常用溶液除湿剂的性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶液调湿空调系统由于具有高效率,能够实现湿度的精确调节、废热的利用并且能提高室内舒适度等优点被越来越广泛地利用。在溶液调湿空调系统中,溶液除湿剂直接与空气接触,实现对空气的除湿目的,是非常重要的组成部分,直接关系到溶液调湿空调系统的效率和性能。而目前对溶液除湿剂的研究大部分仅限于溶液除湿剂的基本物理化学性质,而没有将溶液的基本物理化学性质与溶液调湿空调机组相联系来分析溶液性质对机组的具体影响。基于此问题,论文主要对溴化锂和氯化锂溶液进行了以下研究。
     首先,整理了LiBr、LiCl和CaCl2溶液的基本物化性质数据,包括结晶线、表面蒸汽压、比热容、密度、粘度和比焓5项基本性质。
     然后,分析了溶液除湿剂对溶液调湿空调系统能耗的影响,主要从热湿传递性能和输配能耗两方面考虑。对于热湿传递性能,实验测试了溴化锂和氯化锂溶液的除湿和再生能力,通过拟合公式比较了两种溶液在相同工况下的再生和除湿性能的差异。对于输配能耗,理论计算了一个典型的余热驱动型溶液调湿空调系统在分别使用溴化锂和氯化锂溶液时的系统溶液泵耗。承担相同除湿负荷时,不同溶液带来的溶液泵耗不同。
     接着,分析了溶液除湿剂对溶液调湿空调系统安全性的影响,主要包括腐蚀性能和对空气品质的影响。对于溶液的腐蚀性,通过浸泡实验和理论分析对溶液空调内的腐蚀机理做出了描述,初步探讨了缓蚀方法。对于空气品质的影响,通过文献资料证实溴化锂和氯化锂溶液毒性很低,与食盐处于同一量级,而且实测的带液结果远远低于国际的空气中限值标准,目前的仪器未检出机组送风有带液情况。
     最后,基于两种溶液除湿剂对机组的具体影响情况,评价了溴化锂和氯化锂溶液的优劣,结论为两种溶液差异很小,氯化锂溶液略占优势。
     本文从机组的效率和性能出发对溶液除湿剂进行评价,为新型溶液除湿剂的开发提供了思路。但是,溶液除湿剂对机组性能的影响机理仍有待进一步深入研究,并提出有效的改进方法。
With high efficiency, accurate control of humidity ratio, making use of exhaust heat and advancing indoor comfort, liquid desiccant air conditioning system (LDAS) is more and more widely utilized. Liquid desiccant directly contacts air in LDAS and realizes dehumidification, so it is an important component which concerns efficiency and performance of LDAS. At present, the research on liquid desiccant is mostly about the basic properties, while the properties of liquid desiccant’s affect on LDAS is usually not considered. Consequently, this thesis will research on the following aspects on lithium bromide and lithium chloride solution.
     Firstly, basic property data of LiBr, LiCl and CaCl2 solution are sorted, including crystal line, surface vapor pressure, specific heat, density, viscosity and enthalpy, which provide foundation for the following research.
     Then, liquid desiccant’s affect on system energy consumption is analyzed considering the mass and heat transfer efficiency and energy consumption for delivering desiccant. For mass and heat transfer efficiency, the dehumidification and regeneration ability of LiBr and LiCl is obtained from experiments, and the difference on dehumidification and regeneration ability of LiBr and LiCl is compared by fitting formula. For energy consumption for delivering desiccant, the energy consumption of solution pumps in a typical LDAS driven by exhaust heat is calculated. When the dehumidification load is the same, different solution brings different energy consumption of solution pumps.
     Additionally, liquid desiccant’s affect on system safety is analyzed considering corrosion and affect on indoor air quality. For corrosion, basic principle of corrosion in LDAS is described according to experiments and theoretical analysis, and corrosion inhibition method is discussed preliminarily. For the affect on indoor air quality, toxicity of LiBr and LiCl is very low which are in the same order with food salt according to literatures. The tested liquid entrainment in inlet air is much less then limit value in air and the equipments couldn’t detect solution in air.
     Finally, based on the affects of LiBr and LiCl on LDAS, the two desiccants are estimated. The result is that the difference is very small and LiCl is a little better than LiBr.
     This thesis estimates liquid desiccants according to the affect on efficiency and performance of LDAS, which will provide a principle for the development of new liquid desiccant. However, the effect theory of liquid desiccant on LDAS still needs profound research, and some improving means should be introduced in the future.
引文
[1] Lof G O G. Cooling with solar energy. Congress on solar energy, Tucson, AZ, 1955: 171-189.
    [2] Uemura T, Hasaba S. Studies on the lithium bromide-water absorption refrigerating machines. Technological Report of Kansai University, 1964, 6: 31~55.
    [3] McNeely L A. Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans., 1979, 85: 413~434.
    [4] Patil K R, TRIPATHI A D, PATHAK G., et al. Thermodynamic properties of aqueous electrolyte solutions. 1. vapor pressure of aqueous solutions of LiCl, LiBr and LiI. J. Chem. Eng. Data, 1990, 35: 166~168.
    [5] Chua H T, Toh H K, Malek A, NG K C. Improved thermodynamic property fields of LiBr-H2O solution. International Journal of Refrigeration, 2000, 23: 412~429.
    [6] Zhe Yuan, Keith E.Herold. Thermodynamic properties of aqueous lithium bromide using a multiproperty free energy correlation. International journal of HVAC&R Research, 2005, 11(3): 377~393.
    [7] American society of heating, refrigerating and air-conditioning engineers, Inc. ASHRAE Handbook of Fundamentals. USA: 2003.
    [8] Conde M R. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. International Journal of Thermal Sciences, 2004, 43: 367~382.
    [9] Ertas A, Anderson E E, Kiris I. Properties of a new liquid desiccant solution lithium chloride and calthium chloride mixture. Solar Energy, 1992, 49(3): 205~212.
    [10] Koo K K, Lee H R. Solubilities, Vapor Pressures, Densities, and Viscosities of the (Water + Lithium Bromide +Lithium iodide +lithium Chloride) System. J. Chem. Eng. Data, 1998, 3: 722~725.
    [11]舰船辅助机电设备编辑组编.国产溴化锂水溶液物性图表集,1976.
    [12] Patek J, Klomfar J. Solid-liquid phase equilibrium in the systems of LiBr-H2O and LiCl-H2O. Fluid Phase Equilibria, 2006, 250: 138~149.
    [13] Lower H. Thermodynamische und physlkalische eigenschaften der wassrigen lithium bromide-losung. Ph.D. thesis, Technischen hochschule Karlsruhe, 1960.
    [14] Feuerecker G, Scharfe J, Greiter I, et al. Measurement of thermo physical properties of aqueous LiBr-solutions at high temperature and concentrations. Proceedings of the International Absorption Heat Pump Conference New Orleans. Louisiana, AES, 1994, 31: 493~9.
    [15] Wimby J M, Berntsson T S. Viscosity and Density of Aqueous Solutions of LiBr, LiCl, ZnBr2, CaCl2, and LiNO3. 1. Single Salt Solutions. J.Chem. Eng. Data, 1994, 39: 68~72.
    [16]赵云,施明恒.太阳能液体除湿空调系统中除湿剂的选择.工程热物理学,2001,22(增刊):165~168.
    [17] Studak J W, Perterson J L. A preliminary evaluation of alternative liquid desiccants for a hybrid desiccant air conditioner, in: Proceedings of the Fifth Annual Symposium on Improving Building Energy Effciency in Hot and Humid Climates, Houston, TX, 1988, vols. 13–14, pp. 155–159.
    [18] Timothy T A, Kevin G G, Byard D W. Performance predictions of alternative, low cost absorbents for open-cycle absorption solar cooling. Solar energy, 1995, 54(2): 65~73.
    [19] www.enme.umd.edu/ceee/ssc.
    [20] Chaudhari S K, Patil K R. Thermodynamic properties of aqueous solutions of lithium chloride. Phys. Chem. Liq., 2002, 40(3): 317~325.
    [21]刘晓华.溶液调湿式空气处理过程中热湿耦合传递特性分析.清华大学博士学位论文,2007.
    [22]刘晓华,张岩,张伟荣等.溶液除湿过程热质交换规律分析.暖通空调,2005,35(01):110~114
    [23]刘晓华,江亿,常晓敏,易晓勤.溶液除湿空调系统中叉流再生装置热质交换性能分析.暖通空调,2005,35(12):10~15
    [24]刘晓华,江亿等著.温湿度独立控制空调系统.北京:中国建筑工业出版社,2006
    [25]陈晓阳.溶液式空调系统的应用研究.清华大学硕士学位论文,2005.
    [26]刘晓华,江亿,曲凯阳,陈晓阳.叉流除湿器中溶液与空气热质交换模型.暖通空调,2005,35(01):115~119
    [27]贺平,孙刚.供热工程.北京:中国建筑工业出版社,2005
    [28]吴春莹.板式换热器计算与节能实例.暖通空调,1983,4(6):20~23
    [29]中华人民共和国国家国家质量监督检验检疫总局. GB/T1220-2007.中华人民共和国国家标准-不锈钢棒.北京:中国标准出版社,2007-08-01
    [30]梁成浩.现代腐蚀科学与防护技术.上海:华东理工大学出版社,2007.
    [31]吴开源,王勇,赵卫民,等.金属结构的腐蚀与防护.山东:石油大学出版社,2000.
    [32]黄建中,左禹.材料的耐蚀性和腐蚀数据.北京:化学工业出版社,2003.
    [33]梁成浩,黄乃宝,等.铜在55%LiBr溶液中的电势-pH图.腐蚀科学与防护技术,2006,18(3):158~160
    [34]叶学民,阎维平.液体薄膜流稳定性和破断特性的研究进展,华北电力大学学报,2006,33(6):64~67
    [35]张营,叶学民,等.剪切液膜线性化稳定方程.华北电力大学学报,2007,34(1):54~58
    [36]董谊仁,孙凤珍.塔设备除雾技术.化工生产与技术,2000,7(2):6~11
    [37]毕力特(德).填料塔分析与设计(天津大学化学工程研究所,译者).北京:化学工业出版社,1993
    [38]蒋维钧.化工原理(上册).北京:清华大学出版社,2003
    [39]董谊仁,孙凤珍.塔设备除雾技术(续一).化工生产与技术,2000,7(3):3~6
    [40]董谊仁,孙凤珍.塔设备除雾技术(续二).化工生产与技术,2000,7(4):3~5
    [41]中华人民共和国卫生部. GBZ159-2004.工业场所空气中有害物质监测的采样规范.北京:中国标准出版社,2004-12-01
    [42]北京市理化分析测试中心检测报告.北京:2006-10-20
    [43]中华人民共和国国家国家质量监督检验检疫总局. GB/T18883-2002.中华人民共和国国家标准-室内空气质量标准.北京:中国标准出版社,2002-11-19
    [44]中华人民共和国卫生部. GBZ2.1-2007.工作场所有害因素职业接触限值化学有害因素.北京:中国标准出版社,2007-04-27
    [45] Chemetall foote corporation. Material Safety Data Sheets (MSDS) For LiBr solution. USA: 1998-11-23
    [46] The physical and theoretical chemistry laboratory of Oxford University. Safety data for lithium bromide. 2005
    [47]邓世荣.微量元素锂和人体健康.广东微量元素科学. 2000,7(11):12~14
    [48]秦俊法.锂的生物必需性及人体健康效应.广东微量元素科学.2000,7(3):1~16
    [49]中华人民共和国国家国家质量监督检验检疫总局.GB 8537-1995.饮用天然矿泉水.北京:中国标准出版社,1995
    [50]中华人民共和国国家国家质量监督检验检疫总局.GB 8537-2008.饮用天然矿泉水.北京:中国标准出版社,2008
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.