金属有机配合物及高聚物发光材料的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用密度泛函方法对过渡金属配合物和低聚物及高聚物发光材料进行了一系列的研究。通过理论计算详细的给出了金属有机配合物及聚合物的平衡几何结构、电子结构、能带、最低激发态的几何构型和吸收、发射光谱等信息,这为探索发光材料的结构-性质间关系的建立奠定了基础,并且为实验研究提供了有价值的理论依据,为进一步探索高效率的发光材料做出了重要贡献。
    研究了不同的给/吸电子基及扩展共轭平面对两个系列铼(I)的金属配合物的电子和光学性质的影响。计算结果表明,扩大共轭体系使得体系的能隙变窄,吸收和发射光谱发生红移。不同的取代基可以调节金属配合物的电子和光学性质。给电子基使得HOMO-LUMO能隙变宽,吸收和发射光谱蓝移;吸电子基使得HOMO-LUMO能隙变窄,吸收和发射光谱红移。
    研究了新型的多吡啶和邻二氮杂菲(phen)的杂配体铜(I)化合物[Cu(NN)(POP)]~+。计算结果表明,在phen的2,9位引入取代基能够提高HOMO-LUMO的能带隙,在4,7位引入取代基对能带隙和前线轨道性质的影响较小。并且,由于空间位阻效应,在2,9位取代使得吸收和发射光谱蓝移。
    研究了不同的取代基对四配位基N_2O_2支撑的磷光Pt化合物的电子和光学性质的影响。结果表明,π-受体比σ-给体对吸收和发射光谱产生更大的影响,并且,前者使吸收和发射光谱发生红移,后者使它们发生蓝移。更重要的是,引入吸电子基使得低能激发与d-d态之间的能量增加,从而有效地阻止了d-d跃迁引起的非能量辐射的可能性。
Recently, the scientific researchers endeavor to design and developmentnew type of luminescent devices with high efficient, high stability, highbrightness. The transition metal materials have good performance, such aslong luminescent life and single color. On the other hand, organic electroniclight-emitting film technology also has many distinguished advantages, suchas low power, easily bending, quick response, broad visual angle, large areadisplay, full emitting color and so on, and they are compatible with manykinds of standard technology and can be made of low-cost light-emittingdevices. So the polymers exhibit strong life in the aspect of planar colordisplay. In this paper, calculations on the electronic ground state were carriedout using density functional theory (DFT). The nature and the energy ofsinglet-singlet electronic transitions have been obtained by TD-DFT/B3LYPcalculations performed on the optimized geometries. The excited geometrieswere optimized by ab initio CIS. Based on the excited geometries, theemission spectra are investigated. The theoretical study shows that bymodification of chemical structures could greatly modulate and improve theelectronic and optical properties of light-emitting materials and contribute toorientate the synthesis efforts and help understand the structure-propertiesrelation of these conjugated materials. The following is the main results:
    1. Two series of rhenium (I) complexes are investigated to explore the
    effects of expanding the ligand π system and different electron-donating andelectron-withdrawing substituents on the modulating the orbital and transitioncharacter. The results show that the absorption bands are blue-shifted whensubstituted by electron-releasing group and they are red-shifted whensubstituted by electron-withdrawing group. The enlarged conjugated structuredecreases band gaps and make the absorption and emission red-shifted.2. A series of new copper(I) mixed-ligand complexes [Cu(NN)POP]BF4have been investigated. The calculated results show that introduction of thegroups at 2,9 positions on phen ligand will lift the energy gaps betweenHOMO and LUMO, whereas introduction of the groups at 4,7 positions havelittle effects on both energy gaps and the characters of frontier orbitals, butmake the orbital characters of lower occupied and higher unoccupied orbitalschange. Substitution on 2,9 positions make both the absorption and emissionspectra exhibit blue-shifted due to steric effects.3. We study the effects of different substituents on platinum (II)complexes supported by tetradentate N2O2 chelates on the electronic andoptical properties. Different substituents can modulate both the absorptionsand emissions, but the π-acceptors have more dramatic effects than σ-donorsubstituents, and the former induces the absorption and emission wavelengthsred-shifted and the latter results in blue-shifted. Most importantly, introductionof the electron-withdrawing groups on the bpy ligand will increase the energygap between the lowest excited state and of d-d state, which prohibits thenonradiative deactivation through the pathways of d-d conversion. Thissuggests that such a theoretical approach may provide useful insight in thedesign of new and more efficient phosphorescence materials.4. We study the ground geometries, electronic structure, energy gap,absorption and emission spectra of polymer PPTZ and the copolymer withfluorene (PFPTZ). The calculated results show that relative to the rigid planar
    structures in fluorene ring, the phenothiazine ring has highly nonplanarconformations, which impedes π-stacking aggregation and intermolecularexcimer formation, resulting in identical dilute solution and solid-statephotophysics, which hampers the application of polyfluorenes in PLEDs.Importantly, electron-donating groups PTZ not only enhance the opticalstability and thus increase fluorescence quantum yields, but also improve thehole injection and more efficient charge carrier balance. With the fractions ofthe PTZ increasing, the band gaps decrease and the absorption and emissionspectra exhibit red-shifted.5. The geometries, electronic structures, energy gap, absorption andemission spectra of two series of carbazole copolymers. The calculated resultsshow that more twisted structures are obtained compared with pristinepolyfluorene by the incorporation with 3,6-carbazole units. Importantly, thecombination of carbazole with the fluorene moieties resulted in the raisedHOMO energies and consequently the hole injection was greatly improved.With the increasing carbazole content, energy gap becomes broad and bothabsorption and emission peaks exhibit a blue-shifted. The charge carriersthiophene ring and ethynylene significantly lower the LUMO energies andconsequently increase the EAs, which contribute to the highly improvedelectron-accepting and transporting properties.6. Adding of dimethoxy units breaks the conjugation backbone resulted inthe raised HOMO energies and consequently the hole injection was greatlyimproved and the absorption and emission spectra exhibit blue-shifted. Bycooperation with thiophene ring, which results in the better conformations, theabsorption and emission spectra exhibit bathochrome.7. We study the effects of different electron-donating andelectron-withdrawing substituents on the electronic and optical properties offluorene copolymers. All oligomers investigated show less twisted structures
    compared with pristine polyfluorene by the incorporation with anelectron-donating or electron-withdrawing units, 3,4-ethylenedioxythiophene(EDOT), pyridine and 1,3,4-oxadiazole moieties. The combination ofelectron-donating unit EDOT with the fluorene moiety resulted in the raisedHOMO energies and consequently the hole injection was greatly improved.However, even though both kinds of charge carriers will improve theelectron-accepting ability, the results show that electron-accepting moietieswill much facilitate the electron-transporting. Similarly, the combination ofBTP with the fluorene moieties resulted in the reduced LUMO energies andconsequently the electron injection was greatly improved.
引文
1. 唐小真,杨宏秀,丁马太编,材料化学导论,北京, 高等教育出版社, 1997, p7–12.
    2. 李文连,《有机/无机光电功能材料及其应用》,科学出版社,2005年 3 月,p1-11.
    3. Tang C W and Vanslyke S A., Organic electroluminescent diodes, Appl. Phys. Lett., 1987, 51, 913
    4. Burroughs's J. H., Bradly D. D. C., Broun A. R., Marks R. H., Burn P. L., and Holmes A. B. 1990, Nature, 7, 347.
    5. Braun D., Heeger A. J., Visible light emission from semiconducting polymer diodes, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett., 1991, 58, 1982
    6. Narita K. Methods of Phosphor Synthesis and Related Technology, Chap. 4: Section-1 Edited under the Auspices of Phosphor Research Society, Edi Comm, Co Chairs, S Shionoya and W M Yen. The CRC Press LLC, New York, 1999, 317-350.
    7. 李晓常,孙景志,马於光,沈家骢,聚合物半导体电致发光显示器件,高等学校化学学报,1999,20,309.
    8. (a) Kraft, A.;Grimsdale, A. C.;Holmes, A. B. Angew. Chem.,Int. Ed. 1998, 37, 402. (b) Friend, R. H.;Gymer, R. W.;Holmes, A. B.;Burroughes, J. H.;Marks, R. N.;Taliani, C.;Bradley, D. D. C.;Dos Santos, D. A.;Bre′das, J. L.;Lo¨gdlund, M.;Salaneck, W. R. Nature (London) 1999, 397, 121. (c) Rees, I. D.;Robinson, K. L.;Holmes, A. B.;Towns, C. R.;O'Dell, R. MRS Bull. 2002, 27, 451.
    9. Sheats, J. R.;Antoniadis, H.;Hueschen, M.;Leonard, W.;Miller, J.;Moon, R.;Roitman, D.;Stocking, A. Science 1996, 273, 884.
    10. (a) Tarkka, R. M.;Zhang, X.;Jenekhe, S. A. “Electrically Generated Intramolecular Proton Transfer: Electroluminescence and Stimulated
    Emission from Polymers” J. Am. Chem. Soc. 1996, 118, 9438. (b)
    Zhang, X.;Shetty, A. S.;Jenekhe, S. A. “Electroluminescence and
    Photophysical Properties of Polyquinolines” Macromolecules 1999, 32,
    7422.
    11. (a) Jenekhe, S. A.;Zhang, X.;Chen, X. L.;Choong, V.-E.;Gao, Y.;Hsieh, B. R. Finite Size Effects on “Electroluminescence of Nanoscale Semiconducting Polymer Heterojunctions” Chem. Mater. 1997, 9, 409. (b) Zhang, X.;Jenekhe, S. A. “Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions” Macromolecules 2000, 33, 2069. (c) Tonzola, C. J.;Alam, M. M.;Jenekhe, S. A. Adv. Mater. 2002, 14, 1086.
    12. (a) Gustafsson, G.;Cao, Y.;Treacy, G. M.;Klavetter, F.;Colaneri, N.;Heeger, A. J. Nature (London) 1992, 357, 477. (b) Greenham, N. C.;Moratti, S. C.;Bradley, D. D. C.;Friend, R. H.;Holmes, A. B. Nature (London) 1993, 365, 628.
    13. (a) Zhu, Y.;Alam, M. M.;Jenekhe, S. A. “Regioregular Poly(4-alkylquinoline)s: Synthesis, Self-Organization, and Properties” Macromolecules 2002, 35, 9844. (b) Zhu, Y.;Alam, M. M.;Jenekhe, S. A. “Regioregular Head-to-Tail Poly(4-alkylquinoline)s: Synthesis, Characterization, Self-Organization, Photophysics, and Electroluminescence of New n-Type Conjugated Polymers” Macromolecules 2003, 36, 8958.
    14. (a) Tonzola, C. J.;Alam, M. M.;Kaminsky, W.;Jenekhe, S. A. “New n-Type Organic Semiconductors: Synthesis, Single Crystal Structures, Cyclic Voltammetry, Photophysics, Electron Transport, and Electroluminescence of a Series of Diphenylanthrazolines” J. Am. Chem. Soc. 2003, 125, 13548. (b) Alam, M. M.;Jenekhe, S. A.
    “Polybenzobisazoles Are Efficient Electron Transport Materials for
    Improving the Performance and Stability of Polymer Light-Emitting
    Diodes” Chem. Mater. 2002, 14, 4775. 5285. (b) Kulkarni, A. P.;Kong,
    X.;Jenekhe, S. A. “Fluorenone-Containing Polyfluorenes and
    Oligofluorenes: Photophysics, Origin of the Green Emission and
    Efficient Green Electroluminescence” J. Phys. Chem. B. 2004, 108,
    8689.
    15. Sapp, S. A.;Sotzing, G. A.;Reynolds, J. R. Chem. Mater. 1998, 10, 2010.
    16. Kumar, A.;Welsh, D. M.;Morvant, M. C.;Piroux, F.;Abboud, K. A.;Reynolds, J. R. “Conducting Poly(3,4-alkylenedioxythiophene) Derivatives as Fast Electrochromics with High-Contrast Ratios” Chem. Mater. 1998, 10, 896.
    17. Brotherson, I. D.;Mudigonda, D. S. K.;Ocborn, J. M.;Belk, J.;Chen, J.;Loveday, D. C.;Boehme, J. L.;Ferraris, J. P.;Meeker, D. L. Electrochim. Acta 1999, 44, 2993.
    18. Thompson, B. C.;Schottland, P.;Zong, K.;Reynolds, J. R. “In Situ Colorimetric Analysis of Electrochromic Polymers and Devices” Chem. Mater. 2000, 12, 1563.
    19. Thompson, B. C.;Schottland, P.;Zong, K.;Reynolds, J. R. Synth. Met. 2001, 119, 333.
    20. Sonmez, G.;Schwendeman, I.;Schottland, P.;Zong, K.;Reynolds, J. R. “N-Substituted Poly(3,4-propylenedioxypyrrole)s: High Gap and Low Redox Potential Switching Electroactive and Electrochromic Polymers” Macromolecules 2003, 36, 639.
    21. Auber, P. H.;Knipper, M.;Groenendaal, L.;Lutsen, L.;Manca, J.;Vanderzande, D. “Copolymers of 3,4-Ethylenedioxythiophene and of Pyridine Alternated with Fluorene or Phenylene Units: Synthesis, Optical Properties, and Devices” Macromolecules 2004, 37, 4087.
    22. Meng, H.;Zeng, J.;Lovinger, A. L.;Wang, B. C.;Van Patter, P. G.;Bao, Z. “Oligofluorene-Thiophene Derivatives as High-Performance Semiconductors for Organic Thin Film Transistors” Chem. Mater. 2003, 15, 1778.
    23. Sonmez, G.;Meng, H.;Wudl, F. “Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency” Chem. Mater. 2004, 16, 574.
    24. Bouillud, A. D.;Lévesque, I.;Tao, Y.;D'Iorio, M. “Light-Emitting Diodes from Fluorene-Based -Conjugated Polymers” Chem. Mater. 2000, 12, 1931.
    25. Sonar, P.;Zhang, J.;Grimsdale, A. C.;Müllen, K. “4-Hexylbithieno[3,2-b:2'3'-e]pyridine: An Efficient Electron-Accepting Unit in Fluorene and Indenofluorene Copolymers for Light-Emitting Devices” Macromolecules 2004, 37, 709.
    26. Beaupré, S.;Leclerc, M. Adv. Funct. Mater. 2002, 12, 192.
    27. Zotti, G.;Schiavon, G.;Zecchin, S.;Morin, J. –F.;Leclerc, M. “Electrochemical, Conductive, and Magnetic Properties of 2,7-Carbazole-Based Conjugated Polymers” Macromolecules 2002, 35, 2122.
    28. Morin, J. –F.;Beaupré, S.;Leclerc, M.;Lévesque, I.;D'Iorio, M. Appl. Phys. Lett. 2002, 80, 341.
    29. Liu, B.;Yu, W.;Lai, Y.;Huang, W. Chem. Commun. 2000, 551.
    30. Sainova, D.;Miteva, T.;Nothofer, H.;Scherf, U.;Glowacki, I.;Ulanski, J.;Fujikawa, H.;Neher, D. Control of color and efficiency of light-emitting diodes based on polyfluorenes blended with hole-transporting molecules, Appl. Phys. Lett. 2000, 76, 1810.
    31. Weinfurtner, K.;Fujikawa, H.;Tokito, S.;Taga, Y., Control of color and efficiency of light-emitting diodes based on polyfluorenes blended with hole-transporting molecules, Appl. Phys. Lett. 2000, 76, 2502.
    32. Virgili, T.;Lidzey, D. G.;Bradley, D. D. C. Adv. Mater. 2000, 12, 58.
    33. Bernius, M.;Inbasekaran, M.;O'Brien, J.;Wu, W. Adv. Mater. 2000, 12, 1737.
    34. Yu, W.;Cao, Y.;Pei, J.;Huang, W.;Heeger, A. J. Appl. Phys. Lett. 2000, 76, 2502.
    35. Yu, W.;Pei, J.;Cao, Y.;Huang, W.;Heeger, A. J. Chem. Commun. 2000, 76, 2502.
    36. Oyaizu, K.;Iwasaki, T.;Tsukahara, Y.;Tsuchida, E. “Linear Ladder-Type -Conjugated Polymers Composed of Fused Thiophene Ring Systems” Macromolecules 2004, 37, 1257.
    37. Peng, Q.;Lu, Z. Y.;Huang, Y.;Xie, M. G.;Han, S. H.;Peng, J. B.;Cao, Y. “Synthesis and Characterization of New Red-Emitting Polyfluorene Derivatives Containing Electron-Deficient 2-Pyran-4-ylidene-Malononitrile Moieties” Macromolecules 2004, 37, 260.
    38. Yang, R.Q.;Tian, R. Y.;Yang, W.;Cao, Y. “Synthesis and Optical and Electroluminescent Properties of Novel Conjugated Copolymers Derived from Fluorene and Benzoselenadiazole” Macromolecules 2003, 36, 7453.
    39. Yang, N.C.;LEE, S. M.;Yoo, Y. M.;Kim, J. K.;Suh, D. H. J. Poly. Science: Part A 2004, 42, 1058.
    40. (a) List, E. J. W.;Guentner, R.;Freitas, P. S.;Scherf, U. Adv. Mater. 2002, 14, 374. (b) Lupton, J. M.;Craig, M. R.;Meijer, E. W. Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate, Appl. Phys. Lett. 2002, 80, 4489.
    41. A. P. de Silva, D. B. Fox, T. S. Moody, S. M. Weir, Pure Appl. Chem.2001, 73, 503-511.
    42. C.M. Rudzinski, D. G. Nocera, Mol. Supramol. Photochem. 2001, 7,1-3.
    43. C. M. Elliott,;F. Pichot, C. J. Bloom, L. S. Rider, J. Am. Chem. Soc. 1998, 120, 6781-6784.
    44. Y. D. Zhao, A. Richman, C. Storey, N. B. Radford, P. Pantano, Anal. Chem. 1999, 71, 3887-3893.
    45. K. E. Erkkila, D. T. Odom, J. K. Barton, Recognition and Reaction of Metallointercalators with DNA, Chem. Rev. 1999, 99, 2777-2796.
    46. L. Prodi, F. Bolletta, M. Montaltri, N. Zaccheroni, Coord. Chem. Rev. 2000, 205, 59-83.
    47. H. Ali, J. E. van Lier, Chem. Rev. 1999, 99, 2379-2450.
    48. C. A. Bignozzi, R. Argazzi, C. J. Kleverlaan, Chem. Soc. Rev. 2000, 29, 87-96.
    49. Luong, J. C.;Nadjo, L.;Wrighton, M. S. “Ground and excited state electron transfer processes involving fac-tricarbonylchloro(1,10-phenanthroline)rhenium(I). Electrogenerated chemiluminescence and electron transfer quenching of the lowest excited state” J.Am. Chem. Soc. 1978, 100, 5790.
    50. Jeffrey, H. P. J. Phys. Chem. A “Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory” 2002, 106, 1634.
    51. Worl, L.A.;Duesing, R.;Chen, P.;Ciana, L. D.;Meyer, T. J. J. Chem. Soc. Dalton Trans. 1991, 849
    52. Mathew, D.;Halls;H. Bernhard Schlegel. Chem. Mater. 2001, 13, 2632-2640.
    53. Kotch, T. G. Lees, A. J. Chem. Mater. 1992, 3, 25.
    54. Kotch, T. G. Lees, A. J.;Fuerniss, S. J.;Papathomas, K. I.;Snyder, R. W. “Luminescence rigidochromism of fac-tricarbonylchloro(4,7-diphenyl-1,10-phenanthroline)rhenium as a spectroscopic probe in monitoring polymerization of photosensitive thin films” Inorg. Chem. 1993, 32, 2570.
    55. Thornton, N. B.;Schanze, K. S. “A chromophore-quencher-based luminescence probe for DNA” Inorg. Chem. 1993, 32, 4994.
    56. D. R. McMillin, K. M. McNett, “Photoprocesses of Copper Complexes That Bind to DNA” Chem. Rev. 1998, 98, 1201-1220.
    57. [57] N. Armaroli, Chem. Soc. Rev. 2001, 30,113-124.
    58. D. V. Scaltrito, D. W. Thompson, J. A. O′Callaghan, G. J. Meyer, Coord. Chem. Rev. 2000, 208, 243-266.
    59. M. K. Eggleston, D. R. McMillin, K. S. Koenig, A. J. Pallenberg, “A New Class of Carborane Compounds for Second-Order Nonlinear Optics: Ab Initio Molecular Orbital Study of Hyperpolarizabilities for1-(1',X'-Dicarba-closo-dodecaborane-1'-yl)-closo-dodecaborate Dianion (X = 2, 7, 12)” Inorg. Chem. 1997, 37, 172-173.
    60. C. T. Cunningham, K. L. H. Cunningham, J. F. Michalec, D. R. McMillin, “Cooperative Substituent Effects on the Excited States of Copper Phenanthrolines” Inorg. Chem. 1999, 38, 4388-4392.
    61. R. A. Rader, D. McMillin, M. T. Buckner, T. G. Matthews, D. J. Casadonte, R. K. Lengel, S. B. Whittaker, L. M. Darmon, F. E. Lytle, “Photostudies of 2,2'-bipyridine bis(triphenylphosphine)copper(1+),1,10-phenanthroline bis(triphenylphosphine)copper(1+), and2,9-dimethyl-1,10-phenanthroline bis(triphenylphosphine)copper(1+) in solution and in rigid, low-temperature glasses. Simultaneous multiple emissions from intraligand and charge-transfer states” J. Am. Chem. Soc. 1981, 103, 5906-5912.
    62. P. A. Breddels, P. A. M. Berdowski, G. Blasse, J. Chem. Soc., Faraday Trans. 2 1982, 78, 595-599.
    63. C. E. A. Palmer, D. R. McMillin, “Singlets, triplets, and exciplexes: complex, temperature-dependent emissions from (2,9-dimethyl-1,10-phenanthroline)bis(triphenylphosphine)copper(1+) and (1,10-phenanthroline)(triphenylphosphine)copper(1+)” Inorg. Chem. 1987, 26, 3837-3840.
    64. M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer, P. W. N. M. van Leeuwen, K. Goubitz, J. Fraanje, “New Diphosphine Ligands Based on Heterocyclic Aromatics Inducing Very High Regioselectivity in Rhodium-Catalyzed Hydroformylation: Effect of the Bite Angle” Organometallics 1995, 14, 3081-3089.
    65. Michalec, J. F.;Bejune, S. A.;Cuttell, D. G.;Summerton, G. C.;Gertenbach, J. A.;Field, J. S.;Haines, R. J.;McMillin, D. R. “Long-Lived Emissions from 4'-Substituted Pt(trpy)Cl~+ Complexes Bearing Aryl Groups. Influence of Orbital Parentage” Inorg. Chem. 2001, 40, 2193.
    66. Lai, S. W.;Chan, M. C. W.;Cheung, K. K.;Che, C. M. “Spectroscopic Properties of Luminescent Platinum(II) Complexes Containing 4,4',4' '-Tri-tert-butyl-2,2':6',2' '-terpyridine (tBu_3tpy). Crystal Structures of [Pt(tBu_3tpy)Cl]ClO_4 and [Pt(tBu_3tpy){CH_2C(O)Me}]ClO_4” Inorg. Chem. 1999, 38, 4262.
    67. Büchner, R.;Cunningham, C. T.;Field, J. S.;Haines, R. J.;McMillin, D. R.;Summerton, G. C. J. Chem. Soc., Dalton Trans. 1999, 711.
    68. Büchner, R.;Field, J. S.;Haines, R. J.;Cunningham, C. T.;McMillin, D. R. Inorg. Chem. 1997, 36, 3952.
    69. Michalec, J. F.;Bejune, S. A.;McMillin, D. R. “Luminescence Properties of Salts of the [Pt(trpy)Cl]~+ and [Pt(trpy)(MeCN)]~(2+) Chromophores: Crystal Structure of [Pt(trpy)(MeCN)](SbF_6)_2” Inorg. Chem. 2000, 39, 2708.
    70. Yam, V. W. W.;Tang, R. P. L.;Wong, K. M. C.;Cheung, K. K. “Synthesis, Luminescence, Electrochemistry, and Ion-Binding Studies of Platinum(II) Terpyridyl Acetylide Complexes” Organometallics 2001, 20, 4476.
    71. Lippard, S. J. Acc. Chem. Res. 1978, 11, 211
    72. Peyratout, C. S.;Aldridge, T. K.;Crites, D. K.;McMillin, D. R. “DNA-Binding Studies of a Bifunctional Platinum Complex That Is a Luminescent Intercalator” Inorg. Chem. 1995, 34, 4484.
    73. Lippard, S. J. Acc. Chem. Res. 1978, 11, 211
    74. Peyratout, C. S.;Aldridge, T. K.;Crites, D. K.;McMillin, D. R. Inorg. Chem. 1995, 34, 4484.
    75. Arena, G.;Monsú Scolaro, L.;Pasternack, R. F.;Romeo, R. “Synthesis, Characterization, and Interaction with DNA of the Novel Metallointercalator Cationic Complex (2,2':6',2''-terpyridine)methylplatinum(II)” Inorg. Chem. 1995, 34, 2994.
    76. Ratilla, E. M. A.;Brothers, H. M., II.;Kostic, N. M. “A transition-metal chromophore as a new, sensitive spectroscopic tag for proteins. Selective covalent labeling of histidine residues in cytochromes c with chloro(2,2':6'2"-terpyridine)platinum(II) chloride” J. Am. Chem. Soc. 1987, 109, 4592.
    77. Connick, W. B.;Miskowski, V. M.;Houlding, V. H.;Gray, H. B. “Lowest Electronic Excited States of Platinum(II) Diimine Complexes” Inorg. Chem. 2000, 39, 2585-2592.
    78. Hissler, M.;Connick, W. B.;Geiger, D. K.;McGarrah, J. E.;Lipa, D.;Lachiocotte, R. J.;Eisenberg, R. “Platinum Diimine Bis(acetylide) Complexes: Synthesis, Characterization, and Luminescence Properties” Inorg. Chem. 2000, 39, 447-457.
    79. Hisser, M.;McGarrah, J. E.;Connick, W. B.;Geiger, D. K.;Cummings, S. D.;Eisenberg, R. Coord. Chem. Rev. 2000, 208, 115-137.
    80. Adams, C. J.;James, S. L.;Liu, X. M.;Raithby, P. R.;Yellowlees, L. J. J. Chem. Soc., Dalton Trans. 2000, 63-67.
    81. Michalec, J. F.;Bejune, S. A.;Cuttell, D. G.;Summerton, G. C.;Gertenbach, J. A.;Field, J. S.;Haines, R. J.;McMillin, D. R. “Long-Lived Emissions from 4'-Substituted Pt(trpy)Cl~+ Complexes Bearing Aryl Groups. Influence of Orbital Parentage” Inorg. Chem. 2001, 40, 2193.
    82. Lai, S. W.;Chan, M. C. W.;Cheung, K. K.;Che, C. M. “Spectroscopic Properties of Luminescent Platinum(II) Complexes Containing 4,4',4' '-Tri-tert-butyl-2,2':6',2' '-terpyridine (tBu_3tpy). Crystal Structures of [Pt(tBu_3tpy)Cl]ClO_4 and [Pt(tBu_3tpy){CH_2C(O)Me}]ClO_4” Inorg. Chem. 1999, 38, 4262.
    83. Büchner, R.;Cunningham, C. T.;Field, J. S.;Haines, R. J.;McMillin, D. R.;Summerton, G. C. J. Chem. Soc., Dalton Trans. 1999, 711.
    84. Büchner, R.;Field, J. S.;Haines, R. J.;Cunningham, C. T.;McMillin, D. R. “Luminescence Properties of Salts of the [Pt(trpy)Cl]~+ and [Pt(trpy)(MeCN)]~(2+) Chromophores: Crystal Structure of [Pt(trpy)(MeCN)](SbF_6)_2” Inorg. Chem. 1997, 36, 3952.
    85. Michalec, J. F.;Bejune, S. A.;McMillin, D. R. “Multiple Ligand-Based Emissions from a Platinum(II) Terpyridine Complex Attached to Pyrene” Inorg. Chem. 2000, 39, 2708.
    86. Yam, V. W. W.;Tang, R. P. L.;Wong, K. M. C.;Cheung, K. K. “Synthesis, Luminescence, Electrochemistry, and Ion-Binding Studies of Platinum(II) Terpyridyl Acetylide Complexes” Organometallics 2001, 20, 4476.
    87. W. Koch, M. C. Holthausen, A Chemist's Guide to Density Functional Theory;Wiley-VCH;Weinheim, Germany, 2000
    88. C. Adamo, B. V. di Matteo, Adv. Quantum Chem. 1999, 36,4-7.
    89. R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454 -464.
    90. F. Furche, J. Chem. Phys. 2001, 114, 5982 -5992.
    91. G. Ricciardi, A. Rosa, E. J. Baerends, J. Phys. Chem. A “Ground and Excited States of Zinc Phthalocyanine Studied by Density Functional Methods” 2001, 105, 5242 -5454.
    92. F. Furche, R. Ahlrichs, A. Sobanski, F. Vogtle, C. Wachsman, E. Weber, Grimme, S. “Circular Dichroism of Helicenes Investigated by Time-Dependent Density Functional Theory” J. Am. Chem. Soc. 2000,
    122, 1717-1724.
    93. a). R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Letters 1996, 256, 454. b). M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys. 1998, 108, 4439. c). R. E. Statmann, G. E. Scuseria, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys. 1998, 109, 8218.
    94. J. B. Foresman, M. Head-Gordon, J. A. Pople et al. An ab initio study of hydrated chloride ion complexes: Evidence of polarization effects and nonadditivity, J. Chem. Phys., 1987, 87, 5892
    95. A. S.Lee, V.Butun, M.Vamvakaki, S. P.Armes, J. A.Pople, A. P.Gast, Structure of pH-Dependent Block Copolymer Micelles: Charge and Ionic Strength Dependence, Macromolecules, 2002, 35(22), 8540
    96. H. Zhang, K. Balasubramanian, Electronic structure of the group V tetramers (P4–Bi4), J. Chem. Phys, 1992, 97, 3437;Spectroscopic constants and potential energy curves for 15 electronic states of Ag2, J. Chem.,1993, 98, 7092
    97. a). K. Raghavachari, J. A. Pople, Int. J. Quant. Chem. 1981, 20, 1067. b). J. B. Foresman, M. Head-Gordon, J. A. Pople, Toward a systematic molecular orbital theory for excited states, J. Phys. Chem. 1992, 96, 135.
    98. M. D. Halls, H. B. Schlegel, Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III), Chem. Mater. 2001, 13, 2632.
    99. I. Frank, “Excited State Molecular Dynamics” Invited Review, SIMU Newsletter, 2001, 3, 63–77.
    100. a). E. U. Condon, Phys. Rev. 1928, 32, 858. b). J. Franck, Trans. Faraday Soc. 1925, 21, 536.
    101. Juris, A.;Barigelletti, F.;Campagna, S.;Balzain, V.;Belser, p.;von Zelewski, A. Coord. Chem. Rev. 1988, 84, 85.
    102. Young-Kyu Han, Sang Uck Lee. 2002, 366, 9-16.
    103. Kenneth Kam-Wing Lo;Wai-Ki Hui;Dominic Chun-Ming Ng;Kung-Kai Cheung., Synthesis, Characterization, Photophysical Properties, and Biological Labeling Studies of a Series of Luminescent Rhenium(I) Polypyridine Maleimide Complexes, Inorg. Chem. 2002, 41,40-46.
    104. Keith A. Walters;Lavanya L. Premvardhan;Yao Liu;Linda A. Peteanu;Kirk S. Schanze. Chem. Phys. Lett. 2001, 339, 255-262.
    105. a). W. Heitler, F. London, Z. Physik 1927, 44, 455. b). L. Pauling, E. B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1935), pp. 340–380.
    106. M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    107. D. Hartree. Calculations of Atomic Structure, Wiley(1957)
    108. a). V. Fock, Z. Physik, 1930, 126, 61 b). J. C. Slater, Phys. Rev., 1930,210, 35
    109. C. C. J. Roothaan, Rev. Mod. Phys. 1951, 23, 69
    110. a). W. Heitler, F. London, Z. Physik 1927, 44, 455. b). L. Pauling, E. B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1935), pp. 340–380.
    111. a). F. Hund, Z. Physik 1928, 51, 759;1931, 73, 1. b). R. S. Mulliken, Phys. Rev. 1928, 32, 186;1928, 32, 761;1932, 41, 49.
    112. 徐光宪, 黎乐民, 王德民, 量子化学基本原理和从头计算法, 北京, 科学出版社, 1985.
    113. P. O. Lowdin, Adv. Chem. Phys. 1959, 2, 207.
    114. a). K. Raghavachari, J. A. Pople, Int. J. Quant. Chem. 1981, 20, 1067. b). J. B. Foresman, M. Head-Gordon, J. A. Pople, Toward a systematic molecular orbital theory for excited states, J. Phys. Chem. 1992, 96, 135.
    115. R. Krishnan, H. B. Schlegel, J. A. Pople, Derivative studies in configuration–interaction theory, J. Chem. Phys. 1980, 72, 4654.
    116. B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H. F. Schaefer III, J. Chem. Phys. 1980, 72, 4652.
    117. E. A. Salter, G. W. Trucks, R. J. Bartlett, Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach, J. Chem. Phys. 1989, 90, 1752
    118. K. Raghavachari, J. A. Pople, Int. J. Quant. Chem. 1981, 20, 167.
    119. J. A. Pople, M. Head-Gordon, K. Raghavachari, Quadratic configuration interaction. A general technique for determining electron correlation energies, J. Chem. Phys. 1987, 87, 5968.
    120. a). R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Letters 1996, 256, 454. b). M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold, J. Chem. Phys. 1998, 108, 4439. c). R. E. Statmann, G. E. Scuseria, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys. 1998, 109, 8218.
    121. N. N. Matsuzawa, A. Ishitani, D. A. Dixon, T. Uda, Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region, J. Phys. Chem. A. 2001, 105, 4953.
    122. P. Boulet, H. Chermette, C. Daul, F. Gilardoni, F. Rogemond, J. Weber, G. Zuber, Absorption Spectra of Several Metal Complexes Revisited by the Time-Dependent Density-Functional Theory-Response Theory Formalism, J. Phys. Chem. A 2001, 105, 885.
    123. C. Jamorski, M. E. Casida, D. R. Salahub, Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study, J. Chem. Phys. 1996, 104, 5134.
    124. S. J. A. van Gisbergen, F. Kootstra, P. R. T. Schipper, O. V. Gritsenko, J. G. Snijders, E. J. Baerends, Phys. Rev. A. 1998, 57, 2556.
    125. a). J. Del Bene, R. Ditchfield, J. A. Pople, Self-Consistent Molecular Orbital Methods. X. Molecular Orbital Studies of Excited States with Minimal and Extended Basis Sets, J. Chem. Phys. 1971, 55, 2236. b). R. Ditchfield, J. Del Bene, J. A. Pople, Molecular oribital theory of the electronic structure of organic compounds. IX. n .far..pi.* Transition energies in small molecules, J. Am. Chem. Soc. 1972, 94, 703.
    126. S. J. A. van Gisbergen, J. A. Groeneveld, A. Rosa, J. G. Snijders, E. J. Baerends, Excitation Energies for Transition Metal Compounds from Time-Dependent Density Functional Theory. Applications to MnO4-, Ni(CO)_4, and Mn_2(CO)_(10), J. Phys. Chem. A 1999, 103, 6835.
    127. M. D. Halls, H. B. Schlegel, Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(III), Chem. Mater. 2001, 13, 2632.
    128. J. B. Foresman, ?. Frisch, “Exploring Chemistry with Electronic Structure Methods”, 2nd edition, Gaussian, Inc., Pittsburgh, PA, 1996.
    129. I. Frank, “Excited State Molecular Dynamics” Invited Review, SIMU Newsletter, 2001, 3, 63–77. 130. P. Hohenberg, W. Kohn, Phys. Rev. B 1964, 136, 864.
    131. W. Kohn, L. J. Sham, Phys. Rev. A 1965, 140, 1133.
    132. J. C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    133. D. E. Salahub, M. C. Zerner, The Challenge of d and f Electrons ACS: Washington, D.C., 1989.
    134. R. G. Parr, W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    135. J. A. Pople, P. W. M. Gill, B. G. Johnson, Chem. Phys. Letters 1992, 199,557.
    136. B. G. Johnson, M. J. Frisch, An implementation of analytic second derivatives of the gradient-corrected density functional energy, J. Chem. Phys. 1994, 100, 7429.
    137. J. K. Labanowski, J. W. Andzelm, Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991.
    138. N.Mataga, K.Nishimoto, Z.Physik.Chem(Frankfrut), 1957, 13, 140.
    139. R.Pariser, R.G.Parr, A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II, J.Chem.Phys. , 1953, 21, 767
    140. K.Weiss, Private Communication 1970.
    141. J.Ridley and M.Zerner, Theor.Chim.Acta. , 1966, 4, 235.
    142. G. 赫兹堡著,王鼎昌译,分子光谱与分子结构-双原子分子光谱,科学出版社,1983.
    143. 周公度,段连运 编著,结构化学基础,北京大学出版社,1995.
    144. E. U. Condon, Phys. Rev. 1928, 32, 858.
    145. J. Franck, Trans. Faraday Soc. 1925, 21, 536.
    146. 梁映秋,赵文运 编,分子振动和振动光谱,北京大学出版社,1990.
    147. Kingsborough, R. P.;Swager, T. M. Prog. Inorg. Chem. 1999, 48, 123.
    148. Wang, Q.;Wang, L.;Yu. L. J. Am. Chem. Soc. 1998, 130, 12860.
    149. Wang, B.;Wasielewski, M. R. Design and Synthesis of Metal Ion-Recognition-Induced Conjugated Polymers: An Approach to Metal Ion Sensory Materials, J. Am. Chem. Soc. 1997 ,119 , 12
    150. Walters, K. A;Troouillet, L.;Guillerez, S.;Schanze, K. S. Photophysics and Electron Transfer in Poly(3-octylthiophene) Alternating with Ru(II)-and Os(II)-Bipyridine Complexes, Inorg. Chem. 2000, 39, 5496.
    151. Ley, K. D.;Whittle, C. E.;Bartverger, M. D.;Schanze, K. S. Photophysics of -Conjugated Polymers That Incorporate Metal to Ligand Charge Transfer Chromophores, J. Am. Chem. Soc. 1997, 119, 3423-3424
    152. Ley, K. D.;Li, Y. T.;Johnson, J. V.;Powell, D. H.;K. S. Chem. Commun. 1999, 1749-1750
    153. Walters, K. A.;Ley, K. D.;Cavalaheiro, C. S. P.;Miller, S. E.;Gosztola, D.;Wasielewski, M. R.;Bussandri, A. P.;van Willigen, H.;Schanze, K. S. Photophysics of -Conjugated Metal-Organic Oligomers: Aryleneethynylenes that Contain the (bpy)Re(CO)3Cl Chromophore, J. Am. Chem. Soc. 2001, 123, 8329-8342
    154. Li, Y.;Whittle, C.E.;Walters, K. A.;Ley, K. D.;Schanze, K. S. MRS Symp. Proc, in press
    155. Cahen, D.;Gr?tzel, Guillemoles, J. F.;Hodes, G. In Electrochemistry of nanomaterials;Hodes, G., Ed.;Wiley-VCH;Weiheim, Germany, 2001
    156. Adamo.C.;di Matteo, Barone, V. Adv. Quantum Chem. 1999, 36,4.
    157. Turki, M.;Daniel, C.;Záli?, S. et. al.. UV-Visible Absorption Spectra of [Ru(E)(E')(CO)2(iPr-DAB)] (E = E' = SnPh3 or Cl;E = SnPh3 or Cl, E' = CH3;iPr-DAB = N,N'-Di-isopropyl-1,4-diaza-1,3-butadiene): Combination of CASSCF/CASPT2 and TD-DFT Calculations, J. Am. Chem. Soc. 2001, 123, 11431-11440.
    158. Walters, K. A.;Kim, Y. J. and Hupp, J. T. Experimental Studies of Light-Induced Charge Transfer and Charge Redistribution in (X2-Bipyridine)ReI(CO)3Cl Complexes, Inorg. Chem. 2002, 41, 2909-2919.
    159. Q. S. Zhang, Q. G. Zhou, Y.X. Cheng, L. X. Wang, D. G. Ma, X. B. Jing, Adv. Mater. 2004, 16, 432-436.
    160. P. Aslanidis, P. J. Cox, S. Divanidis, A. C. Tsipis, Copper(I) Halide Complexes with 1,3-Propanebis(diphenylphosphine) and Heterocyclic Thione Ligands: Crystal and Electronic Structures (DFT) of [CuCl(pymtH)(dppp)], [CuBr(pymtH)(dppp)], and [Cu( -I)(dppp)]2, Inorg.Chem. 2002, 41, 6875-6886.
    161. Z. A. Siddique, Y. Yamamoto, T. Ohno, K. Nozaki, Structure-Dependent Photophysical Properties of Singlet and Triplet Metal-to-Ligand Charge Transfer States in Copper(I) Bis(diimine) Compounds, Inorg.Chem. 2003, 42, 6366-6378.
    162. S. Fantacci, F. D. Angelis, A. Selloni, Absorption Spectrum and Solvatochromism of the [Ru(4,4'-COOH-2,2'-bpy)2(NCS)2] Molecular Dye by Time Dependent Density Functional Theory, J. Am. Chem. Soc. 2003, 125, 4381-4387.
    163. K. A. Nguyen, J. Kennel, R. Pachter A density functional theory study of phosphorescence and triplet–triplet absorption for nonlinear absorption chromophores, J. Chem. Phys. 2002, 117, 7128-7136.
    164. S. R. Stoyanov, J. M. Villegas, D. P. Rillema, Time-Dependent Density Functional Theory Study of the Spectroscopic Properties Related to Aggregation in the Platinum(II) Biphenyl Dicarbonyl Complex, Inorg. Chem. 2003, 42, 7852-7860.
    165. L. Yang, A.M. Ren, J. K. Feng, X. D. Liu, Y. G. Ma, H. X. Zhang, Inorg.Chem. 2004, 43, 5961-5972.
    166. L. Yang, A.M. Ren, J. K. Feng, Y. G. Ma, M. Zhang, X. D. Liu, J. C. Shen, H. X. Zhang, Theoretical Studies of Ground and Excited Electronic States in a Series of Rhenium(I) Bipyridine Complexes Containing Diarylethynyl-Based Structure, J. Phys. Chem. 2004, 108, 6797-6808.
    167. J.E. Monat, J. H. Rodriguez, J. K. McCusker, Ground-and Excited-State Electronic Structures of the Solar Cell Sensitizer Bis(4,4'-dicarboxylato-2,2'-bipyridine)bis(isothiocyanato)ruthenium(II), J. Phys. Chem. A 2002, 106, 7399-7406.
    168. J. H. Rodrigues, D. E. Wheeler, J. K. McCusker, Density Functional Studies of a Heisenberg Spin Coupled Chromium-Semiquinone Complex and Its Chromium-Catechol Analog, J. Am. Chem. Soc. 1998, 120, 12051-12068.
    169. K. Zheng, J. Wang, W. Peng, X. Liu, F. Yun, J. Phys. Chem. A 2001, 105, 10899-10905.
    170. H. Ciofini, C. A. Daul, C. Adamo, Studies on 6,6'-Disubstitution Effects of the dpq in [Ru(bpy)2(dpq)]2+ with DFT Method, J. Phys. Chem. A 2003, 107, 11190-11194.
    171. O. Gritsenko, E. J. Baerends, Asymptotic correction of the exchange–correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations, J. Chem. Phys. 2004, 121, 655-661.
    172. A. Dreuw, M. Head-Gordon, Failure of Time-Dependent Density Functional Theory for Long-Range Charge-Transfer Excited States: The Zincbacteriochlorin-Bacteriochlorin and Bacteriochlorophyll-Spheroidene Complexes, J. Am. Chem. Soc. 2004, 126, 4007-4016.
    173. A. Gabrielsson, S. Záli?, P. Matousek, M. Towrie, A. Vlèek, Jr. Ultrafast Photochemical Dissociation of an Equatorial CO Ligand from trans(X,X)-[Ru(X)2(CO)2(bpy)] (X = Cl, Br, I): A Picosecond Time-Resolved Infrared Spectroscopic and DFT Computational Study, Inorg. Chem. 2004, 43, 7380-7388.
    174. S. Záli?, N. Ben Amor, C. Daniel, Inorg. Chem., in press 2004, 43.
    175. J. F. Brière, M. C?té, Electronic, Structural, and Optical Properties of Conjugated Polymers Based on Carbazole, Fluorene, and Borafluorene, J. Phys. Chem. B 2004, 108, 3123-3129.
    176. S. Grimme, M. Parac, ChemPhysChem 2003, 4, 292-295.
    177. Miskowski, V. M.;Houlding, V. H. Electronic spectra and photophysics of platinum(II) complexes with .alpha.-diimine ligands. Solid-state effects. 1. Monomers and ligand .pi. dimmers, Inorg. Chem. 1989, 28, 1529-1533.
    178. Kunkely, H.;Vogler, A. Photoluminescence of platinum complex [PtII(4,7-diphenyl-1,10-phenanthroline)(CN)2] in solution, J. Am. Chem. Soc. 1990, 112, 5625-5627.
    179. Miskowski, V. M.;Houlding, V. H.;Che, C. M.;Wang, Y. Electronic spectra and photophysics of platinum(II) complexes with .alpha.-diimine ligands. Mixed complexes with halide ligands, Inorg. Chem. 1993, 32, 2518-2524.
    180. Caspar, J. V.;Meyer, T. J. Application of the energy gap law to nonradiative, excited-state decay, J. Phys. Chem. 1983, 87, 952-957.
    181. Caspar, J. V.;Kober, E. M.;Sullivan, B. P.;Meyer, T. J. Application of the energy gap law to the decay of charge-transfer excited states, J. Am. Chem. Soc. 1982, 104, 630-631.
    182. Yang, Q. Z.;Wu, L. Z.;Zhang, L. P.;Tung, C. H. Long-Lived Emission from Platinum(II) Terpyridyl Acetylide Complexes, Inorg. Chem. 2002, 41, 5653-5655.
    183. Amovilli, C.;Barone, V.;Cammi, R.;Cances, E.;Cossi, M.;Mennucci, B.;Pomelli, C. S.;Tomasi, J. Adv. Quantum Chem. 1999, 32, 227
    184. Lin, Y.Y.;Chan, S.C.;Chan, MC. W.;Hou, Y. J.;zhu, N. Y.;Che, C. M.;Liu, Y.;Wang, Y. Chem. Eur. J. 2003, 9, 1263-1272.
    185. Lu, W;Mi, B. X.;Michael, C. W.;Hui, Z.;Che, C. M.;Zhu, N. Y.;Lee, S. T. Light-Emitting Tridentate Cyclometalated Platinum(II) Complexes Containing -Alkynyl Auxiliaries: Tuning of Photo-and Electrophosphorescence, J. Am. Chem. Soc. 2004, 126, 4958.
    186. Schwendeman, I.;Hickman, R.;Sonmez, G.;Schottland, P.;Zong, K.;Welsh, D.;Reynolds, J. R. Enhanced Contrast Dual Polymer Electrochromic Devices, Chem. Mater. 2002, 14, 3118.
    187. Jenekhe, S. A.;Osaheni, J. A. Science 1994, 265, 765.
    188. Grell, M.;Bradley, D. D. C.;Inbasekaran, M.;Woo, E. P. Adv. Mater. 1997, 9, 798.
    189. (a) Leclerc, M. J. Polym. Sci., Polym. Chem. 2001, 39, 2867. (b) Neher, D. Macromol. Rapid Commun. 2001, 22, 1365.
    190. Jenekhe, S. A.;Lu, L.;Alam, M. M. Macromolecules 2001, 34, 7351.
    191. Higuchi, A.;Inada, H.;Kobata, T.;Shiraota, Y. Adv. Mater. 1991, 3, 549.
    192. Lai, R. Y.;Jenekhe, S. A. Bard, A, J. Synthesis, Cyclic Voltammetric Studies, and Electrogenerated Chemiluminescence of a New Phenylquinoline-Biphenothiazine Donor-Acceptor Molecule, J. Am. Chem. Soc. 2003, 125, 12631.
    193. Kong, X.;Kulkarni, A. P.;Jenekhe, S. A. Phenothiazine-Based Conjugated Polymers: Synthesis, Electrochemistry, and Light-Emitting Properties, Macromolecules 2003, 36, 8992.
    194. Hwang, D. H.;Kim, S. K.;Park, M. J.;Lee, J. H.;Koo, B. W.;Kang, I. N.;Kim, S. H.;Zyung, T. Conjugated Polymers Based on Phenothiazine and Fluorene in Light-Emitting Diodes and Field Effect Transistors, Chem. Mater. 2004, 16, 1298.
    195. Horst, W.;Susanne, S.;Stefan, J.;Alexander, V.U.;Axel, H. E. M. Quantum-Chemical Study of Structure and Activity of Chain Ends in Metal-Free Anionic Polymerization of Methacrylates, Macromolecules 2003, 36, 3374-3379.
    196. Mushrush, M.;Facchetti, A.;Lefenfeld, M.;Katz, HE;Marks, T. J. Easily Processable Phenylene-Thiophene-Based Organic Field-Effect Transistors and Solution-Fabricated Nonvolatile Transistor Memory Elements, J. Am. Chem. Soc. 2003, 125, 9414-9423.
    197. Brédas, J. L.;Silbey, R.;Boudreaux, D. S.;Chance, R. R. Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole, J. Am. Chem. Soc. 1983, 105, 6555-6559.
    198. Tavan, P.;Schulten, K. J. Chem. Phys. 1986, 85, 6602-6609.
    199. Beljonne, D.;Shuai, Z.;Cornil, J.;dos Santos, D. A.;Bredas, J. L. J. Chem. Phys. 1999, 32, 267-276.
    200. Lahti, P. M.;Obrzut, J.;Karasz, F. E. Use of the Pariser-Parr-Pople approximation to obtain practically useful predictions for electronic spectral properties of conducting polymers, Macromolecules 1987, 20, 2023-2026.
    201. Burrows, H. D.;Seixas de Melo, J.;Serpa, C.;Arnaut, L.G.;Miguel, N. da G.;Monkman, A. P.;Hamblett, I.;Navaratnam, S. J.Chem. Phys. 2002, 285, 3-11.
    202. Scheinert, S.;Schliefke, W. Synthetic metals 2003, 139, 501-509.
    203. Yamamoto, T.;Fujiwara, Y.;Fukumoto, H.;Nakamura, Y.;Koshihara, S. Y;Ishikawa, T. Polymer 2003, 44, 4487-4490.
    204. Morisaki, Y.;Ishida, T.;Chujo, Y. Polymer Journal 2003, 35, 501-506.
    205. Yang, N. C.;Chang, S.;Suh, D. H. Polymer 2003, 44, 2143-2148.
    206. Winokur, M. J.;Slinker, J.;Huber, D.L. Physical Review B 2003,67,184106.
    207. Zeng, G.;Yu, W. L.;Chua, S. J.;Huang, W. Spectral and ThermalSpectral Stability Study for Fluorene-Based Conjugated Polymers,Macromolecules 2002, 35, 6907-6914
    208. Lee, S. H.;Nakamura, T.;Tsutsui, T. Synthesis and Characterization ofOligo(9,9-dihexyl-2,7-fluorene ethynylene)s: For Application as BlueLight-Emitting Diode, Organic Letters 2001, 3, 2005-2007.
    209. Ma, J.;Li, S. H.;Jiang, Y.-S. A Time-Dependent DFT Study on BandGaps and Effective Conjugation Lengths of Polyacetylene,Polyphenylene, Polypentafulvene, Polycyclopentadiene, Polypyrrole,Polyfuran, Polysilole, Polyphosphole, and Polythiophene,Macromolecules 2002, 35, 1109-1115.
    210. Klaerner, G.;Miller, R. D. Polyfluorene Derivatives: EffectiveConjugation Lengths from Well-Defined Oligomers , Macromolecules1998, 31, 2007-2009.
    211. Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Scuseria, G. E.;Robb, M.A.;Cheeseman, J. R.;Montgomery, J. A.;Jr.;Vreven, T.;Kudin, K. N.;Burant, J. C.;Millam, J. M.;Iyengar, S. S.;Tomasi, J.;Barone, V.;Mennucci, B.;Cossi, M.;Scalmani, G.;Rega, N.;Petersson, G. A.;Nakatsuji, H.;Hada, M.;Ehara, M.;Toyota, K.;Fukuda, R.;Hasegawa,J.;Ishida, M.;Nakajima, T.;Honda, Y.;Kitao, O.;Nakai, H.;Klene, M.;Li, X.;Knox, J. E.;Hratchian, H. P.;Cross, J. B.;Adamo, C.;Jaramillo,J.;Gomperts, R.;Stratmann, R. E.;Yazyev, O.;Austin, A. J.;Cammi, R.;Pomelli, C.;Ochterski, J. W.;Ayala, P. Y.;Morokuma, K.;Voth, G. A.;Salvador, P.;Dannenberg, J. J.;Zakrzewski, V. G.;Dapprich, S.;Daniels,A. D.;Strain, M. C.;Farkas, O.;Malick, D. K.;Rabuck, A. D.;Raghavachari, K.;Foresman, J. B.;Ortiz, J. V.;Cui, Q.;Baboul, A. G.;Clifford, S.;Cioslowski, J.;Stefanov, B. B.;Liu, G.;Liashenko, A.;Piskorz, P.;Komaromi, I.;Martin, R. L.;Fox, D. J.;Keith, T.;Al-Laham,M. A.;Peng, C. Y.;Nanayakkara, A.;Challacombe, M.;Gill, P. M. W.;Johnson, B.;Chen, W.;Wong, M. W.;Gonzalez, C.;Pople, J. A. Gaussian 03, Revision B.04, Gaussian, Inc., Pittsburgh PA, 2003
    212. Belletête, M.;Beaypré, S.;Bouchard, J.;Blondin, P.;Leclerc, M.;Durocher, G. Theoretical and Experimental Investigations of the Spectroscopic and Photophysical Properties of Fluorene-Phenylene and Fluorene-Thiophene Derivatives: Precursors of Light-Emitting Polymers, J. Phys. Chem. B 2000, 104, 9118.
    213. The selected optimized bond lengths, bond angles and dihedral angles are included in Table S1. The optimized structures of all the oligomers in both series are plotted in Figure S1. The electron density isocontours of HOMO and LUMO of the oligomers in (PTZ)n and (FPTZ)n (n=1~4) by B3LYP/6-31G* are plotted in Figure S2.
    214. Agrawal, A. K.;Jenekhe, S. A. Electrochemical Properties and Electronic Structures of Conjugated Polyquinolines and Polyanthrazolines, Chem. Mater. 1996, 8, 579.
    215. Ho, P. K. H.;Kim, J,-S.;Burroughes, J. H.;Becker, H.;Lis, S. F. Y.Brown, T. M.;Cacialli, F.;Friend, R. H. Nature 2000, 404, 481.
    216. Rajendra R.;Sameh H. Abdelwahed;Ilia A. Guzei Synthesis, Structure, and Evaluation of the Effect of Multiple Stacking on the Electron-Donor Properties of -Stacked Polyfluorenes, J. Am. Chem. Soc 2003, 125, 8712-8713.
    217. Kwon, O. and McKee, M. L. Theoretical Calculations of Band Gaps in the Aromatic Structures of Polythieno[3,4-b]benzene and Polythieno[3,4-b]pyrazine, J. Phys. Chem. A 2000, 104, 7106.
    218. Wang, J. F.;Feng, J. K.;Ren, A. M.;Liu, X. D.;Ma, Y. G.;Lu, P.;Zhang, H. X. Theoretical Studies of the Absorption and Emission Properties of the Fluorene-Based Conjugated Polymers, Macromolecules 2004, 37, 3451.
    219. Brédas, J. L.;Silbey, R.;Boudreaux, D. S.;Chance, R. R. Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole, J. Am. Chem. Soc. 1983, 105, 6555.
    220. Ma, J.;Li, S. H.;Jiang, Y.-S. Time-Dependent DFT Study on Band Gaps and Effective Conjugation Lengths of Polyacetylene, Polyphenylene, Polypentafulvene, Polycyclopentadiene, Polypyrrole, Polyfuran, Polysilole, Polyphosphole, and Polythiophene, Macromolecules 2002, 35, 1109
    221. (a) Ford, W. K.;Duke, C. B.;Salaneck, W. R. Electronic structure of polypyrrole and oligomers of pyrrole, J. Chem. Phys. 1982, 77, 5030. (b) Ford, W. K.;Duke, C. B.;Paton, A. The CNDO/S3 crystal orbital model: Definition and application to polyacetylene, J. Chem. Phys. 1982, 77, 4564.
    222. (a) Yang, L.;Ren, A. M.;Feng, J. K. J. Comput. Chem. 2005, 26,969. (b) Yang, L.;Ren, A. M.;Feng, J. K. Theoretical Investigation of Optical and Electronic Property Modulations of -Conjugated Polymers Based on the Electron-Rich 3,6-Dimethoxy-fluorene Unit, J. Org. Chem. 2005, 70, 3009.
    223. Marcos, A. De Oliveira;Hélio A. Duarte;Pernaut J. M.;Wagner B. De Almeida Energy Gaps of , '-Substituted Oligothiophenes from Semiempirical, Ab Initio, and Density Functional Methods, J. Phys. Chem. A 2000, 104, 8256.
    224. Zhou, X.;Ren, A. M.;Feng, J. K. Polymer 2004, 45, 7705.
    225. (a)Curioni, A.;Boero, M.;Andreoni, W. Chemical Physics Letters 1998, 294, 263-271. (b) Irene Wang;Estelle B. A.;Olivier, S.;Alain, I.;Patrice L Baldeck J. Opt. A: Pure Appl. Opt. 2002, 4, S258-S260.
    226. (a) Jeffrey Hay, P. Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory, J. Phys. Chem. A 2002, 106, 1634-1641. (b) Curioni, A.;Andreoni W.;Treusch, R.;Himpsel, F. J.;Haskal, E.;Seidler, P.;Heske, C.;Kakar, S.;Buuren, T. van;Terminello, L. J. Appl. Phys. Lett. 1998, 72, 1575-1577. (c) Sung Y. Hong;Dong Y. Kim;Chung Y. Kim;Roald Hoffmann Origin of the Broken Conjugation in m-Phenylene Linked Conjugated Polymers, Macromolecules 2001, 34, 6474-6481.
    227. Eaton, V. J.;Steele, D. J. Chem. Soc.;Faaraday Trans. 2 1973, 2, 1601.
    228. Ortiz, R. P.;Delgado, M. C. R.;Casado, J.;Hernández, V.;Kim, O. K.;Woo, H. Y.;López Navarrete, L. Electronic Modulation of Dithienothiophene (DTT) as -Center of D--D Chromophores on Optical and Redox Properties: Analysis by UV-Vis-NIR and Raman Spectroscopies Combined with Electrochemistry and Quantum Chemical DFT Calculations, J. Am. Chem. Soc. 2004, 126, 13363.
    229. Peng, Q.;Lu, Z. Y.;Huang, Y.;Xie, M. G.;Han, S. H.;Peng, J. B.;Cao, Y. Synthesis and Characterization of New Red-Emitting Polyfluorene Derivatives Containing Electron-Deficient 2-Pyran-4-ylidene-Malononitrile Moieties, Macromolecules 2004, 37, 260.
    230. Liu, B.;Yu, W.;Lai, Y.;Huang, W. Chem. Commun. 2000, 551.
    231. Lévesque, I.;Donat-Bouillud, A.;Tao, Y.;D'Iorio, M.;Beaupré, S.;Blondin, P.;Ranger, M.;Bouchard, J.;Leclerc, M. Synth. Met. 2001, 122, 79.
    232. Lee, J. –I.;Klaerner, G.;Davey, M.H.;Miller, R. D. Synth. Met. 1999, 102, 1087.
    233. Charas, A.;Barbagallo, N.;Morgado, J.;Alcacer, L. Synth. Met. 2001, 122, 23.
    234. Lu, J. P.;Tao, Y.;D'Iorio, M.;Li, Y. N.;Ding, J. F.;Day, M. Macromolecules Pure Deep Blue Light-Emitting Diodes from Alternating Fluorene/Carbazole Copolymers by Using Suitable Hole-Blocking Materials, 2004, 37, 2442.
    235. Horst, W.;Susanne, S.;Stefan, J.;Alexander, V.U.;Axel, H. E. M. Quantum-Chemical Study of Structure and Activity of Chain Ends in Metal-Free Anionic Polymerization of Methacrylates, Macromolecules 2003, 36, 3374-3379.
    236. Diaz, A. F.;Crowley, J.;Baryon, J.;Gardini, G. P.;Torrance, J. B. J. Electroanal. Chem. 1981, 121, 355.
    237. Brédas, J. L.;Chance, R. R.;Silbey, R. Mol. Cryst. Liq. Cryst. 1981, 77, 319.
    238. Brédas, J. L.;Chance, R. R.;Silbey, R. Phys. Rev. B: Condens. Mater 1982, 26, 5843.
    239. Wohlgenannt, M.;Kunj Tandon;Mazumdar, S.;Ramasesha, S.;Vardeny;Z. V. Letters To Nature 2001, 409, 494-498.
    240. Burrows, P. E.;Shen, Z.;Bulovic, V.;McCarty, D. M.;Forrest, S. R.;Cronin, J. A.;Thompson, M. E. J. Appl. Phys. 1996, 79, 7991-8006.
    241. Brière, J. F.;C?té, M. J. Electronic, Structural, and Optical Properties of Conjugated Polymers Based on Carbazole, Fluorene, and Borafluorene, Phys. Chem. B 2004, 108, 3123.
    242. Puschning, P.;Ambrosch-Draxl, C.;Heimel, G.;Zojer, E.;Resel, R.;Leising, G.;Kriechbaum, M.;Graupner, W. Synth. Met. 2001, 116, 327.
    243. Rogero, C;Pascual, J. I.;Gomez-Herrero, J.;Baro, A. M. J. Chem. Phys. 2002, 116, 832-836.Curioni, A.;Andreoni W. IBM J. RES. & DEV., 2001, 45, 101-113
    244. Wang, J. L.;Wang, G. H.;Zhao, J. J. Physical Review B 2001, 64, 205411
    245. C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
    246. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 11, 15-26(2001).
    247. U. Mitschke, P. B?uerle, J. Mater. Chem. 10, 1471 (2000).
    248. Primary photoexcitations in conjugated polymers: Molecular Exciton vs semiconductor Band Model, edited by N. S. Sariciftci (World Scientific, Singaport, 1997.)
    249. J. F. Janak, Phys. Rev. B 18, 7165(1978).
    250. S. Beaupré, M. Leclerc, Optical and Electrical Properties of -Conjugated Polymers Based on Electron-Rich3,6-Dimethoxy-9,9-dihexylfluorene Unit, Macromolecules 36, 8986 (2003).
    251. S. Janietz, D. D. C. Bradley, M. Grell, C. Giebeler, M. Inbasekaran, E. P. Woo, Appl. Phys. Lett. 73, 2453(1998).
    252. Garnier, F.;Hajlaoui, R.;Yassar, A.;Srivastava, P. Science 1994, 265, 1684.
    253. Lovinger, A. J.;Rothverg, L. J. Mater. Res. 1996, 11, 1581.
    254. Leclerc, M.;Faid, D. Adv. Mater. 1997, 35, 3627.
    255. Ranger, M.;Leclerc, M. New Base-Doped Polyfluorene Derivatives, Macromolecules 1999, 32, 3306.
    256. Grem, G.;Leditzky, G.;Ullrich, B.;Leising, G. Adv. Mater. 1992, 4, 36.
    257. Weiss, H.;Steiger, S.;Jungling, S.;Yakimansky, A. V.;Muller, A. H. E. Quantum-Chemical Study of Structure and Activity of Chain Ends in Metal-Free Anionic Polymerization of Methacrylates, Macromolecules 2003, 36, 3374-3379.
    258. Salzner, U.;Lagowski, J. B.;Pickup, P. G.;Poirier, R. A. Synthetic metals 1998, 96, 177-189.
    259. Zhang, G. L.;Ma, J.;Jiang, Y. S. Effects of Silole Content and Doping on the Electronic Structures and Excitation Energies of Silole/Thiophene Cooligomers, Macromolecules 2003, 36, 2130-2140.
    260. Cao, H.;Ma, J. Zhang, G. L.;Jiang, Y. S. Borole/Thiophene Cooligomers and Copolymers with Quinoid Structures and Biradical Characters, Macromolecules 2005, 38, 1123-1130.
    261. Zhou, X.;Ren, A. M.;Feng, J. K. polymer, 2004, 7747-7757.
    262. Tozer, D. J.;Handy, N. C. Improving virtual Kohn–Sham orbitals andeigenvalues: Application to excitation energies and static polarizabilities,J. Chem. Phys. 1998, 109, 10180.
    263. Gao, Y.;Liu, C.;Jiang, Y. Electronic Structure of Thiophene OligomerDications: An Alternative Interpretation from the Spin-UnrestrictedDFT Study, J. Phys. Chem. A 2002, 106, 5380.
    264. Cornil, J.;Gueli, I.;Dkhissi, A.;Sancho-Garcia, J. C.;Hennebicq, E.;Calbert, J. P.;Lemaur, V.;Beljoone, D.;Brédas, J. L. Electronic andoptical properties of polyfluorene and fluorene-based copolymers: Aquantum-chemical characterization, J. Chem. Phys. 2003, 118,6615-6623.
    265. Belletête, M.;Beaypré, S.;Bouchard, J.;Blondin, P.;Leclerc, M.;Durocher, G. Theoretical and Experimental Investigations of theSpectroscopic and Photophysical Properties of Fluorene-Phenylene andFluorene-Thiophene Derivatives: Precursors of Light-EmittingPolymers, J. Phys. Chem. B 2000, 104, 9118.
    266. To better investigate the effects of the electron-donating or–withdrawing groups on the energy level excluding the influences ofdihedral angles, we have re-optimized the oligomers (EF)_n and (PyF)_n(n=3) as representative example of the whole series of oligomersrestricted to fully planar conformations to explain effects coming fromthe introduction of the electron-donating and accepting moieties. Thenegative of HOMO and LUMO energies (-εHOMO, -εLUMO)(eV) of(EF)_n and (PyF)_n (n=3) obtained by DFT//B3LYP/6-31G~* withnon-planar and planar conformations are listed in Table S1 inSupporting Information. From the calculated results in Table S1, it canbe found that (1) for both (EF)_3 and (PyF)_3, the planar conformation ismuch less stable than the nonplanar conformation by 236.20 and 235.89a.u., respectively, rationalized the nonplanar conformations in our
    paper. (2) The energy levels and the variation trend of HOMO in all
    systems with the fully planar conformations do not change much
    compared with the ones with the nonplanar conformations. (3) In
    contrast to the energy level of HOMO, it can be found an interesting
    phenomenon that the LUMO energy of (EF)_3 dramatically decrease,
    even lower than that of (PyF)3 and (FO)_3, which indicate
    electron-donating groups significantly facilitate the
    electron-transporting. The results seem to be contrary to the conclusion
    in the manuscript. This contradiction can be explained by the effects
    coming from the torsional angles. Due to the bonding character between
    the two adjacent subunits, the increasing torsional angles thus
    destabilize the energy level of LUMO. This interesting phenomenon
    will be further discussed in the latter paper due to the space limitation of
    the manuscript. However, the general conclusion that either the
    electron-donating or the electron-withdrawing groups will facilitate the
    electron-transporting is accordant based on either the planar or the
    nonplanar conformations.
    267. Fratiloiu, S.;Grozema, F. C.;Siebbeles, L. D. A. J. Phys. Chem. B 2005, 109, 5644-5652.
    268. Fratiloiu, S.;Candeias, L. P.;Grozema, F. C.;Wildeman, J.;Siebbeles, L. D. A. VIS/NIR Absorption Spectra of Positively Charged Oligo(phenylenevinylene)s and Comparison with Time-Dependent Density Functional Theory Calculations, J. Phys. Chem. B 2004, 108, 19967-19975.
    269. Grozema, F. C.;Candeias, L. P.;Swart, M.;van Duijnen, P. T.;Wildeman, J.;Hadziioanou, G.;Siebbeles, L. D. A.;Warman, J. M. Theoretical and experimental studies of the opto-electronic properties of positively charged oligo(phenylene vinylene)s: Effects of chain length and alkoxy substitution, J. Chem. Phys. 2002, 117, 11366.
    270. Grozema, F. C.;van Duijnen, P. T.;Siebbeles, L. D. A.;Goosens, A.;de Leeuw, S. W. Electronic Structure of Thienylene Vinylene Oligomers: Singlet Excited States, Triplet Excited States, Cations, and Dications, J. Phys. Chem. B 2004, 108, 16139.
    271. Ye, A.;Shuai, Z.;Kwon, O.;Brédas, J. L.;Beljoone, D. Optical properties of singly charged conjugated oligomers: A coupled-cluster equation of motion study, J. Chem. Phys. 2004, 121, 5567.
    272. Moro, G.;Scalmani, G.;Cosentino, U.;Pitea, D. Synth. Met. 2000, 108, 165.
    273. Cornil, J.;Beljoone, J.;Brédas, J. L. Nature of optical transitions in conjugated oligomers. II. Theoretical characterization of neutral and doped oligothiophenes, J. Chem. Phys. 1995, 103, 842.
    274. Geskin, V. M.;Dkhissi, A.;Brédas, J. L. Int. J. Quantum. Chem. 2003, 91, 350.
    275. Geskin, V. M.;Brédas, J. L. ChemPhysChem. 2003, 4, 498.
    276. (1) To gain insight into the effects of the exchange part of the functional on the charge delocalization, we have carried out additional calculations, e.g., using representative BLYP and SVWN functionals accompanied with 6-31g* basis set on the positively and negatively charged trimers of (FO)n compared with B3LYP functional. The results in Table S2 show that the differences among the three charge distributions are rather small and the charge is still delocalized over the entire chain. From these results, it can be concluded that the effect of improving the description of the exchange interaction does not lead to a significant localization of the charge. (2) To clearly establish whether this effect of correlation should be responsible to the charge delocalization, we try to use MP2 to optimize the positively and negatively charged oligomers. Unfortunately, we have not been able to optimize the geometries by MP2 methods, even with STO-3G basis set, due to convergence
    problems of the optimization procedure. So, restricted closed-shell MP2
    (ROMP2) calculations are carried out for (FO)3. The single point
    calculations are performed at ROMP2/3-21G* level of theory. Obvious
    localization of charge around the middle of the chain is observed. The
    results show that the more delocalization of a charge on a conjugated
    chain in DFT is an artifact of the method.
    277. Lin, B.C.;Cheng, C. P.;Michael Lao, Z. P. Reorganization Energies in the Transports of Holes and Electrons in Organic Amines in Organic Electroluminescence Studied by Density Functional Theory, J. Phys. Chem. A 2003, 107, 5241-5251.
    278. Cai A, Sendt K, Reimers J-R. Failure of density-functional theory and time-dependent density-functional theory for large extended systems, J. Chem. Phys. 2002, 117, 5543-5549.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.