734.
    [4]Liu K C, Anderson M A, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors. J. Electrochem. Soc.,1996,143(1):124.
    [5]Srinivasan V, Weidner J. An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc.,1997,144(8):L210.
    [6]Zhao D D, Xu M W, Zhou W J, et al, Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route. Electrochim. Acta.,2008,53(6):2699.
    [7]Nam K W, Kim K H, Lee E S, et al. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. J. Power Sources.,2008,182(2):642.
    [8]Yang G W, Xu C L, Li H L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem.Commun.,2008, (48):6537.
    [9]Zhao D D, Bao S J, Zhou W J, et al. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem. Commun.,2007,9(5):869.
    [10]Gupta V, Kawaguchi T, Miura N. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites. Mater. Res. Bull., 2009,44(1):202.
    [11]Karmath P V, Dixit M, Indira L, et al, Stabilized a-Ni(OH)2 as electrode material for alkaline secondary cells. J. Electrochem. Soc.,1994,141(11):2956.
    [12]Jiang J H, Kucernak A, Electrochemical supercapacitor material based on manganese oxide:preparation and characterization. Electrochim. Acta.,2002,47(15): 2381.
    [1]程菊,镍氢电池及储氢合金的进展,金属功能材料,1996,3:86.
    [2]冯忠厚,韩树民,李媛等,β-Co(OH)2的制备及其电化学性能研究,燕山大学学报,2008,32(6):521.
    [3]谢朋,翟玉春,翟秀静等,添加剂Co(OH)2的制备研究,电源技术,1998,22(4):148.
    [4]张密林,刘志祥,沉淀转化法制备的Co(OH)2的超级电容特性,无机化学学报,2002,18(5):514.
    [5]Kim H K, Seong T Y, Lim J H, et al. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors. J. Power Sources.,2001,102(1-2):167.
    [6]Cao L, Xu F, Lang Y Y, et al. Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Adv. Mater.,2004,16(20):1853.
    [7]Gupta V, Gupta S, Miura N, et al. Al-substituted α-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors. J. Power Sources.,2008,177(2):685.
    [8]Gupta V, Kusahara T, Toyama H, et al. Potentiostatically deposited nanostructured a-Co(OH)2:A high performance electrode material for redox-capacitors. Electrochem. Commun.,2007,9(9):2315.
    [9]原长洲,张校刚,高博,多孔Co(OH)2的制备及其超电容特性,应用化学,2006,23(4):456.
    [10]叶向果,张校刚,王兴磊等,均匀沉淀法制备Co(OH)2及其朝电容特性,无机化学学报,2007,23,(10):1729.
    [11]胡中爱,金小青,谢莉婧等,a-Co(OH)2的制备及其电化学性能研究,西北师范大学学报,2009,45(5):69
    [12]Zhou W J, Zhang J, Xue T, et al. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. J. Mater. Chem.,2008,18(8):905.
    [13]Zhou W J, Xu M W, Zhao D D, et al. Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors. Microporous Mesoporous Mater.,2009,117(1-2):55.
    [14]周文佳,锂离子电池与电化学电容器纳米电极材料的制备及性质研究,兰州大学,博士学位论文,2008
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.