B-Z化学振荡反应在分析检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,非线性现象已经成为许多科学工作者研究的最热门问题之一,化学振荡行为作为一种典型的非线性现象越来越受到人们的关注并被深入研究,而化学振荡反应用于检测具有仪器简单、操作简便、较宽的线性检测范围和较低的检测限等优点。
     论文阐述了利用Ce(IV)催化的规则B-Z化学振荡反应在封闭体系中检测1-萘胺和Fe(phen)_3~(2+)催化的B-Z体系的混沌状态下检测了一些金属离子,并讨论了可能的反应机理,最后还用非平衡定态(分岔)检测了Cu~(2+)和1-萘胺,并且与规则振荡和混沌状态下的检测结果进行了比较。
     第一章:绪论
     简单介绍了经典B-Z化学振荡体系的反应机理及Oregonator数学模型,综述了化学振荡的各种行为在分析检测中的应用,展望了应用前景。
     第二章:利用B-Z化学振荡反应检测1-萘胺
     研究了1-萘胺对KBrO_3-CH_2(COOH)_2-Ce(SO_4)_2-H_2SO_4化学振荡体系的扰动以及影响振荡体系的诸多因素。结果表明,1-萘胺浓度的对数与扰动后的振荡周期和振幅的差值T,A存在良好的线性关系,可作为定量分析的依据。其线性范围分别为7.08×10~(-5)~7.08×10~(-6) mol·L~(-1)和7.08×10~(-5)~1.0×10~(-6) mol·L~(-1),最低检测限分别为8.25×10~(-8) mol·L~(-1)和5.64×10~(-9) mol·L~(-1),相关系数为0.9922(n=11)和0.9955(n=12),最后讨论了其可能的反应机理。
     第三章:利用B-Z振荡体系的瞬时混沌检测痕量金属离子
     研究了一个在Fe(phen)_3~(2+)催化下的B-Z化学振荡反应中高灵敏检测金属离子的方法,通过对反应条件的优化,发现金属离子浓度的负对数与加样后的最大Lyapunov指数和诱导期的乘积存在良好的线性关系,可作为定量分析的基础,最后分析了可能的反应机理。
     第四章:利用B-Z化学振荡的非平衡定态检测铜离子和1-萘胺研究了利用Fe(phen)_3~(2+)催化的B-Z化学振荡体系的分岔形态检测铜离子和1-萘胺,这种方法是建立在分岔点附近的非平衡定态,在优化条件下对其进行检测。实验结果表明,铜离子和1-萘胺浓度的负对数与加样后振幅的改变存在一定的线性关系。并将检测结果与同体系下的规则振荡和混沌进行了比较,该方法具有快速、简便和检测限低等优点。
In recent years, non-linear phenomenon has become a hot topic in many fields in which one is oscillating chemical reaction. Although this reaction is just chemical rather than biological oscillator, studying this reaction will help us to understand easily the life organism, a complex system. Thus, scientists coming from various subjects are interesting in discussing the non-linear behavior from all sides. The present work will only focus our attention on the application to analytical chemistry. As we know, the apparatus used in oscillating chemical reaction is simple and easy to operate. As an analytical method, it has some characterics such as a wide linear range and lower detection limit.
     In this paper, 1-naphthylamine was determined using the regular B-Z oscillating chemical reaction catalyzed by Ce(IV) in a closed system, some metal ions were determined using the B-Z oscillating chemical reaction catalyzed by Fe(phen)_3~(2+) in the chaotic regime and a possible reaction mechanism was discussed; Finally, determining Cu~(2+) and 1-naphthylamine using the non-equilibrium stationary state (bifurcation), and compared with the results of the regular and chaotic oscillations. Chapter I: Introduction
     A brief introduction has been made for mechanism of classical B-Z oscillation chemical reaction and corresponding Oregonator mathematical model. The application in analytical determination was described. Finally, the prospective of oscillation chemical reaction research and application are prospected. Chapter II: Determination of 1-naphthylamine by using B-Z oscillating chemical reaction
     Using 1-naphthylamine to perturb the classical B-Z oscillating chemical system was observed and the variables were also investigated in detailed. The results show that the changes both in oscillating period and amplitude were linearly proportional to the logarithm of the concentration of 1-naphthylamine (logC) very well ranging from 7.08×10-5 to 7.08×10~(-6) mol·L-1 and 7.08×10-5 to 1.0×10~(-6) mol·L-1, with the detection limit are 8.25×10~(-8) mol·L~(-1) and 5.64×10~(-9) mol·L~(-1), corresponding regression coefficient are 0.9922(n=11) and 0.9955(n=12), respectively, and the possible mechanism was discussed.
     Chapter III: Determination of trace amounts of some metal ions by transient chaotic regime in the B-Z oscillating system
     In this part, a determination of trace amounts of some metal ions in the batch B-Z oscillating chemical reaction catalyzed by ferroin was made. The optimum conditions for the determination have been examined. The transient chaotic regime is quantified by the product of the largest Lyapunov exponent and induction period, which is linearly proportional to the negative logarithm of concentration of metal ions. A possible mechanism was also discussed.
     Chapter IV: Determination of Cu~(2+) and 1-naphthylamine using the perturbation of non-equilibrium stationary state in the B-Z oscillating chemical reaction
     A highly sensitive method is proposed for the determination of Cu~(2+) and 1-naphthylamine in the batch B-Z oscillating chemical reaction catalyzed by ferroin., And a non-linear chemical system far from thermodynamic equilibrium is also described. The method is based on the non-equilibrium stationary state close to a bifurcation point. The optimum conditions for the determination have been examined. The results show that the change in oscillating amplitude was linearly proportional to the negative logarithm of the concentration of Cu~(2+) and 1-naphthylamine from 1.3×10~(-5) to 6.5×10~(-10) mol·L~(-1) and 7.5×10~(-5) to 1.5×10~(-6) mol·L~(-1) respectively. Meanwhile, the results obtained were compared with other determination methods.
引文
[1]辛厚文.非线性化学[M].合肥:中国科学技术大学出版社, 1999.
    [2] Prigogine, I.. Structure, Dissipation and Life. Communtion Presented at the first International Conference“the Oretical Physics and Biology”[M]. Versailles: North Holl and Pub., 1969.
    [3]吕东煜.化学反应中的自组织及振荡反应在有机物分析检测中的应用.中国优秀硕士学位论文全文数据库, 2003.
    [4]赵国虎.化学振荡及其在药物分析中的应用.中国优秀博士学位论文全文数据库, 2005.
    [5]杨富巍.化学振荡在分析化学中的应用及化学振荡新体系的发现.中国优秀硕士学位论文全文数据库, 2005.
    [6] Taylor A. F.. Mechanism and phenomenology of an oscillating chemical reaction [J]. Prog. React. Kinet. Mech., 2002, 27: 247-325.
    [7] Gao J. Z.. Application of oscillating chemical reaction to analytical chemistry: Recent developments [J]. Pakistan Journal of Biological Sciences, 2005, 8(4): 512-519.
    [8] Gray P., Scott S. K.. Chemical oscillation and instabilities [M]. Oxford Press, 1991.
    [9]冯长根,曾庆轩.化学振荡混沌与化学波[M].北京理工大学出版社, 2004.
    [10]李祥云.化学振荡反应研究简史[J].化学通报, 1986, (11): 56-57.
    [11]孙传庆,商韬,刘卫兵.化学振荡反应及其应用[J].陕西师范大学学报(自然科学版). 2004, 32: 95-98.
    [12]吴小华,缭吉根,方克鸣,等.铁-联吡啶体系化学振荡的研究及其在价态分析中的应用[J].理化检验-化学分册, 2005, 41(11): 829-831.
    [13]许志强,倪诗圣,徐济德. 11,12,13,-三甲基-1,4,7,10-四氮杂十三环-10,13,-二烯-镍(Ⅱ)配合物催化的新型振荡化学反应[J].化学学报, 1992, 50(8): 734-739.
    [14]许志强,倪诗圣,徐济德,等.四氮杂大环四烯镍配合物[Ni(TIM)]X催化BrO3-氧化有机底物的振荡反应[J].化学学报, 1992, 50(11): 1085-1090.
    [15]李村,谢复新,倪诗圣. NiL(ClO4)2催化NaBrO3-MA体系振荡反应的研究[J].化学物理学报, 2000, 5(13): 618-622.
    [16] Zhao L., Hu G. L., Xie F. X., et al. A new chemical oscillator with a macorcyclic copper (II) complex as the catalyst and malic acid as the substrate [J]. Chin. Chem. Lett., 1996, 7(6): 579-580.
    [17]许志强,谢复新,杨光,等. Me[14]-N4大环四烯镍催化、BrO3-氧化丙酮酸的振荡化学反应研究[J].无机化学学报, 1994, 10(1): 75-79.
    [18] Maya G., Lalitha P. V., Ramaswamy R.. The Oscillatory Belousov-Zhabotinsky Reaction With Flayvones in Batech Systems Using Aqueous DMF Mixed Medium [J]. Can. J. Chem., 1994, 72: 537-1540.
    [19] Li H. X., Jin R. H., Dai W. L., et al. Dual-frequence Oscillations Induced by Acidity in Belousov-Zhabotinskii Reactions With Aldosugars as Substrates [J]. Chem. Phys. Lett., 1997, 274(1-3): 41-46.
    [20]董小梅,刘剑波,徐功骅. B-Z振荡反应[J].大学化学, 1996, 11(2): 35-37.
    [21]谢复新,李胜利,许志强,等. NaBrO3-Pyr-[Ni(DTH)](Cl4)2 H2-SO4体系化学振荡研究[J].中国科技大学学报, 1998, 28(3): 368-372.
    [22] Zhao L., Hu G. L., Xie F. X., et al. A New Chemical Oscillator With a Macorcyclic Copper (II) Complex as the Catalyst and Malic Acid as the Substrate [J]. Chin. Chem. Lett., 1996, 7(6): 579-580.
    [23]原春兰,李宗孝.氨基酸化学振荡反应活性中心的研究[J].物理化学学报, 1996, 12(11): 1041-1043.
    [24]高庆宇,李保民,孙康,等.亚氯酸盐、硫脲反应体系的非线性动力学[J].物理化学学报, 2001, 17(3): 257-260.
    [25]王舜,林娟娟,黄振炎,等.高碘酸盐-硫脲-硫酸反应体系的非线性动力学[J].物理化学学报, 2002, 18(3): 264-267.
    [26]王明辉,李和兴.金属离子对没食子酸(GA)-BZ非催化振荡反应的影响[J].化学研究与应用, 1999, 11(3): 54-58.
    [27] Biswas S., Mukherjee K., Mukherjee D. C., et al. Oscillatory reaction of bromate-gallic acid: a calorimetric and potentiometric study on inhibitory effects of salts [J]. Indian J. Chem., 2000, 39A(9): 912-920.
    [28] Rastogi R. P., Singh H. J., Singh A. K.. Discussion Meeting of Deutsche Bunsengesellschaft fur Physikalische Chemie [J]. Aachen, Germany, 1979(1): 98.
    [29]李和兴,倪丽华,刘波,等.木糖-BZ体系化学振荡反应的研究[J].上海师范大学学报, 1996, 25(3): 60-66.
    [30]高庆宇,赵学庄.非线性化学动力学的进展状况[J].大自然探索, 1994, 13(48): 14-17.
    [31] Field R. J., Noyes R. M., Koros E.. Oscillations in Chemical Systems II, Thorough Analysis of Temporral Oscillation in the Bromate-Cerium-Malonic Acid System [J]. J. Am. Chem. Soc., 1972, 94(25): 8649-8664.
    [32] Orban M., Koros E., Noyes R. M.. Chemical oscillations during the uncatalyzed reaction of aromatic compounds with bromate [J]. J. Phys. Chem., 1979, 93: 3056-3057.
    [33] Field R. J., Noyes R. M.. Oscillations in Chemical Systems IV: Limit cycle behaviour in a model of a real chemical reaction [J]. J. Chem. Phys., 1974, 60(5): 1877-1884.
    [34]湛恳华,沈小峰.普里高京与耗散结构理论[M].陕西科学出版社, 1982.
    [35]李如生.非平衡态热力学和耗散结构[M].清华大学出版社, 1986.
    [36] Goryachev A., Strizhak P. E., Kapral R.. Slow manifold structure and the emergence of mixed-mode oscillations [J]. J. Chem. Phys., 1997, 107: 2881-2889.
    [37] Kawczynski A. L., Strizhak P. E.. Period adding and broken Farey tree sequence of bifurcations for mixed-mode oscillations and chaos in the simplest three-variable nonlinear system [J]. J. Chem. Phys., 2000, 112(14): 6122-6130.
    [38] Khavrus V. O., Strizhak P. E.. Scalings of mixed-mode regimes in a simple polynomial three-variable model of nonlinear dynamical systems [J]. Chaos, 2003, 13: 112-122.
    [39] Gao J. Z., Wei X. X., Yang W., et al. Determination of 1-Naphthylamine usingoscillating chemical reaction [J]. Journal of Hazardous Materials, 2006, 144: 67-72.
    [40] Marek M., Svobodova E.. Nonlinear phenomena in oscillatory systems of homogeneous reactions-experimental observations [J]. Biophys. Chem., 1975, 3: 263-273.
    [41]刘秀辉,杨华,高锦章,等.氟对别洛索夫-扎鲍京斯基振荡反应的影响[J].分析化学, 2001, 29(11): 1318-1321.
    [42] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Analyte Pulse Perturbation Technique: A Tool for Analytic Determination in Far from Equilibrium Dynamic System [J]. Anal. Chem., 1995, 67: 729-734.
    [43]王洪波,董元彦.化学振荡反应研究进展[J].化工时刊, 2003, 17(6): 8-11.
    [44] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Approaching the use of oscillating reactions for analytical monitoring [J]. Analyst, 1998, 123: 1R-8R.
    [45]高锦章,杨富巍,孙看军,等.结晶紫参与的液膜振荡体系[J]. 2005, 2(41): 44-46.
    [46] Gao J. Z., Dai H. X., Chen H., et al. Study on the oscillating phenomena of electrical potential across a liquid membrane [J]. Chinese Chemical Letters, 2007, 18(3): 309-312.
    [47] Bozzini B., Giovannelli G., Mele C. Electrochemical dynamics and structure of the Ag/AgCl interface in chloride-containing aqueous solutions [J]. Surface and Coatings Technology, 2007, 201(8): 4619-4627.
    [48] Gao J. Z., Chen H., Dai H. X., et al. Improved sensitivity for transition metal ions by use of sulfide in the Belousov- Zhabotinskii oscillating reaction [J]. Anal. Chem. Act., 2006, 571: 150-155.
    [49] Gao J. Z., Chen H., Dai H. X., et al. Determination of S2- ion by using the B-Z oscillating chemical reaction [J]. J. Sul. Chem., 2006, 27(6): 537-544.
    [50] Gao J. Z., Lv D. Y., Yang W., et al. Determination of sulfanilamide based on the Mn(II)-catalyzed oscillating chemical reaction [J]. Cen. Eur. J. Chem., 2006, 5(2): 581-589.
    [51]曲婕,高锦章,郭淼,等.针剂头孢曲松钠对B-Z化学振荡的影响及其分析检测[J].西北师范大学学报(自然科学版), 2007, 43(6): 55-59.
    [52] Gao J. Z., Dai H. X., Yang W., et al. Determination of furfural by oscillating chemical reaction using an analyte pulse perturbation technique [J]. Analytical & Bioanalytical Chemistry, 2006, 384: 1438-1443.
    [53] Chen H., Yang W., Dai H. X., et al. Determination of some heavy–metal ion in modified B-Z oscillating system [J]. Chinese Chemical letter 2006, 17(9): 1221-1224.
    [54] Pejic N. D., et al. Kinetic determination of morphine by means of Bray- Liebhafsky oscillatory reaction system using analyte pulse perturbation technique [J]. Anal. Chim. Acta, 2007, 582(2): 367-374.
    [55] Gao J. Z., Dai H. X., Chen H., et al. Kinetic determination of ribavirin by using the B-Z oscillating chemical reaction [J]. J. Chil. Chem. Soc., 2007, 52(1): 1088-1092.
    [56] Lorenz E. N.. Deterministic Nonperiodic Flow [J]. J. Atoms. Sci.,1963, 20: 130-141.
    [57] Li T. Y., Yorke J. A.. Period Three Implies Chaos [J]. Am. Math. Monthly, 1975,82: 985-992.
    [58]宋浩,李艳妮,陈兰,等.实验控制Belousov-Zhabotinsky-CSTR[J].化学学报, 1999, 57(10):1047-1054.
    [59] Khavrus V. O., Strizhak P. E.. Complex mixed-mode periodic and chaotic oscillations in a simple three-variable model of nonlinear system [J]. Chaos, 2000, 10(2): 299-310.
    [60] Strizhak P. E.. Stirring-induced bifurcation driven by the chaotic regime in the Belousov-Zhabotinsky reaction in a CSTR [J]. Chem. Phys. Lett., 1995, 234: 540-544.
    [61] Didenko O. Z., Strizhak P. E.. Effect of temperature and small amounts of metal of ions on transient chaos in the batch Belousov-Zhabotinsky system [J]. Chem. Phys. Lett., 2001, 340: 55-61.
    [62] Nayfeh, A. H., Balachandran, B.. Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods [M]. New York: Wiley, 1995.
    [63]王东生.混沌、分形及其应用[M].合肥:中国科学技术大学出版社, 1995.
    [64] Hayin S., Li X. B.. Detection of signals in chaos [J]. Proc of IEEE, 1995, 83 (1):95-122.
    [65]陈奉苏.混沌学及其应用(第1版)[M].北京:中国电力出版社, 1998.
    [66]林鸿溢,李映雪.分形论——奇异性探索[M].北京理工大学出版社, 1992.
    [67]何建华.基于混沌和神经网络的弱信号探测[J].电子学报, 1998, 26(10): 33-37.
    [68] Fell J., et al. Deterministic chaos and the first positive Lyapunov exponents: a nonlinear analysis of the human electrencephalogram during sleep [J]. Biol-cybern, 1993, 69(2): 139-146.
    [69] Strizhak P. E., Didenko O. Z., Ivashchenko T. S.. Determination of traces of thallium using the transient chaotic regime in the Belousov-Zhabotinskii oscillating chemical reaction [J]. Anal. Chim. Acta, 2001, 428(1): 15-21.
    [70] Strizhak P. E.. Application of chemical chaos to analytical chemistry [J], Advances in Complex Systems, 2003, 6 (1): 1-17.
    [71] Vukojevic V. B., Pejic N. D., Stanisavljev D. R., et al. Determination of Cl-, Br-, I-, Mn2+, malonic acid and quercetin by perturbation of a non-equilibrium stationary state in the Bray-Liebhafsky reaction [J]. Analyst, 1999, 124: 147-152.
    [72] Pejic N. D., Kolar-Anic L., Anic S., et al. Determination of paracetamol in pure and pharmaceutical dosage forms by pulse perturbation technique [J]. Journal of Pharmachutical and Biomedical Analysis. 2006, 41: 610-615.
    [1]张伟亚,刘丽,唐丽纯,等.气质联用单离子监测法测定纺织品中1-萘胺和2-萘胺[J].分析试验室, 2003, 22(3): 68-70.
    [2]梁舒萍,何振江.分光光度法测定水中痕量甲萘胺[J].分析试验室, 1998, 17(4): 40-43.
    [3] Salinas-Castillo A., Fernandez-Sanchez J. F., Segura-Carretero A., et al. A facile flow-through phosphorimetric sensing device for simultaneous determination of naptalam and its metabolite 1-naphthylamine [J]. Anal. Chim. Acta, 2004, 522(120): 19-24.
    [4] Thaira Y. I., Bashir, W. A.. Photometric assay of 1-naphthylamine by azo dye formation with diazotized sulfisomidine-application to waters [J]. Talanta, 1995, 42(8): 1121-1126.
    [5] Field R. J., Schneider F. W.. Oscillating chemical reactions and nonlinear dynamics [J]. Journal of Chemical Education, 1989, 66(3):195-204.
    [6] Taylor A. F.. Mechanism and phenomenology of an oscillating chemical reaction [J]. Progress in Reaction Kinetics and Mechanism, 2002, 27(4): 247-325.
    [7] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Analyte pulse perturbation technique: A tool for analytical determinations in far-from-equilibrium dynamic systems [J]. Anal. Chem., 1995, 67: 729-734.
    [8] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Determination of gallic acid by an oscillating chemical reaction using the analyte pulse perturbation technique [J]. Anal. Chim. Acta, 1996, 321(1): 53-60.
    [9] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Approaching the use of oscillating reactions for analytical monitoring [J]. Analyst, 1998, 123: 1R-8R.
    [10] Gao J. Z.. Application of oscillating chemical reaction to analytical chemistry: Recent developments [J]. Pak. J. Biol. Sci., 2005, 8(4): 512-519.
    [11]刘连伟,孙衍华,耿玉珍,等.催化光度法测定水中痕量的α-萘胺[J].分析试验室, 1999, 18(4): 39-41.
    [1] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Analyte pulse perturbation technique: A tool for analytical determinations in far-from-equilibrium dynamic systems [J]. Anal. Chem., 1995, 67: 729-734.
    [2] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Approaching the use of oscillating reactions for analytical monitoring [J]. Analyst, 1998, 123: 1R-8R.
    [3] Gao J. Z.. Application of oscillating chemical reaction to analytical chemistry: Recent developments [J]. Pak. J. Biol. Sci., 2005, 8(4): 512-519.
    [4] Gao J.Z., Chen H., Dai H.X., et al. Improved sensitivity for transition metal ions by use of sulfide in the Belousov-Zhabotinskii oscillating reaction [J]. Anal. Chim. Acta, 2006, 571(1): 150-155.
    [5] Vukojevic V. B., Pejic N.D., Stanisavljev D.R., et al. Determination of Cl-, Br-, I-, Mn2+, malonic acid and quercetin by perturbation of a non-equilibrium stationary state in the Bray-Liebhafsky reaction [J], Analyst, 1999, 124: 147-152.
    [6] Pejic N. D., et al. Kinetic determination of morphine by means of Bray- Liebhafsky oscillatory reaction system using analyte pulse perturbation technique[J]. Anal. Chim. Acta, 2007, 582(2): 367-374.
    [7] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Determination of Trace Amounts of Reduced Glutathione by a Chemical Oscillating Reaction [J]. Analyst, 1996, 121(4): 563-566.
    [8] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Applications of Oscillating Reaction Based Determinations to the Analysis of Real Samples [J]. Analyst, 1997, 122(3): 287-292.
    [9] Didenko O. Z., Strizhak P. E.. Effect of temperature and small amounts of metal ions on transient chaos in the batch Belousov-Zhabotinsky system [J]. Chem. Phys. Lett., 2001, 340: 55-61.
    [10] Strizhak P. E., Didenko O. Z, Ivashchenko T. S. Determination of Traces of Thallium Using the Transient Chaotic Regime in the Belousov-Zhabotinskii Oscillating Chemical Reaction [J]. Analytica Chimica Acta, 2001, 428(1): 15-21.
    [11] Shakhashiri B. Z., Gordon G... Oxidation of tris(1,10-phenanthroline)iron(II) ion by aqueous chlorine [J]. Inorg. Chem., 1968, 7(11): 2454-2456.
    [12] Siapas A.G... Quantifying the Geometric Sensitivity of Attractor Basins: Power Law Dependence on Parameter Variations and Noise [J]. Phys. Rev. Lett., 1994, 73(16): 2184-2187.
    [13]赵学庄,张一宝,赵鸿喜,等.以邻菲罗啉亚铁离子为催化剂的Belousov-Zhabotinskii反应的研究[J].催化学报. 1984, 5(1): 69-75.
    [1] Vukojevic V. B., Pejic N. D., Stanisavljev D. R., et al. Determination of Cl-, Br-, I-, Mn2+, malonic acid and quercetin by perturbation of a non-equilibrium stationary state in the Bray-Liebhafsky reaction [J]. Analyst, 1999, 124: 147-152.
    [2] Pejic N. D., et al. Kinetic determination of morphine by means of Bray- Liebhafsky oscillatory reaction system using analyte pulse perturbation technique [J]. Anal. Chim. Acta, 2007, 582(2): 367-374.
    [3] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Analyte pulse perturbation technique: A tool for analytical determinations in far-from-equilibrium dynamic systems [J]. Anal. Chem., 1995, 67: 729-734.
    [4] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Approaching the use of oscillating reactions for analytical monitoring [J]. Analyst, 1998, 123: 1R-8R.
    [5] Gao J. Z.. Application of oscillating chemical reaction to analytical chemistry: Recent developments [J]. Pak. J. Biol. Sci., 2005, 8(4): 512-519.
    [6] Gao J. Z., Chen H., Dai H.X., et al. Improved sensitivity for transition metal ions by use of sulfide in the Belousov-Zhabotinskii oscillating reaction [J]. Anal. Chim. Acta, 2006, 571(1): 150-155.
    [7] Jimenez-Prieto, R., Silva, M., Perez-Bendito, D.. Determination of gallic acid by an oscillating chemical reaction using the analyte pulse perturbation technique [J]. Anal. Chim. Acta, 1996, 321(1): 53-60.
    [8] Jimenez-Prieto R., Silva M., Perez-Bendito D.. Determination of Trace Amounts of Reduced Glutathione by a Chemical Oscillating Reaction [J]. Analyst, 1996, 121(4): 563-566.
    [9] Jimenez-Prieto R., Silva M., Perez-Bendito D. Applications of Oscillating Reaction Based Determinations to the Analysis of Real Samples [J]. Analyst, 1997, 122(3): 287-292.
    [10] Didenko O. Z., Strizhak P. E.. Effect of temperature and small amounts of metal ions on transient chaos in the batch Belousov-Zhabotinsky system [J]. Chem. Phys. Lett., 2001, 340: 55-61.
    [11] Strizhak P. E., Didenko O. Z., Ivashchenko T. S.. Determination of traces of thallium using the transient chaotic regime in the Belousov-Zhabotinskii oscillating chemical reaction [J]. Anal. Chim. Acta, 2001, 428: 15-21.
    [12] Shakhashiri B. Z., Gordon G.. Oxidation of tris(1,10-phenanthroline)iron(II) ion by aqueous chlorine [J]. Inorg. Chem., 1968, 7(11): 2454-2456.
    [13] Siapas A.G... Quantifying the Geometric Sensitivity of Attractor Basins: Power Law Dependence on Parameter Variations and Noise [J]. Phys. Rev. Lett., 1994, 73(16): 2184-2187.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.