兔卵丘细胞对卵母细胞体外成熟与孤雌发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒细胞(CCs)对卵母细胞减数分裂成熟、受精及胚胎发育能力方面的作用在牛、羊、猪、小鼠等动物上已有报道,但是在兔上研究较少。目前仅有关于对兔卵丘细胞卵母细胞复合体(COCs)成熟培养的报道,尚未见颗粒细胞与卵母细胞相互作用的报道。兔是重要的实验动物,其卵母细胞是胚胎工程技术操作的重要材料。本论文以新西兰兔为实验动物研究了颗粒细胞对卵母细胞核成熟、胞质成熟以及卵母细胞存活和退化等方面的影响作用。采集兔 COCs 和裸卵(NOs)。将 COCs 脱去部分或全部卵丘细胞,形成放射冠包裹的卵母细胞(COs)或机械裸卵(DOs)后,分五种方式培养,即卵丘细胞包裹的卵母细胞(CEOs)的单独培养、COs 单独培养、DOs 与 COCs 共培养(DOs(COCs))、DOs与卵丘颗粒细胞共培养的(DOs (CCs)),以及 DOs 单独培养,培养 24 h 或 30 h 后,统计核成熟率。对核成熟的卵母细胞孤雌激活后用卵裂率判断卵母细胞成熟效果。得到如下结果:(1) 培养 24 h,上述五种培养方式的卵母细胞核成熟率分别为 76%、46%、13%、7%和 6%,前四种都有显著差异(P<0.05)。孤雌激活后卵裂率分别为 68%、63%、35%、21%和 17%,前两种培养方式均高于后三种培养方式。 (2) 培养 30 h, 上述五种培养方式核成熟率分别为 82%、62%、24%、16%和 7%,都有显著差异(P<0.05)。孤雌激活后的卵裂率分别为 79%、76%、61%、45%和 28%,前两种培养方式显著高于后三种培养方式(P<0.05)。(3) 培养时间从 24 h 延长至 30 h,DOs(COCs)的核成熟率显著提高(13% vs 24%,P<0.05),孤雌激活后的卵裂率也显著提高(35% vs 61%,P<0.05)。DOs(CCs)的核成熟率显著提高(7% vs 16%,P<0.05),但胞质成熟率无显著差异(P>0.05)。(4) NOs 和 NOs (CCs)成熟 24 h,核成熟率都为 2%,培养至 30 h,NOs 和 NOs (CCs)核成熟率分别为 2%和 3%,无显著差异(P>0.05)。(5) 培养 24 h,CEOs 、COs、DOs(COCs)、DOs (CCs)和 DOs 退化率分别为 7%、23%、44%、64%和 73%,相互间差异均显著(P<0.05);培养至 30 h,退化率分别为 12%、20%、41%、60%和 77%,相互间均差异显著(P<0.05)。但培养 24 h 与培养 30 h,相同培养方式下卵母细胞退化率均无显著差异(P>0.05)。以上结果表明,兔卵丘颗粒细胞直接影响卵母细胞核和细胞质的成熟,以及卵母细胞的存活;兔卵母细胞体外成熟时间从 24 h 延长到 30 h,有利于胞质成熟;裸卵不具有恢复减数分裂成熟的能力,也不能通过与颗粒细胞悬液共培养得到改善。
It has been reported that cumulus cells (CCs) play an important role in oocyte meioticmaturation, fertilization and embryo developmental potential in cattle, goat, pig and mouse,but few studies were conducted in rabbit. Previously, the reports in rabbit mainly focused onthe in vitro maturation of the cumulus-enclosed oocytes (CEOs), but the interactions betweenthe cumulus cells and oocyte haven’t been investigated. As an important experimental animal,rabbit are often used in embryo engineering. The aim of the present study was to analyze theeffects of rabbit cumulus cells on the oocyte nuclear and ooplasmic maturation, oocytesurvival and degeneration. Cumulus oocyte complexes (COCs) and naked oocytes (NOs)were recovered directly from rabbit ovaries. Corona-enclosed oocytes (COs) and DOs(denuded oocytes) were obtained from COCs freed of part or whole CCs, and then the oocyteswere cultured in the following five ways. (1) CEOs were cultured alone; (2) COs werecultured alone; (3) DOs were co-cultured with COCs (DOs(COCs)); (4) DOs wereco-cultured with CCs (DOs(CCs)); (5) DOs were cultured alone. After the oocytes were invitro cultured 24 h or 30 h, the oocyte nuclear maturation was analyzed and compared. Thecleavage was used to evaluate the oocyte maturation quality after the nuclear matured oocyteswere parthenogenetically activated. The results were as the following. (1) The percentage ofnuclear maturation of CEOs, COs, DOs(COCs), DOs(CCs) and DOs was 76%, 46%, 13%,7% and 6% respectively after 24 h incubation, and the percentage of oocyte nuclearmaturation in the former four culture ways were all significantly different with each other(P<0.05). The Cleavage rate was 68%, 63%, 35%, 21% and 17% respectively afterpathenogentic activation, and the cleavage rate in the first two culture ways were significantlyhigher than that of the others (P<0.05). (2) The percentage of oocyte nuclear maturation were82%, 62%, 24%, 16% and 7% respectively after incubation 30 h and all of them hadsignificant difference with each other (P<0.05). The cleavage rate was 79%, 76%, 61%, 45%,and 28% respectively and the first two culture ways had significantly higher ooplasmicmaturaion rate than the others (P<0.05). (3) The nuclear maturation was significantlyimproved when the culture time of DOs(COCs) was prolonged from 24 h to 30 h (13% vs24%, P<0.05) and the cleavage was also improved significantly (35% vs 61%, P<0.05).DOs(CCs) nuclear maturation was significantly improved when the culture time wasprolonged from 24 h to 30 h (7% vs 16%, P<0.05), but the ooplasmic maturation was notimproved (P>0.05). (4) The percentage of nuclear maturation of NOs incubated with orwithout cumulus cells was both 2% after 24 h incubation (P>0.05). When the culture time was
    prolonged from 24 h to 30 h, the nuclear maturation was not improved (P>0.05). (5) Theoocyte degeneration rate of COCs, COs, DOs(COCs), DOs (CCs) ) and DOs wassignificantly different with each others after 24 h incubation (7%, 23%, 44%, 64%, 73%,P<0.05) and after 30 h incubation (12%, 20%, 41%, 60%, 77%, P<0.05). There was nosignificant difference in oocyte degeneration in the same groups between 24 h and 30 hincubation (P>0.05). The results suggest that rabbit cumulus cells affect the oocyte nuclearand ooplasmic maturation, survival, and the prolongation of the culture time of rabbit oocytefrom 24 h to 30 h improves the ooplasmic maturation. Rabbit NOs have no meiotic potential,which cannot be improved by co-culture with dispersed cumulus cells.
引文
[1] 杨增明、孙青原、夏国良主编.生殖生物学. 北京:科学出版社,2005,73-115
    [2] 陈大元主编.受精生物学.北京:科学出版社,2000,13-19
    [3] 韩贻仁 主编.分子细胞生物学. 北京:科学出版社,2001,515-525
    [4] 孙 青 原 , 秦 鹏 春 . 哺 乳 动 物 的 卵 母 细 胞 成 熟 机 理 . 黑 龙 江 动 物 繁 殖 , 1995,3(1):41-43
    [5] Channing CP, Liu CQ, Jones GS, Jones H. Decline of follicular oocyte maturation inhibitor coindident with maturation and achievement of fertilizability of oocytes recovered at midcycle of gonadotropin. Proc Natl Acad Sci, 1983, 80(13): 4184-4188
    [6] Tsafriri A, Pomerantz SH.Oocyte maturation inhibitor. Clin Endocrinol Metab, 1986, 15(1): 157-170
    [7] Tsafriri A, Pomerantz SH. Regulation of the development of meiotic competence and of the resumption of oocyte matuaration in the rat. Symp Soc Exp Biol, 1984, 38: 25-43
    [8] G?tze M, Kauffold P, Schuffenhauer A, Torner H, Spitschak M.The inhibiton of meiosis of bovine oocyte using biologic of synethetic inhibitors. Arch Exp Veterinarmed, 1990, 44(1): 19-27
    [9] Aktas H, Leibfried-Rutledge ML,First NL.Mtitic state of bovine oocyte is regulated by interactions between cAMP, cumulus, and granulose .Mol Reprod DEV, 2003 Jul, 65(3): 336-343
    [10] Thomas RE, Armstrong DT, Gilchrist RB. Differential effects of specific phosphodiesterase isoenzyme inhibitors on bovine oocyte meiotic maturation.Dev Biol, 2002, 244(2): 215-225
    [11] Bildeau –Goeseel S. Effects of phosphodiesterase inhibitor on spontaneous nuclear maturation and cAMP concentration in bovine oocytes. Theriogenology, 2003, 60(9): 1679-1790
    [12] Alberto M. Luciano, Silcia Modina, Rita Vassena, Elisabetta Milanesi, Antonio Lauria, and Fulvio Gandolfi. Role of intracellular cyclic adenodine 3’, 5’-monophosphate concentation and oocyte-cumulus cells communication on the acquisition of the developmental competence during in vitro maturation of bovine oocyte.Biology of reprduction, 2004, 70: 465-472
    [13] Downs SM, Daniel SA, Epping JJ. Induction of maturation in cumulus cells cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: evidence for a positive stimulus of somatic cell origin. J Exp Zool, 1988, 245(1): 86-96
    [14] Downs SM. Hypoxanthine regulation of oocyte maturation in the mouse: insights using hypoxanthine phosphoribosyltrasferase –deficient animals. Biol Reprod, 1997 Jul, 57(1): 54-62
    [15]Li CJ, Wang B, Fan BQ. The meiosis arrest of mouse oocyte induced by adeninel. Shi Yan Sheng Wu Xue Bao, 1994 Dec, 27(4): 457-462
    [16] Griffin AM, Grondahl C, Fleming SD. Action of hypoxanthine and meiosis –activating sterol on oocyte maturation in the mouse is strain specific. Reprod Biomed Online, 2004, 8(6): 673-681
    [17] Nogueira D, Cortvrindt R, De Matos DG, Vanhoutte L, Smitz J. Effect of phosphodiesterasee type 3 inhibitor on developmental competence of immature mouse oocyte in vitro. Biol Reprod, 2003, 69: 2045-2052
    [18] Buccione R, Schroeder AC, Epping JJ. Interactions between somatic cells and germs cells throughout mammalian oogenesis. Bilo Reprod, 1990, 43: 543-547
    [19] Gilula NB, Epstein ML, Beers WH. Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. J Cell Biol, 1978, 78: 58-75
    [20] Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction, 2002, 123: 613-620
    [21] Johnson ML, Redmer DA, Reynolds LP, Grazul-Bilska AT. Expression of the gap junction proteins connexin 43, 32 and 26 throughout follicular development and atresia in cows. Endocrine, 1999, 10: 43-51
    [22] Sutovsky P, Flechon JE, Flechon B, Motlik J, Peynot N, Chesne P, Heyman Y. Dynamic changes of gap junctions and cytoskeleton during in vitro culture of cattle oocyte cumulus complexes. Biol Rerod, 1993, 49: 1277-1287
    [23] Vozzi C,Formenton A, Chanson A, Senn A, Sahli R, Shaw P, Nicod P, Germond M, Haefliger JA. Involvement of connexin 43 in meiotic maturation of bovine oocytes. Reproduction, 2001, 122: 619-628
    [24] Vanderhyden BC, Macdonald EA. Mouse oocyte regulate granulose cell steroidogenesis throughout follicular development. Biol Reprod, 1998, 59(6): 1296-1301
    [25] Vanderhyden BC, Tonary AM. Differential regulation of progesterone and estradiol production by mouse cumulus and mural granulose cells by A factor(s) secreted by the oocyte. Biol Reprod, 1995 Dec, 53(6): 1243-1250
    [26] Vanderhyden BC, Cohen JN, Morley P. Mouse oocte regulate granulose cell steroidogenesis. Endocrinology, 1993, 133(1): 423-426
    [27] van Tol HT, van Ei jk MJ, Mummery CL, van den Hurk R, Berers MM. Influence of FSH and HCG on the resumption of meiosis of bovine oocyte surrounded by cumulus cells connected to membrana granulose. Mol Reprod Dev, 1996, 45(2): 218-224
    [28] Shimada M, Terada T. FSH and LH induce progesterone production and progesterone receptor synthesis in cumulus cells: a requirement for meiotic resumption in porcine oocyte. Mol Hum Reprod, 2002, 8(7): 12-8
    [29] Pellicer A, Parmer TG, Stoane JM, Behrman HR. Desensitization to follicle-stimulating hormone in cumulus cells is coincident with hormone induction of oocyte in the rat follicle. MolCell Endocrinol, 1989, 64(2): 179-188
    [30] Pant D, Reynolds LP, Luther JS, Borowicz PP, Stenbak TM, Bilsk JJ, Weigl RM, Zopes F, Petry K, Johnson ML, Redmer DA, Grazul-Bilska AT. Expression of connexin 43 and gap junctional intercellular communication in the cumulus-oocyte complex in sheep. Reprodcution, 2005, 129(2): 191-200
    [31] Sela-Abramovich S, Chorev E, Galianni D, Dekel N. Mitogen-activated protein kinase mediates luteinizing hormone-induced breakdown of communication and oocyte maturation in rat ovarian follicles. Endocrinology, 2005, 146(3): 1236-1244
    [32] Calder MD, Caveney AN, Smith LC, Waston AJ. Responsiveness of bovine cumulus- oocyte – complexes (COC) to porcine and recombinant human FSH, and the effect of COC quality on gonadotropin receptor and CX43 maker gene mRNAs during maturation in vitro. Reprod Biol Endocrinol, 2003, 1(1): 14
    [33] Kalam Y, Granot I, Galiani D, Barash A, Dekel N. Luteinize hormone-induced connexin 43 down-regulation: inhibition of translation. Endocrinology, 2004, 145(4): 1617-1624
    [34] Rozman D, Seliskar M, Cotman M, Fink M. Pre-cholesterol precursors in gametogenesis. Mol Cell Endocrinol, 2005, 234(1-2): 47-56
    [35] Tsafrifi A, Cao X, Ashkenazi H, Motola S, Popliker M, Pomerantz SH. Resumption of oocyte meiosis mammals: on models, meiosis activating sterols, steroids and EGF-like factors. Mol Cell Endocrinol, 2005, 234(1-2): 37-45
    [36] Coticchio G, Rossi G, Borini A, Gronaahl C, Macchiarelli G, Flamingni C, Fleming S, Cecconi S. Mouse oocyte meiotic resumption and polar body extrusion in vitro are differentially influenced by FSH, epidermal growth factor and meiosis –activating sterol. Hum Reprod, 2004, 19(12): 2193-8
    [37] Donnay I, Faerge I, Grondahl C, Verhaeghe B, Sayoud H, Ponderato N, Galli C, Lazzari G. Effect of prematuration, meiosis activating sterol and enriched maturation medium on
     the nuclear maturation and competence to development calf oocytes. Theriogenology,
     2004, 62(6): 1093-1107
    [38] Mattioli M, Gioia L, Barboni B. Calcium elevation in sheep cumulus-oocyte complexes after luteinising hormone stimulation. Mol Reprod Dev, 1998, 50(3): 361-369
    [39] Martins OG, Pesty A, Gouveia-Oliveira A, Cidadao AJ, Plancha CE, Lefevre B. Oocyte Ca~(2+) spike acquisition during in vitro development of early preantral follicles: influence of age and hormone supplementation. Zygote, 2002, 10(1): 59-64
    [40] Webb Rj, Bains H, Cruttwell C, Carroll J. Gap-junctional communication in mouse cumulus-oocyte complexes: implications for the mechanism of meiotic maturation. Reproduction, 2002, 123(1): 41-52
    [41] Tien JH, Lyles D, Zeeman H. Potential role of modulating inositol1, 4, 5- trisphosphate receptor desensitization and recovery rates in regulating ovulation. J Theor Biol, 2005, 232(1): 105-117
    [42] Washington TM, Bulum JJ, Reed MC, Conn PM. A mathematical model for LH release in response to continuous and pulsatile exposure of gonadotrophs to GnRH. Theeor Bio Med Model, 2004, 1(1): 9
    [43] Naor Z, Shacham S, Harris D, Seger R, Reiss N. Signal transduction of the gonadotropin releasing hormone (GnRH) receptor: cross-talk of calcium protein kinase C(PKC), and arachidonic acid. Cell Mol Neurobiol, 1995, 15(5): 527-44
    [44] 孙大业,郭艳林,马大耕,崔素娟. 细胞信号转导. 北京, 科学出版社. 1993, 119-135
    [45] Loenzo PL, Illera JC, Silvan G, Munro CJ, Illera MJ, Illera M. Steriod-level response to insulin-like growth factor-1 in oocyte matured in vitro. Reprod Immunol, 1997, 35(1): 11-29
    [46] Bevers MM, Iiadyar F. Role of growth hormone and growth receptor maturation. Mol Cell Endocrinol, 2002, 197(1-2): 173-178
    [47] Hassan HA, Azab H, Rahman AA, Nafee TM. Effect of growth hormone on in vitro maturation of germinal vesicle of human oocyte retrieved from small follicle. Assist Reprod Genet, 2001, 18(8): 417-420
    [48] Kolle S, Stojkovic M, Boie G, Wolf E, Sinowatz F. Growth hormone-related effects on apotosis, mitosis, and expression of connexin 43 in bovine in vitro maturation cumulus-oocyte complexes. Biol Reprod, 2003, 68(5): 1584-1589
    [49] Sakaguchi M, Dominko T, Yamauchi N, Leibfried-Rutledge ML, Nagai T, First NL. Possible mechanism for acceleration of meiotic progression of bovine follicular oocytes by growth factors in vitro. Reproduction, 2002 , 123(1): 135-142
    [50] Sakaguchi M, Dominko T, Leibfried-Rutledge ML, Nagai T, First NL. A combination of EGF and IGF-1 accelerates the progesision of meiosis in bovine follicular oocyte in vitro and fetal calf serum. Therilogenlogy, 2000, 54(8): 1327-1342
    [51] Illera MJ, Lorznzo PL, Illera JC, Petters RM. Developmental competence of immature pig oocyte under the influence of EGF, IGF-1, follicular fluid and gonadotripins during IVM-IVF processes. Int J Dev Biol, 1998, 2(8): 1169-1172
    [52] Lorenzo PL, Rebollar PG, Illera MJ, Illera JC, Illera M, Alvarino JM. Stimulator effect of insulin-like growth factor Ⅰ and epidermal growth factor on the maturation of rabbit oocyte in vitro. J Reprod Fertil, 1996, 107(1): 109-117
    [53] Coskun S, Lin YC. Effect of transforming growth factors and activin-A on in vitro porcine oocyte maturation. Mol Reprod Dev, 1994, 38(2): 153-159
    [54] Dekel N. Cellular, Biochemical and molecular mechanism regulating oocyte maturation. Mol Cell Endcrinol, 2005, 234(1-2): 19-25
    [55] Bogliolo L, Leoni G, Ledda S, Zedda MT, Bonelli P, Madau L, Santuccic C, Naitana S, Pau S. M-phase promoting factor (MPF) and mitogen activated protein kinases ( MAPK) activities of domestic cat oocyte maturation in vitro and in vivo. Cloning Stem Cell, 2004, 6(1): 15-23
    [56] Vaur S, Poulhe R, Maton G, Andeol T, Jessus C. Activation of cdc kinase during meiotic maturation axolotl oocyte. Dev Biol, 2004, 267(2): 265-78
    [57] Jones KT. Turing it on and off: M-phase promoting factor during meiotic maturation and fertilization. Mol Hum Reprod, 2004, 10(1): 1-5
    [58] Ye J, Flint AP, Luck MR, Campbell KH. Independent activation of MAP kinase and MPF during the initiation of meiotic maturation in pig oocyte.Reproductio, 2003, 125(5): 645-656
    [59] Meinecke B, Krischek C. MAPK/ERK kinase (MEK) signaling is required for resumption of meiosis in cultured cumulus-enclosed pig oocyte. Zygote. 2003, 11(1): 7-16
    [60] Bodart JF, Gutierrez DV, Nebreda AR, Buckner BD, Resau JR, Duesbery NS. Characterization of MPF and MAPK activities during meiotic maturation of xenopus tropicalis oocyte. Dev Biol, 2002, 245(2): 348-361
    [61] Tian XC, Longergan P, Jeong BS, Evans AC, Yang X. Association of MPF, MAPK, and nuclear progression dynamics during activation of young and aged bovine oocyte. Mol Reprod Dev, 2002, 62(1): 132-138
    [62] de Vantery Arrighi , CAMPana A, Schorderet-Slatkine S. A role for the MEK-MAPK pathway in okadaic acid-induced meiotic resumption of incompetent growing mouse oocyte. Biol Reprod, 2002, 63(2): 658-665
    [63] Nakao H, Kubo H. Study of the in vitro maturation of mouse oocyte induced microinjection of matuation promoting factor (MPF). J Assist Reprod Genet, 2000, 17(1): 67-73
    [64] Gebauer F, Richter JD. Synthesis and function of mos: the control switch of vertebrate oocyte meiosis. Bioessays, 1997, 19(1): 23-28
    [65] Araki K, Naito X, Haraguchi S, Suzuki R, Yokoyama M, Znoue M, Aizawa S, Toyoday Y, Sato E. Meiotic abnormalities of c-mos konckout mouse oocyte: activation after first meiosis or entrance into third meiotic metaphase. Biol Reprod, 1996, 55(6): 1315-1324
    [66] Chesnel F, Epping JJ. Synthesis and accumulation of p34cdc and cyclin B in mouse oocyte during acquisition of competence to resumption meiosis. Mol Reprod Dev, 1995, 40(4): 503-508
    [67] Yu HQ, Bou S, Chen DY, Sun QY. Phosphorylation of MAP kinase and p90rsk and its regulation during in vitro maturation of cumulus enclose rabbit oocytes. Zygote Nov, 2002, 10(4): 311-316
    [68] Fan HY, Huo LJ, Chen DY, Schatten H, Sun QY. Protein kinase C and mitogen-activated protein kinase cascade in mouse cumulus cells: cross talk and effect on meiotic resumption of oocyte. Biol Reprod, 2004 Arp, 70(14): 1178-1187
    [69] Dows SM, Cottom J, Hunzicker-Dunn M. Protein kinase C and meiotic regulation in isolated mouse oocytes. Mol Reprod Dev, 2001, 58(1): 101-115
    [70] Zelarayan L, Oterino J, Buchler MI. Spontaneous maturation in Bufo arenarum oocyte: participation of protein kinase C. Zygote, 1996, 4(4): 257-262
    [71] Fan HY, Li MY, Tong C, Chen DY, Xia GL, Song XF, Schatten H, Sun QY. Inhibitory effects of cAMP and protein kinase C on meiosis maturation and MAP kinase phosphorylation in porcine oocyte. Mol Reprod Dev, 2002, 63(4): 480-487
    [72] Su YQ, Xia GL, Byskov AG, Fu GD, Yang CR. Protein kinase C and intracellular calcium are involved in follicle-stimulating hormone-mediated meiotic resumption of cumulus cell-enclosed porcine oocytes in hypoxanthine-supplemented medium. Mol Reprod Dev, 1999, 53(1): 51-58
    [73] Zheng ZY, Li QZ, Chen DY, Schatten H, Sun QY. Translocation of phospho-protein kinase Cs implies theirs roles in meiotic-spindle organization, polar-body emission and nuclear activity in mouse egg. Reproduction, 2005, 129(2): 229-234
    [74] Avazeri N, Courtot AM, Lefevre B. Regulation of spontaneous meiosis resumption in mouse oocyte by various conventional PKC isoenzynes depends in cellular compartmentalization. J Cell Sci, 2004, 117 (pt 21): 4969-4978
    [75] Viveiros MM, o’brien M, Epping J. Protein kinase C activity regulates the onset of anaphase I in mouse oocytes. Biol Reprod, 2004, 75(5): 1525-1532
    [76] Quan HM, Fan HY, Meng XQ, Huo LJ, Chen DY, Schatten H, Yang PM, Sun QY. Effect of PKC activation on the meiosis on the meiotic maturation, fertilization and early embryonic development. Zygote, 2003 , 11(4): 329-337
    [77] Kaufman G, Dharmarajan AM, Takechara Y, Cropp CS, Wallach EE. The role of protein kinase-C in gonadotrophin-induced ovulation in the in vitro perfused rabbit ovary. Endocrinology, 1992, 131(4): 1804-1809
    [78] Lu Z, Xia G, Zhang J. Protein kinase C, rather than protein A is involved in follicle-stimulating hormone mediated meiotic resumption of mouse cumulus cell-enclosed oocyte in hapoxanthine-supplement medium. Mol Cell Endocrinol, 2001, 182(2): 225-332
    [79] Drazen DL, Klein SL, Burnett AL, Wallach EE, Crone JK, Huang PL, Nelson RJ. Reproductive function in female mice lacking the gene for endothelial nitric oxide synthase. Nitric oxide, 1999 Oct, 3(5): 366-374
    [80] Dunnam RC, Hill MJ, Lawson DW, Dunbar JC. Ovarian hormone secretory response to gonadotropins and nitric oxide following chironic nitric oxide deficiency in the rat. Biol Reprod, 1999, 60(4): 959-963
    [81] 陶勇,夏国良.一氧化氮与猪卵母细胞减数分裂成熟: [博士学位论文].北京,中国 农业大学,2004.
    [82] Yamauchi J, Miyazaki T, Lwasaki S, Kishi I, Kuroshima M, Tei C, Yoshimuar Y. Effects of nitric oxide on ovulation and ovarian steroidogensis and prostaglandin production in the rabbit. Endocrinology, 1997 Sep, 138(9): 3630-3637
    [83] Janlonka-Schariff A, Basuray R, Olso LM. Inhibitors of nitric oxide synthase influence oocyte maturation in rats. J Soc Gynecol Invest, 1999, 6: 95-101
    [84] Janlonka-Schariff A,Olson LM. Hormonal regulation of nitric oxide synthase and their cell-specific expression during follicular development in the rat ovary. Endocrinology,
     1997, 138(1): 460-468
    [85] Janlonka-Schariff A, Olson LM. Nitric oxide is essential for optimal meiotic maturation of murine cumulus-oocyte complexes in vitro. Mol Reprod Dev, 2000, 55: 412-421
    [86] Janlonka-Schariff A, Olson LM.The role of nitric oxide in oocyte meiotic maturation and ovulation meiotic abnormalities of endothelial nitric synthase knock-out mouse oocyte. Endocrinology, 1998, 139(6): 2944-2954
    [87] Bu SM,Xia GL,Tao Y. Dual effects of nitric oxide on meiotic maturation of mouse cumulus cell-enclosed oocytes in vitro. Mole Cell Endocrinol, 2003, 207: 21-30
    [88] Arraztoa JA, Zhou J, Marcu D, Cheng C, Bonner R, Chen M, Xiang C, Brownstein M, Msisey K, Imarai M, Bondy C. Indentification of gene express in primate primordial oocyte. Hum Reprod, 2005, 20(2): 476-483
    [89] Sirard MA, Florman HM, Leibfried Rutledge ML, Barnes FL, Sims ML, First NL.Timing of nuclear progression and protein synthesis necessary for meitotic maturation of bovine oocyte. Biol Reprod. 1989, 40(6): 1257-1263
    [90] Kastrop M, Hulshot SC, Bevers MM, Destree OH, Kruip TA. The effects of alpha-amanitin and cyclohexinide on nuclear progression, protein synthesis, and phosphorylation during bovine oocyte maturation in vitro. Mol Reprod Dev, 1991, 283(3): 249-254
    [91] Dalbies-Tran R. Use of heterologus complementary DNA screening to analyze bovine oocyte transcription and evolution during in vitro maturation. Biol Reprod, 2003, 68(1): 252-261
    [92] Krischek C, Meinecke B. In vitro maturation of bovine oocytes requires polyadenylation condensation, spindle assemble, MPF and MPF kinase activation. Anim Reprod Sci, 2002, 73(3-4): 129-140
    [93] Polanshi Z, Ledan E, Brunet S, Louvet S, Verlhac MH, Kubiak JZ, Maro B. Cyclin synthesis controll the progression of meiotic maturation in mouse oocyte. Development, 1998, 15(24): 4989-4997
    [94] Sun FZ, Moor RM. Nuclear-cytopalsmic interactions during ovine oocyte maturation. Development, 1991, 111(1): 171-180
    [95] Magnusson C, Bar Ami S, Braw R, Tsafriri A. Oxygen consumption by rat oocytes and cumulus cells during induced atresia. J Reprod Fertil, 1983, 68(1): 97-103
    [96] Fagbohun CF, Downs SM. Requirement for glucose in ligand–stimulated meiotic maturation of cumulus cell-enclosed mouse oocyte. J Repprod Fertil, 1992, 96(2):
     681-697
    [97] Geshi M, Takenouchi N, Yamauchi N, Nagai T. Effects of sodium pyruvate in nonserum maturation medium on maturation, fertilization, and subsequenet development of bovine oocyte with or without cumulus cells. Biol Reprod, 2000, 63(6): 1730-1734
    [98] Galli C, Moor RM. Somatic cell and G2 to M-phase transition in sheep oocytes. Reprod Nutr Dev, 1991, 31(2): 127-134
    [99] Fagbohum CF, Downs SM. Metabolic compling and ligand-stimulated meiotic maturation in the mouse oocyte-cumulus complex. Biol Reprod, 1991, 45(6): 851-859
    [100] Downs SM. A gap-junction-mediated signal, rather than an external paracrine factor, predominates during meiotic induction isolated mouse oocytes. Zygote, 2001, 9(1): 71-82
    [101] Lonergan P, Carlona C, Van Langendonck A, Donnay I, Khatir H, Mermillod P. Role of epidermal growth factor in bovine oocyte maturation and preimplantation embryo. Biol Reprod, 1996, 54(6): 1420-1429
    [102] Lorenzo PL, Rebollar PG, Illera MJ, Illera JC, Illera M, Alvarino JM. Stimulatory effect of insulin-like growth factor I and epidermal growth factor on the maturation of rabbit oocyte. Reprod Fertil, 1996 , 107(1): 109-117
    [103] Lorenzi PL, Illera MJ, Illera JC, Illera M. Enhancement of cumulus expansion and nuclear maturation during bovine oocyte maturation in vitro by addition of epidermal growth and insulin-like growth factor I. J Reprod Fertil, 1994, 101(3): 697-701
    [104] Lorenzo P, Illera MJ, Illera JC, Illera M. Specific actions of growth factors (EGF and IGF-I) on the in vitro maturation of bovine oocytes. Rev Esp Fisiol, 1993, 49(4): 265-270
    [105] De La Fuente R,Epping J. Transcriptional activity of the mouse oocyte genome companion granulose cells modulate transcription and chromatin remodeling. Dev Biol, 2001, 229(1): 224-236
    [106] Byskov AG, Yding Andersen C, Hossaini A, Guoliang X. Cumulus cells of oocyte-cumulus complexes secretion a meiosis-activating substance when stimulated with FSH. Mol Reprod Dev, 1997, 46(3): 296-305
    [107] Motlik J, Nagai T, Kikuchi K. Resumption of meiosis in pig oocyte cultured with cumulus and parietal granulose cells in the effect of protein synthesis inhibition. J Exp Zool, 1991, 259(3): 386-391
    [108] Hanshimoto S, Saeki K, Nagao Y, Mianmi N, Yamada M, Utsumi K. Effects of cumulus density during in vitro maturation of the developmental competence of bovine oocyte. Theriogenology, 1998, 50(1): 334-335
    [109] de Mato DG, Furnus CC, Moses DF. Glutathione synthesis during in vitro maturation of bovine oocytes : role of cumulus cells. Biol Reprod, 1997, 57(6): 1420-1425
    [110] Bing YZ, Hirao Y, Iga K, Che LM, Takenouchi N, Kuwayama M, Fuchimoto D, Rodriguez-Martinez H, Nagai T. In vitro maturation and glutathione synthesis of porcine oocytes in the presence or absence of cysteamine under different oxygen tensions: role of cumulus cells. Reprod Fertil Dev, 2002, 14(3-4): 125-131
    [111] Tatemoto H, Sakurai N, Muto N. Protection of porcine oocyte against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol Reprod, 2000, 63(3): 805-810
    [112] Perze GI, Tilly JL. Cumulus cells are required for the increased apoptotic potential in oocytes of aged mice. Hum Reprod. 1997, 12(12): 2781-2783
    [113] Warriach HM, Chohan KR. Tickness of cumulus cell layer is a significant factor in meiotic competence of buffalo oocyte. J Vet Sci, 2004, 5(3): 247-251
    [114] Van de Velde H, De Vos A, Joris H, Nagy ZP, Van Steirteghem AC. Efectt of timing of oocyte denudation and micro-injection on survival, fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod, 1998, 13(11): 3160-3164
    [115] Liu H, Krey LC, Zhang J, Grifo JA. Ooplasmic influece on nuclear function during the metaphase- Ⅱ -interphase transition in mouse oocytes. Biol Reprod, 2001, 65(6): 1794-1799
    [116] Chang HC, Liu H, Zhang J, Grifo J, Krey LC. Developmental incompentency of denuded mouse oocyte undergoing maturation in vitro is ooplasmic in nature and is associated with aberrant Oct-4 expression. Hum Reprod, 2005 [Epub ahead of print] PMID: 15817588
    [117] Lu KL. Birth of twins after transfer of cattle embryos produced by in vitro technique. Vet Rec, 1988, 122: 539-540.
    [118] Nakagata N. Production of normal young following transfer of mouse embryos obtained in vitro fertilization between cryopreserved gametes. J Reprod Fert, 1993, 99: 77-80
    [119] Abeydeera LR, Johnson LA, Welch GR, Wang WH, Boquest AC, Cantley TC, Rieke A, Day BN. Birth piglets preselected for gender following in vitro fertilization of in vitro matured pig oocytes by X and Y chromosome bearing spermatozoa sorted by high speed flow cytometry. Theriogenology, 1998, 50(7): 981-988.
    [120] Armstrong DT, Kotaras PJ, Earl CR. Advances in production of embryos in vitro from juvenile and prepubertal oocytes from the calf and lamb. Reprod Fertil Dev, 1997, 9(3): 333-339.
    [121] Sutton ML, Gilchrist RB, Thompson JG. Effects of in vivo and in vitro environment on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Human reproduction update, 2003, 9(1): 35-48
    [122] Fagbohun CF, Downs SM. Metabolic coupling and lingand-stimulated meiotic maturation in themouse oocyte-cumulus cell complex. Biol Reprod, 1991, 45: 851-959
    [123] 秦鹏春, 谭景和, 吴光明, 王林安, 杨庆章, 冯怀亮, 郝艳红, 张秋明, 徐立滨. 猪卵巢卵 母细胞体外成熟与体外受精的研究. 中国农业科学,1995, 28(3): 58-66
    [124] Lu LH, Yue WB. Study on in vitro maturation of goat oocytes with different grades. J Shanxi Agric Univ. 2004, 3: 251-252
    [125] Colonna R, Mangia F. Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes. Biol Reprod, 1983, 28: 797-803
    [126] Kim KS, Minami N, Yamada M, Utsumi K. Follicular cells affect the fertilizability and developmental competency of bovine oocyte in vitro. Reprod Fertil Dev, 1997, 9(8): 763-766
    [127] 吴光明. 猪卵母细胞体外成熟的研究. 华南师范大学学报(自然科学版)1994, 1: 1-6
    [128] 杨增明, 孙青原,夏国良. 生殖生物学. 北京: 科学出版社, 2005, 93-94
    [129] Masaya G, Naoki T, Nobuhiko Y, Takashi N. Effect of sodium pyruvate in nonserum maturationmedium on maturation, fertilization and subsequent without cumulus cell. Biol Reprod, 2000, 63:1730-1734
    [130] Downs SM. A gap-junction-mediated signal, rather than an external paracrine factor, predominates during meiotic induction isolated mouse oocytes. Zygote, 2001, 9(1): 71-82
    [131] Wongsrikeao P, Otoi T, Murakami M, Karja NW, Budiyanto A, Murakami M, Nii M, Suzuki T, Relation between DNA fragmentation and nuclear status of in vitro-maturation porcine cocytes: role of cumulus cells. Reprod Fertic Dev, 2005, 16(8): 773-780
    [132] 李亚东. 颗粒细胞卵泡液对山羊卵泡卵母细胞体外成熟和体外受精的影响: [硕 士学位论文]. 扬州: 扬州大学
    [133] Gran DG. Qualitative and quantitative structural changes during pig oocyte maturation. J Reprod Fert,1985, 74: 237-245
    [134] Bing Y, Che L, Hirao Y, Takenouchi N. Parthenogenetic activation and subsequent development of porcine oocyte activated by a combined electric pulse and butyrolactone
     I treat. J Reprod Dev, 2003, 49(2): 159-166
    [135] 王斌, 范必勤. 兔卵母细胞电刺激孤雌激活及体外受精. 畜牧兽医学报. 1994, 25(6): 507-512
    [136] 廉莉, 廉颖, 吴昱琪, 徐营, 朱子玉, 雷蕾, 陈大元. 兔卵母细胞的孤雌激活. 中国兽医学 报. 2003, 33(4): 7-20
    [137] Haghighat N, Van Winkle LJ. Development change in follicular cell enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system. Gly Exp Zool, 1990, 253: 71-82
    [138] Brower PT, Schultz RM. Intercellular communication between granulose cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol, 1982, 90: 144-153
    [139] Wert SE, Larsen WJ. Meiotic resumption and gap junction modulation in the cultured rat cumulus-oocyte complex. Gamete Res, 1989, 22(2): 143-162
    [140] Pant D, Reynolds LP, Luther JS, Borowicz PP, Stenbak TM , Bilsk JJ, Weigl RM, Zopes F, Petry K, Johnson ML, Redmer DA, Grazul-Bilska AT. Expression of connexin 43 and gap junctional intercellular communication in the cumulus-oocyte complex in sheep. Reprodcution, 2005, 129(2): 191-200
    [141] Erickson GF, Li D, Sadrkhanllo R, Liu XJ,Shimasaki S, Ling N. Extrapituitary actions of gonadotropin-releasing hormone stimulation of insulin-like growth factor bindingp protein-4 and atresia. Endocrinology, 1994, 134(3): 1365-1372
    [142] Richard FJ, Sirard MA. Theca cell monolayers that inhibit maturation of bovine oocytes show differences in their protein secretion pattern. Mol Reprod Dev, 1998, 50(2): 200-206
    [143] G?tze M, Kauffold P, Schuffenhauer A, Torner H, Spitschak M. The inhibiton of meiosis of bovine oocyte using biologic of synethetic inhibitors, Arch Exp Veterinarmed, 1990,44(1): 19-27
    [144] Modia S, Luciano AM, Vassena R, Barldi-Scesi L, Lauria A, Gandolfi F. Oocyte developmental competence after in vitro maturation depends on the persistence of cumulus-oocyte communications which are linked to the intracellular concentration of cAMP. Ital J Anat Embryol. 2001, 106(2 Suppl 2): 241-248
    [145] Andersen CY. Effect of glucocorticoids on spontaneous and follicle-stimulating hormone induced oocyte maturation in mouse oocyte during culture. J Steroid Biochem Mol Biol, 2003, 85(2-5): 423-427
    [146] Bilodeau-Goessel S. Effect of phosphodiesterase inhibitor on spontaneous nuclear maturation andcAMP concentration in bovine oocytes. Theriogenology, 2003, 60(9): 1679-1690
    [147] Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A, Modina S. Devlomental capability of denuded bovine oocyte in a co-culture system with intact cumulus-oocyte complexes: Role of cumulus cells, cyclic adenosine 3’, 5’-monophsophate and gultathione. Mol Reprod Dev. 2005, 71(3): 389-97
    [148] Epping JJ, Dows SM. Chemical signal that regulate mammalian oocyte maturation. Biol Reprod, 1984, 30: 1-11
    [149] Amano T, Mori T, Watanabe T. Activation and development of porcine oocyte matured in vitro following injection of iositol 1, 4, 5-trisphosphate. Anim Reprod Sci, 2004, 80(1-2): 101-112
    [150] Xu Z, Williams CJ, Kopf GS, Schultz RM. Maturation-associated increase in IP3 receptor type 1:role in conferring increased IP3 sensitivity and Ca2+ oscillatory behavior in mouse egg. Dev Biol, 2003,254(2): 163-171
    [151] Kastrop PMM, Bevers MM, Destrèe OHJ, Kruip ThAM. Analysis of protein synthesis in morphologically classified bovine follicular oocytes before and after maturation in vitro. Mol Reprod Dev, 1991, 26: 222-226
    [152] Xia G, Bysko AG, Andersen CY. Cumulus cells secrete a meiosis-inducing substance by stimulationwith forskolin and dibutyric cyclic adenosine monophosphate. Mol Reprod Dev, 1994, 39: 17-24
    [153] Xia GL, Kikuchi K, Noguchi J, Izaike Y. Short time priming of pig cumulus-oocyte complexes withFSH and forskolin in the presence of hypoxanthine stimulates cumulus cells to secrete a meiosis-activatingsubstance. Theriogenology, 2000, 53: 1807-1815
    [154] Voznesenskaia TIU. Blashkiv TV, Portnichenko AG. Effect of cumulus and granulose cells on meioticresumption in murine oocytes in vitro. Tsitologiia, 2001, 43(3): 250-253
    [155] Ruan B, Watanabe S, Epping JJ, Kwoh C, Dzidic N, Pang J, Wilson WK, Schroepfer GJ Jr. Sterolsaffecting meiosis: novel chemical syntheses and the biological activity and spectral properties of thesynthetic sterols. J Lipid Res, 1998, 39: 2005-2020
    [156] Byskov AG, Andersen CY, Nordholm, Thogersen H, Xia G, Wassmann O, Andersen JV, Guddal E,Roed T. Chemical structure of sterols that activate oocyte meiosis. Nature, 1995, 374: 559-562
    [157] Coticchio G, Rossi G, Borini A, Gronaahl C, Macchiarelli G, Flamingni C, Fleming S, Cecconi S. Mouse oocyte meiotic resumption and polar body extrusion in vitro are differentially influenced by FSH, epidermal growth factor and meiosis –activating sterol. Hum Reprod, 2004, 19(12): 2193-2198
    [158] Donnay I, Faerge I, Grondahl C, Verhaeghe B, Sayoud H, Ponderato N, Galli C, Lazzari G. Effect ofprematuration, meiosis activating sterol and enriched maturation medium on the nuclear maturation andcompetence to development calf oocytes. Theriogenology, 2004, 62(6): 1093-1097
    [159] Coskum S, Uzumcu M, Lin YC, Friedman CI, Alak BM. Regulation of cumulus cell steroidogenesisby porcine oocyte and preliminary characterization of oocyte-producted factor(s). Biol Reprod, 1995, 53:670-675
    [160] Faerge I, Grondahl C, Ottesen JL, Hyttel P. Autoradiographic localization of specific binding ofmeiosis-activating sterol to cumulus-oocyte complexes from marmoset, cow, and mouse. Biol Reprod,2001, 64: 527-536
    [161] Tsafriri A, Popliker M, Nahum R, Beyth Y. Effect of ketoconazole on ovulatory changes in the rat:implications on the role of a meiosis-activating sterol. Mol Hum Reprod, 1998, 4: 483-489
    [162] de Loos F, Kastrop P, Van Beneden TH, Kruip TA. Heterologous cells contacts and metabolic coupling in bovine cumulus oocyte complexes. Mol Reprod Dev, 1991, 28: 255-259
    [163] Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction, 2001, 121: 647-653
    [164] Ito J, Shimada M, Terada T. Mitogen-activated protein kinase kinase inhibitor suppress cyclin B1 synthesis and reactivation of p34cdc2 kinase, which improves pronuclear formation rate in matured porcine oocyte actvated by Ca2+ ionophore. Biol Reprod, 2004, 70(3): 794-804
    [165] Grupen CG, Mau JC, Mciifatrick SM. Effect of 6-dimethylaminopurine on electrically activated in vitro matured porcine oocyte. Mol Reprod Dev, 2002, 623: 387-396
    [166] Zhou JB, Wu YG, Luo MJ, Han D, Liu LQ, Chang ZL, Tan JH. Factors influencing in vitrofertilization in goats. Acta Zoologica Sinica, 2004, 50(2): 216-221
    [167] Damiani P, Fissore RA, Cibelli JB, Balise JJ, Robl JM, Duby RT. Evaluation of developmental competence, nuclear and ooplasmic maturation of calf oocyte. Reprod Dev, 1996, 45(4): 521-534
    [168] Salamone DF, Damiani P, Fissore RA, Bobi JM, Duby RT. Biochemical and developmental evidencethat ooplasmic maturation of prepubertal bovine oocytes is compromised. Biol Reprod, 2001, 64(6):1761-1768
    [169] Nagashima H, Grupen CG, Ashman RJ, Nottle MB. Devvelopmental competence of in vivo and in vitro matured porcine oocyte after subzonal sperm injection. Mol Reprod, 1996, 45(3): 359-363
    [170] Tabarowski Z, Szoltys M, Bik M, Slomcyzynska M. Atresia of large ovarian follicle of the rat. Folla Histochem Cytobiol, 2005, 43(1): 43-50
    [171]Yamauchi N, Nagai T. Male pronuclear formation in denuded porcine oocyte after in vitro maturationin the presence of cysteamine. Biol Reprod, 1999, 61(3): 828-833
    [172] Boquest AC, Abeydeera LR, Wang WH. Effect of adding reduced gultathione during insemination onthe development of porcine embryos in vitro. Theriogenology, 1999, 51(7): 1311-1319
    [173] Buccione R, Cecconi S, Tatone C, Mangia F, Colonna R. Follicle cell regulation of mammalian oocyte growth. J Exp Zool, 1987, 242(3): 351-354
    [174] Krisher RL, Bavister BD. Responses of oocyte and embryos to the culture environment. Theriogenology, 1998, 49: 103-114
    [175] Rose-Hellekant TA, Libersky-Williamson EA, Bavister BD. Energy substances and amino acid provided during in vitro maturation of bovine oocyte alter acquisition of developmental competence. Zygote, 1998, 6: 285-294
    [176] Zuelke KA, Brackett BG. Effects of luteinizing hormone on glucose metabolism in cumulus-enclosed bovine oocytes matured in vitro. Endocrinology, 1992, 131: 2690-2696
    [177] Rieger D, Loskutoff NM. Change in the metabolism of glucose, pyruvate, glutamine and glycine during maturation of cattle oocyte in vitro. J Reprod Fertil, 1994, 100: 257-262
    [178] Saito T, Hiroi M, Kato T. Development of glucose utilization studied in single oocyte and preimplantation embryos from mice. Reprod, 1994, 50: 266-270
    [179] Cetica PD, Pintos LN, Dalvit GC, Beconi MT. Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life, 2001, 51(1): 57-64
    [180] Liu H, Aoki F. Transcriptional activity associated meiotic competence in fully grown mouse GV oocyte. Zygote, 2002, 10(4): 327-332
    [181] Makrigiannakis A, Coukos G, Christofidou-Solomidoau M, Gour BJ, Radice GL, Blashuk O, Coutifaris C. N-cadherin-mediated human granulose cell adhesion prevents apoptosis: a role in follicular atresia and luteolysis? Am J Pathol. 1999, 154: 1391-1406
    [182] Kim JM, Yoon YD, Tsang BK. Involvement of the Fas/Fas ligand system in p53-mediated granulosacell apoptosis during follicular development and atresia. Endocrinology, 1999, 140(5): 2307-2317
    [183]Yoon SJ, Choi KH, Lee KA. Nitric oxide-mediated inhibition of follicular apoptosis is associated withASP70 induction and Bax suppression. Mol Reprod Dev, 2002, 61(4): 504-510
    [184] Burke CR, Cardenas H, Mussard ML.Ovarian follicles during oestradiol-induced atresia in heifers. Reprodcution, 2005, 129(5): 611-620
    [185] Cheng Y, Xia GL, Su YQ, Fu GD. Study on the mouse oocyte spontaneous maturation andresumption inhibition in vitro. J China Agri University, 1999, 4(5): 16-20
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.