35%氧预处理对低氧诱发PC12细胞死亡的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     活性氧包括超氧阴离子(O2.-)、过氧化氢(H2O2)、羟自由基(.OH)和其它氧化物,过去认为是有细胞毒性的,能够损害脂质、蛋白和DNA。除外这些有害作用外,相当多的证据表明许多刺激因素能够刺激产生小量活性氧,该活性氧可作为对这些刺激反应的第二信使。
     以前认为缺血预处理(IPC)能够保护组织免受损伤。缺血预处理已经作为生物界的一个普遍的细胞保护机制。现在预处理的概念已经扩展到非缺血性应急反应,如活性氧预处理。
     许多刺激可导致活性氧的产生,从而上调细胞外信号调节激酶(ERK)的活性。而且,ERK可以通过激活一系列转录因子而促进B细胞淋巴瘤白血病2(Bcl-2)基因的表达。Bcl-2蛋白家族在调节程序性死亡过程中发挥重要的作用。
     本文旨在研究35%氧气预处理3小时是否能够保护1%氧气诱导的PC12毒性,35%氧气预处理诱导的细胞保护作用是否和活性氧产生,细胞外信号激酶途径及Bcl-2过表达有关。
     方法
     PC12细胞培养液为DMEM液。PC12细胞先用35%O2预处理180min,然后恢复12小时,最后1%O2低氧暴露72小时。在35%O2预处理前培养液换为无血清培养液。相应药物加入时间为35%O2预处理前60min。细胞活力用MTT法测定。细胞内ROS检测采用对过氧化物敏感的荧光探针DCFH-DA和HEt。PC12细胞用脂质体2000和SiRNA按说明书操作转染。ERKmRNA分析采用RT-PCR法。ERK、Bcl-2表达采用Western Blot。
     结果
     1. 35%O2预处理对低氧诱导的PC12细胞的影响1%氧气能导致相当数量的PC12死亡。但该细胞毒性作用能被35%O2预处理3小时恢复12小时逆转(P<0.01),而随后的0、24小时恢复无此作用。
     2. ROS产生PC12在35%O2和pyrogallol组相比21%O2组能够产生更多O2.?,而tempol组产生的O2.?明显少于35%O2组。35%O2预处理产生的H2O2相比21%O2预处理组无明显增多。细胞活力在pyrogallol和35%O2组明显增强,而在tempol组明显减弱。
     3. ERK表达35%O2预处理可以明显增强细胞活力和磷酸化的ERK1/2表达,这些效应可被ERK信号通路阻止剂PD98059而非PKA/PKC和PI3k/Akt通路阻止剂H7和wortmannin明显减弱。
     35%O2诱导的磷酸化ERK1/2的过表达可被4-羟-tempol明显减弱。用21%O2和20μMpyrogallol预处理同样能够诱导磷酸化ERK1/2的大量表达。而35%O2和过氧化氢酶预处理组和35%O2预处理组,以及21% O2和30μM H2O2预处理组和21% O2预处理组磷酸化的ERK1/2表达无明显区别。
     4. ERK SiRNA诱导的PC12细胞效应RT-PCR显示RNA干扰后ERKmRNA表达明显减少。Western blot分析显示SP组相比NP组总的和磷酸化的ERK1/2蛋白表达量明显受到抑制。结果显示转染SiRNA的PC12细胞相比正常细胞活力明显减弱。
     5. Bcl-2表达Bcl-2蛋白和磷酸化的ERK蛋白在35%O2预处理组相比其它组表达明显增加,而在PD组和SiRNA组相比35%O2预处理组和21%O2预处理组表达明显下降。
     结论
     1. 35%O2预处理3小时恢复12小时能够保护低氧诱导的PC12细胞毒性。
     2. 35%O2预处理的PC12能够产生O2.?,而O2.?在抵抗低氧诱导的PC12细胞毒力方面发挥关键作用。
     3. 35%O2预处理细胞保护作用的的信号转导途径为MAPK。
     4. ERK的激活导致Bcl-2蛋白的过表达,Bcl-2在低氧诱导的PC12细胞毒性中发挥关键的保护作用。
Reactive oxygen species, the collective term for superoxide anion (O2.-), hydrogen peroxide (H2O2), hydrol radical (.OH) and others, have been traditionally regarded as cytotoxic, with the potential to cause damage to lipids, protein, and DNA. In contrast to this harmful condition, considerable evidence show that various stimuli can stimulate the enzymatic generation of lower levels of ROS, acting as second messengers in response to these factors.
     Previous studies have indicated that ischemic preconditioning (IPC) can protect tissues against injury. Now, the concept has been extended to preconditioning triggered by non-ischemic stress, such as generation of reactive oxygen radicals.
     Extracellular signal-regulated kinase (ERK), a prototype member of the mitogen-activated protein kinase (MAPK) family, is up-regulated by reactive oxygen species production in response to numerous stimuli. Moreover, ERK activation promotes Bcl-2 gene expression through a variety of transcription factors activation. The Bcl-2 protein family has an important role in the regulation of programmed cell death.
     This article is designed to investigate whether 35% oxygen preconditioning for 3 hours can protect PC12 cells against the death induced by hypoxia (1% O2), and whether 35% oxygen induced adaptive cytoprotection is related to the generation of ROS, ERK signal-transduction pathway, and the overexpression of Bcl-2.
     Methods
     PC12 cells, were maintained in Dulbecco’s modified Eagle’s medium. PC12 cells were preconditioned with exposure to 35% O2 for 180 min followed by 12 h recovery and subsequent exposure to hypoxia for 72 h. Prior to exposing to 35% O2 and 1% O2, the medium was replaced with serum-free medium. Cells were pre-incubated with related drugs for 60 min before exposing to 35% O2. Viability was measured by MTT method. Intracellular ROS generation was monitored by flow cytometry using peroxide-sensitive fluorescent probe 2’,7’-dichlorofluorescein diacetate and dihydroethidium. PC12 cells were transfected using lipofectamine 2000 and ERK SiRNA, as recommended by manufacturer's instructions. ERK mRNA was detected by RT-PCR according to the manufacturer's protocol. Western Blot was performed to estimate the expression of ERK and Bcl-2
     Results
     1. cell viability Hypoxia could cause considerable PC12 cells death. But the effect was inhibited by preconditioning with 35% O2 for 3 h followed by 12 h recovery and no efffect was found by 0 h or 24 h recovery, while preconditioning by 50% and 75% O2 just showed the opposite results in MTT assay.
     2. ROS production PC12 cells in 35% O2 and pyrogallol group produced more O2.? than that in the 21% O2 group and the O2.? in tempol group decreased significantly than that in the 35% O2 group. The production of H2O2 by 35% O2 preconditioning did not increased significantly compared with that of 21% O2 preconditioning. The cell viability increased significantly in pyrogallol and 35% O2 group, and reduced significantly in tempol group.
     3. ERK expression Thirty-five percent oxygen pretreatment significantly enhanced the cell viability and activated ERK1/2 expression, and these effect was obviously attenuated by PD98059, not by H7 and wortmannin. The activated ERK1/2 overexpression induced by 35% O2 was obviously reduced by treatment with 4-hydroxyl-tempol. Preconditioning with 21% O2 and pyrogallol, could also induced the overexpression of phosphorylated ERK1/2. Contrastively pretreatment with 35% O2 and catalase, or preconditioning with 21% O2 and H2O2 did not change the ERK1/2 expression obviously compared with that of 35% O2 or 21% O2 preconditioning respectively.
     4. ERK SiRNA RT-PCR analysis showed that ERK mRNA expression was remarkably inhibited by SiRNA. The expression of total and activated ERK1/2 protein in SP group was strongly suppressed. The viability of PC12 cells tranfected with ERK SiRNA was remarkably reduced than that of normal PC12 cells.
     5. Bcl-2 expression The levels of Bcl-2 and phosphorylated ERK expression increased obviously in 35% O2 group compared with that in other groups and decreased significantly in PD group and SiRNA group compared with that in 21% O2 or 35% O2 group.
     Conclusion
     1. 35% O2 preconditioning for 3 h followed by 12 h recovery could protect PC12 cells against death induced by hypoxia.
     2. PC12 cells preconditioned with 35% O2 could generate O2.?, which played a vital role in protecting PC12 cell against cytotoxicity induced by hypoxia.
     3. MAPK signal transduction pathway was involved in the cytoprotective effect of 35% O2 preconditioning.
     4. ERK signal pathway was necessary to the overexpression of the Bcl-2 protein in PC12 cells preconditioned with 35%O2, and Bcl-2 played an important role in this process.
引文
[1] Bhandari, V.; Elias, J. A. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med 41:4-18; 2006.
    [2] Zaher, T. E.; Miller, E. J.; Morrow, D. M.; Javdan, M.; Mantell, L. L. Hyperoxia- induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med 42:897-908; 2007.
    [3] Seifried, H. E.; Anderson, D. E.; Fisher, E. I.; Milner, J. A. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567-579; 2007.
    [4] Fuh, K. C.; Meneshian, A.; Patel, C. B.; Takiar, V.; Bulkley, G. B. Signal transduction by reactive oxygen species: alternative paradigms for signaling specificity. Surgery 131:601-612; 2002.
    [5] Chandel, N. S.; Budinger, G. R. The cellular basis for diverse responses to oxygen. Free Radic Biol Med 42:165-174; 2007.
    [6] Hensley, K.; Robinson, K. A.; Gabbita, S. P.; Salsman, S.; Floyd, R. A. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28:1456-1462; 2000.
    [7] Fialkow, L.; Wang, Y.; Downey, G. P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 42:153-164; 2007.
    [8] Fleury, C.; Mignotte, B.; Vayssiere, J. L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131-141; 2002.
    [9] Sumbayev, V. V.; Yasinska, I. M. Regulation of MAP kinase-dependent apoptotic pathway: implication of reactive oxygen and nitrogen species. Arch Biochem Biophys 436:406-412; 2005.
    [10] Cave, A.; Garlick, P. Re: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. J Mol Cell Cardiol 32:1759-1760; 2000.
    [11] Sun, X. C.; Li, W. B.; Li, Q. J.; Zhang, M.; Xian, X. H.; Qi, J.; Jin, R. L.; Li, S. Q. Limb ischemic preconditioning induces brain ischemic tolerance via p38 MAPK. Brain Res 1084:165-174; 2006.
    [12] Ajamieh, H.; Merino, N.; Candelario-Jalil, E.; Menendez, S.; Martinez-Sanchez, G.; Re, L.; Giuliani, A.; Leon, O. S. Similar protective effect of ischaemic and ozone oxidativepreconditionings in liver ischaemia/reperfusion injury. Pharmacol Res 45:333-339; 2002.
    [13] Bigdeli, M. R.; Khoshbaten, A. In vivo preconditioning with normobaric hyperoxia induces ischemic tolerance partly by triggering tumor necrosis factor-alpha converting enzyme/tumor necrosis factor-alpha/nuclear factor-kappaB. Neuroscience 153:671-678; 2008.
    [14] Ravati, A.; Ahlemeyer, B.; Becker, A.; Krieglstein, J. Preconditioning-induced neuroprotection is mediated by reactive oxygen species. Brain Res 866:23-32; 2000.
    [15] Tahep ld, P.; Valen, G.; Starkopf, J.; Kairane, C.; Zilmer, M.; Vaage, J. Pretreating rats with hyperoxia attenuates ischemia-reperfusion injury of the heart. Life Sci 68:1629-1640; 2001.
    [16] Ruiz-Ramos, R.; Cebrian, M. E.; Garrido, E. Benzoquinone activates the ERK/MAPK signaling pathway via ROS production in HL-60 cells. Toxicology 209:279-287; 2005.
    [17] Yang, H. Y.; Kim, J.; Chung, G. H.; Lee, J. C.; Jang, Y. S. Cross-linking of MHC class II molecules interferes with phorbol 12,13-dibutyrate-induced differentiation of resting B cells by inhibiting Rac-associated ROS-dependent ERK/p38 MAP kinase pathways leading to NF-kappaB activation. Mol Immunol 44:1577-1586; 2007.
    [18] Chen, Z. H.; Na, H. K.; Hurh, Y. J.; Surh, Y. J. 4-Hydroxyestradiol induces oxidative stress and apoptosis in human mammary epithelial cells: possible protection by NF-kappaB and ERK/MAPK. Toxicol Appl Pharmacol 208:46-56; 2005.
    [19] Chicoine, L. M.; Bahr, B. A. Excitotoxic protection by polyanionic polysaccharide: evidence of a cell survival pathway involving AMPA receptor-MAPK Interactions. J Neurosci Res 85:294-302; 2007.
    [20] Jover-Mengual, T.; Zukin, R. S.; Etgen, A. M. MAPK signaling is critical to estradiol protection of CA1 neurons in global ischemia. Endocrinology 148:1131-1143; 2007.
    [21] Tsao, Y. P.; Ho, T. C.; Chen, S. L.; Cheng, H. C. Pigment epithelium-derived factor inhibits oxidative stress-induced cell death by activation of extracellular signal-regulated kinases in cultured retinal pigment epithelial cells. Life Sci 79:545-550; 2006.
    [22] Wu, T. W.; Wang, J. M.; Chen, S.; Brinton, R. D. 17Beta-estradiol induced Ca2+ influx via L-type calcium channels activates the Src/ERK/cyclic-AMP response element binding protein signal pathway and BCL-2 expression in rat hippocampal neurons: apotential initiation mechanism for estrogen-induced neuroprotection. Neuroscience 135:59-72; 2005.
    [23] Abondanza, T. S.; Oliveira, C. R.; Barbosa, C. M.; Pereira, F. E.; Cunha, R. L.; Caires, A. C.; Comasseto, J. V.; Queiroz, M. L.; Valadares, M. C.; Bincoletto, C. Bcl-2 expression and apoptosis induction in human HL60 leukaemic cells treated with a novel organotellurium(IV) compound RT-04. Food Chem Toxicol 46:2540-2545; 2008.
    [24] Moon, D. O.; Kim, M. O.; Choi, Y. H.; Kim, N. D.; Chang, J. H.; Kim, G. Y. Bcl-2 overexpression attenuates SP600125-induced apoptosis in human leukemia U937 cells. Cancer Lett 264:316-325; 2008.
    [25] Xiao-Qing, T.; Jun-Li, Z.; Yu, C.; Jian-Qiang, F.; Pei-Xi, C. Hydrogen peroxide preconditioning protects PC12 cells against apoptosis induced by dopamine. Life Sci 78:61-66; 2005.
    [26] Han, Y. H.; Kim, S. Z.; Kim, S. H.; Park, W. H. Apoptosis in pyrogallol-treated Calu-6 cells is correlated with the changes of intracellular GSH levels rather than ROS levels. Lung Cancer 59:301-314; 2008.
    [27] Park, W. H.; Han, Y. H.; Kim, S. H.; Kim, S. Z. Pyrogallol, ROS generator inhibits As4.1 juxtaglomerular cells via cell cycle arrest of G2 phase and apoptosis. Toxicology 235:130-139; 2007.
    [28] Yamada, J.; Yoshimura, S.; Yamakawa, H.; Sawada, M.; Nakagawa, M.; Hara, S.; Kaku, Y.; Iwama, T.; Naganawa, T.; Banno, Y.; Nakashima, S.; Sakai, N. Cell permeable ROS scavengers, Tiron and Tempol, rescue PC12 cell death caused by pyrogallol or hypoxia/reoxygenation. Neurosci Res 45:1-8; 2003.
    [29] Atorino, L.; Di Meglio, S.; Farina, B.; Jones, R.; Quesada, P. Rat germinal cells require PARP for repair of DNA damage induced by gamma-irradiation and H2O2 treatment. Eur J Cell Biol 80:222-229; 2001.
    [30] Iles, K. E.; Dickinson, D. A.; Watanabe, N.; Iwamoto, T.; Forman, H. J. AP-1 activation through endogenous H(2)O(2) generation by alveolar macrophages. Free Radic Biol Med 32:1304-1313; 2002.
    [31] Nemoto, T.; Kawakami, S.; Yamashita, F.; Hashida, M. Efficient protection by cationized catalase against H2O2 injury in primary cultured alveolar epithelial cells. J Control Release 121:74-80; 2007.
    [32] Preston, T. J.; Woodgett, J. R.; Singh, G. JNK1 activity lowers the cellular production of H2O2 and modulates the growth arrest response to scavenging of H2O2 by catalase. Exp Cell Res 285:146-158; 2003.
    [33] Germack, R.; Dickenson, J. M. Adenosine triggers preconditioning through MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39:429-442; 2005.
    [34] Guan, C. X.; Cui, Y. R.; Zhang, M.; Bai, H. B.; Khunkhun, R.; Fang, X. Intracellular signaling molecules involved in vasoactive intestinal peptide-mediated wound healing in human bronchial epithelial cells. Peptides 28:1667-1673; 2007.
    [35] Iles, K. E.; Dickinson, D. A.; Wigley, A. F.; Welty, N. E.; Blank, V.; Forman, H. J. HNE increases HO-1 through activation of the ERK pathway in pulmonary epithelial cells. Free Radic Biol Med 39:355-364; 2005.
    [36] Kambe, H.; Kishima, Y.; Kuroda, T.; Enomoto, H.; Ogawa, H.; Nakmaura, H. Protein kinase C inhibitor, H-7 suppresses the growth activity of hepatoma-derived growth factor. Hepatogastroenterology 47:1645-1648; 2000.
    [37] Liu, B.; Shi, Z. L.; Feng, J.; Tao, H. M. Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt. Cell Biol Int 32:494-501; 2008.
    [38] Tomaselli, B.; Podhraski, V.; Heftberger, V.; Bock, G.; Baier-Bitterlich, G. Purine nucleoside-mediated protection of chemical hypoxia-induced neuronal injuries involves p42/44 MAPK activation. Neurochem Int 46:513-521; 2005.
    [39] Tong, K. M.; Shieh, D. C.; Chen, C. P.; Tzeng, C. Y.; Wang, S. P.; Huang, K. C.; Chiu, Y. C.; Fong, Y. C.; Tang, C. H. Leptin induces IL-8 expression via leptin receptor, IRS-1, PI3K, Akt cascade and promotion of NF-kappaB/p300 binding in human synovial fibroblasts. Cell Signal; 2008.
    [40] Wang, X.; Wang, Y.; Kim, H. P.; Choi, A. M.; Ryter, S. W. FLIP inhibits endothelial cell apoptosis during hyperoxia by suppressing Bax. Free Radic Biol Med 42:1599-1609; 2007.
    [41] Zhang, X.; Shan, P.; Sasidhar, M.; Chupp, G. L.; Flavell, R. A.; Choi, A. M.; Lee, P. J. Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lungepithelium. Am J Respir Cell Mol Biol 28:305-315; 2003.
    [42] Tang, X. Q.; Feng, J. Q.; Chen, J.; Chen, P. X.; Zhi, J. L.; Cui, Y.; Guo, R. X.; Yu, H. M. Protection of oxidative preconditioning against apoptosis induced by H2O2 in PC12 cells: mechanisms via MMP, ROS, and Bcl-2. Brain Res 1057:57-64; 2005.
    [43] Heneberg, P.; Draber, P. Regulation of cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils. Curr Med Chem 12:1859-1871; 2005.
    [44] Touyz, R. M. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal 7:1302-1314; 2005.
    [45] Hansen, J. M.; Go, Y. M.; Jones, D. P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46:215-234; 2006.
    [46] Boucher, M. J.; Morisset, J.; Vachon, P. H.; Reed, J. C.; Laine, J.; Rivard, N. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 79:355-369; 2000.
    [47] Galante, J. M.; Mortenson, M. M.; Bowles, T. L.; Virudachalam, S.; Bold, R. J. ERK/BCL-2 Pathway in the Resistance of Pancreatic Cancer to Anoikis. J Surg Res; 2008.
    [48] List, J. F.; He, H.; Habener, J. F. Glucagon-like peptide-1 receptor and proglucagon expression in mouse skin. Regul Pept 134:149-157; 2006.
    [49] Stadheim, T. A.; Kucera, G. L. Extracellular signal-regulated kinase (ERK) activity is required for TPA-mediated inhibition of drug-induced apoptosis. Biochem Biophys Res Commun 245:266-271; 1998.
    [50]Tsujimoto, Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3:697-707; 1998.
    [51] Yang, J.; Liu, X.; Bhalla, K.; Kim, C. N.; Ibrado, A. M.; Cai, J.; Peng, T. I.; Jones, D. P.; Wang, X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129-1132; 1997.
    [52] Goldmacher, V. S.; Bartle, L. M.; Skaletskaya, A.; Dionne, C. A.; Kedersha, N. L.; Vater, C. A.; Han, J. W.; Lutz, R. J.; Watanabe, S.; Cahir McFarland, E. D.; Kieff, E. D.; Mocarski, E. S.; Chittenden, T. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A96:12536-12541; 1999.
    [53] Godefroy, N.; Bouleau, S.; Gruel, G.; Renaud, F.; Rincheval, V.; Mignotte, B.; Tronik-Le Roux, D.; Vayssiere, J. L. Transcriptional repression by p53 promotes a Bcl-2-insensitive and mitochondria-independent pathway of apoptosis. Nucleic Acids Res 32:4480-4490; 2004.
    [54] Gross, A.; McDonnell, J. M.; Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899-1911; 1999.
    [55] Nakazawa, Y.; Kamijo, T.; Koike, K.; Noda, T. ARF tumor suppressor induces mitochondria-dependent apoptosis by modulation of mitochondrial Bcl-2 family proteins. J Biol Chem 278:27888-27895; 2003.
    [56] Oliver, C. L.; Miranda, M. B.; Shangary, S.; Land, S.; Wang, S.; Johnson, D. E. (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Mol Cancer Ther 4:23-31; 2005.
    [57] Kuwana, T.; Newmeyer, D. D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691-699; 2003.
    [58] Antonsson, B. Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256-257:141-155; 2004.
    [59] Subramanian, M.; Shaha, C. Up-regulation of Bcl-2 through ERK phosphorylation is associated with human macrophage survival in an estrogen microenvironment. J Immunol 179:2330-2338; 2007.
    [60] Kumar, P.; Coltas, I. K.; Kumar, B.; Chepeha, D. B.; Bradford, C. R.; Polverini, P. J. Bcl-2 protects endothelial cells against gamma-radiation via a Raf-MEK-ERK- survivin signaling pathway that is independent of cytochrome c release. Cancer Res 67:1193-1202; 2007.
    [61] Chen, J.; Tang, X. Q.; Zhi, J. L.; Cui, Y.; Yu, H. M.; Tang, E. H.; Sun, S. N.; Feng, J. Q.; Chen, P. X. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943-953; 2006.
    [62] Feng, H.; Xiang, H.; Mao, Y. W.; Wang, J.; Liu, J. P.; Huang, X. Q.; Liu, Y.; Liu, S. J.; Luo, C.; Zhang, X. J.; Li, D. W. Human Bcl-2 activates ERK signaling pathway to regulate activating protein-1, lens epithelium-derived growth factor and downstreamgenes. Oncogene 23:7310-7321; 2004.
    [63] Kurland, J. F.; Voehringer, D. W.; Meyn, R. E. The MEK/ERK pathway acts upstream of NF kappa B1 (p50) homodimer activity and Bcl-2 expression in a murine B-cell lymphoma cell line. MEK inhibition restores radiation-induced apoptosis. J Biol Chem 278:32465-32470; 2003.
    [64] Li, J. L.; Zhu, J. H.; Jing, Z. Z.; Chen, Z. C.; Xiao, Z. Q. [G-protein-coupled muscarinic acetylcholine receptor activation up-regulates Bcl-2 and phospho-bad via Ras-ERK-1/2 signaling pathway]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:41-48; 2003.
    [65] Li, X.; Zhang, Q.; Cai, L.; Wang, Y.; Wang, Q.; Huang, X.; Fu, S.; Bai, J.; Liu, J.; Zhang, G.; Qi, J. Inhibitor of growth 4 induces apoptosis in human lung adenocarcinoma cell line A549 via Bcl-2 family proteins and mitochondria apoptosis pathway. J Cancer Res Clin Oncol; 2008.
    [66] Pan, M. H.; Chiou, Y. S.; Cheng, A. C.; Bai, N.; Lo, C. Y.; Tan, D.; Ho, C. T. Involvement of MAPK, Bcl-2 family, cytochrome c, and caspases in induction of apoptosis by 1,6-O,O-diacetylbritannilactone in human leukemia cells. Mol Nutr Food Res 51:229-238; 2007.
    [1] Touyz, R. M. Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid. Redox Signaling 7:1302–1314; 2005.
    [2] Korhonen, R., et al. Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflammation Allergy 4:471–479; 2005.
    [3] Heneberg, P.; Draber, P. Regulation of Cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils. Curr. Med. Chem. 12:1859–1871; 2005.
    [4] Tonks, N. K. Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667–670; 2005.
    [5] Wong, R. K., et al. Advanced glycation end products stimulate an enhanced neutrophil respiratory burst mediated through the activation of cytosolic phospholipase A2 and generation of arachidonic acid Circulation 108:1858–1864; 2003.
    [6] Razavi, H. M., et al. Pulmonary neutrophil infiltration in murine sepsis: role of inducible nitric oxide synthase. Am. J. Respir. Crit. Care Med. 170:227–233; 2004
    [7] Flamand, N., et al. Adenosine, a potent natural suppressor of arachidonic acid release and leukotriene biosynthesis in human neutrophils. Am. J. Respir. Crit. Care Med. 161 (2 Pt 2):S88–S94; 2000.
    [8] Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4:181–189; 2004.
    [9] Kulmacz, R. J.; van der Donk, W. A.; Tsai, A. L. Comparison of the properties of prostaglandin H synthase-1 and -2. Prog. Lipid Res. 42: 377–404; 2003.
    [10] Demple, B. Signal transduction by nitric oxide in cellular stress responses. Mol. Cell. Biochem. 234–235:11–18; 2002.
    [11] Sun, J., et al. Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms: an allosteric function for O2 in S-nitrosylation of the channel. J. Biol. Chem. 278:8184–8189; 2003.
    [12] Quijano, C.; Romero, N.; Radi, R. Tyrosine nitration by superoxide and nitric oxidefluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion. Free Radic. Biol. Med. 39:728–741; 2005.
    [13] ink, M. P. Role of reactive oxygen and nitrogen species in acute respiratory distress syndrome. Curr. Opin. Crit. Care 8:6–11; 2002.
    [14] Bayir, H. Reactive oxygen species. Crit. Care Med. 33 (12 Suppl.): S498–S501; 2005.
    [15] Hansen, J. M.; Go, Y. M.; Jones, D. P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol. 46:215–234; 2006.
    [16] Suzuki, Y. J., et al. Redox control of growth factor signaling: recent advances in cardiovascular medicine. Antioxid. Redox Signaling 7: 829–834; 2005.
    [17] Roskoski, R., Jr. Src protein-tyrosine kinase structure and regulation.Biochem. Biophys. Res. Commun. 324:1155–1164; 2004.
    [18] Chiarugi, P.; Cirri, P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem. Sci. 28:509–514; 2003.
    [19] Alonso, A., et al. Protein tyrosine phosphatases in the human genome. Cell 117:699–711; 2004.
    [20] Singh, D. K., et al. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121:281–293; 2005
    [21] Haddad JJ. Oxygen sensing and oxidant/redox-related pathways.Biochem Biophys Res Commun 2004;316:969–77.
    [22] Qi, M.; Elion, E. A. MAP kinase pathways. J. Cell Sci. 118 (Pt 16): 3569–3572; 2005.
    [23] Clark, A. R. MAP kinase phosphatase 1: a novel mediator of biological effects of glucocorticoids? J. Endocrinol. 178:5–12; 2003.
    [24] Perez-Pinzon, M. A.; Dave, K. R.; Raval, A. P. Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid. Redox Signaling 7:1150–1157; 2005.
    [25] Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002;4:E131–6.
    [26] Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis.Nat Rev Cancer 2003;3:859–68.
    [27] Zanetti M, Katusic ZS, O’Brien T. Adenoviral-mediated overexpression of catalase inhibits endothelial cell proliferation. Am J Physiol Heart Circ Physiol2002;283:H2620–6.
    [28] Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM,Dimmeler S. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 2002;4:743–9.
    [29] Hermann C, Zeiher AM, Dimmeler S. Shear stress inhibits H2O2-induced apoptosis of human endothelial cells by modulation of the glutathione redox cycle and nitric oxide synthase. Arterioscler Thromb Vasc Biol 2002;17:3588–92.
    [30] Kotamraju S, Tampo Y, Keszler A, Chitambar CR, Joseph J, Haas AL, et al. Nitric oxide inhibits H2O2-induced transferrin receptor dependent apoptosis in endothelial cells: role of ubiquitin-protea-some pathway. Proc Natl Acad Sci U S A 2004;100:10653–8.
    [1] Boucher, M. J.; Morisset, J.; Vachon, P. H.; Reed, J. C.; Laine, J.; Rivard, N. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 79:355-369; 2000.
    [2] Galante, J. M.; Mortenson, M. M.; Bowles, T. L.; Virudachalam, S.; Bold, R. J. ERK/BCL-2 Pathway in the Resistance of Pancreatic Cancer to Anoikis. J Surg Res; 2008.
    [3] Anderson, C. N.; Tolkovsky, A. M. A role for MAPK/ERK in sympathetic neuron survival: protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J Neurosci 19:664-673; 1999.
    [4] Haddad, J. J. The role of Bax/Bcl-2 and pro-caspase peptides in hypoxia/reperfusion-dependent regulation of MAPK(ERK): discordant proteomic effect of MAPK(p38). Protein Pept Lett 14:361-371; 2007.
    [5] Jo, E. H.; Lee, S. J.; Ahn, N. S.; Park, J. S.; Hwang, J. W.; Kim, S. H.; Aruoma, O. I.; Lee, Y. S.; Kang, K. S. Induction of apoptosis in MCF-7 and MDA-MB-231 breast cancer cells by Oligonol is mediated by Bcl-2 family regulation and MEK/ERK signaling. Eur J Cancer Prev 16:342-347; 2007.
    [6] Jover-Mengual, T.; Zukin, R. S.; Etgen, A. M. MAPK signaling is critical to estradiol protection of CA1 neurons in global ischemia. Endocrinology 148:1131-1143; 2007.
    [7] Creson, T. K.; Yuan, P.; Manji, H. K.; Chen, G. Evidence for Involvement of ERK, PI3K, and RSK in Induction of Bcl-2 by Valproate. J Mol Neurosci 37:123-134; 2009.
    [8] Willaime-Morawek, S.; Arbez, N.; Mariani, J.; Brugg, B. IGF-I protects cortical neurons against ceramide-induced apoptosis via activation of the PI-3K/Akt and ERK pathways; is this protection independent of CREB and Bcl-2? Brain Res Mol Brain Res 142:97-106; 2005.
    [9] Sarker, K. P.; Biswas, K. K.; Rosales, J. L.; Yamaji, K.; Hashiguchi, T.; Lee, K. Y.; Maruyama, I. Ebselen inhibits NO-induced apoptosis of differentiated PC12 cells via inhibition of ASK1-p38 MAPK-p53 and JNK signaling and activation of p44/42 MAPK and Bcl-2. J Neurochem 87:1345-1353; 2003.
    [10] Schwarz, C. S.; Seyfried, J.; Evert, B. O.; Klockgether, T.; Wullner, U. Bcl-2 up-regulates ha-ras mRNA expression and induces c-Jun phosphorylation at Ser73 viaan ERK-dependent pathway in PC 12 cells. Neuroreport 13:2439-2442; 2002.
    [11] Wang, C. X.; Song, J. H.; Song, D. K.; Yong, V. W.; Shuaib, A.; Hao, C. Cyclin-dependent kinase-5 prevents neuronal apoptosis through ERK-mediated upregulation of Bcl-2. Cell Death Differ 13:1203-1212; 2006.
    [12]Tsujimoto, Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3:697-707; 1998.
    [13] Yang, J.; Liu, X.; Bhalla, K.; Kim, C. N.; Ibrado, A. M.; Cai, J.; Peng, T. I.; Jones, D. P.; Wang, X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129-1132; 1997.
    [14] Goldmacher, V. S.; Bartle, L. M.; Skaletskaya, A.; Dionne, C. A.; Kedersha, N. L.; Vater, C. A.; Han, J. W.; Lutz, R. J.; Watanabe, S.; Cahir McFarland, E. D.; Kieff, E. D.; Mocarski, E. S.; Chittenden, T. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96:12536-12541; 1999.
    [15] Godefroy, N.; Bouleau, S.; Gruel, G.; Renaud, F.; Rincheval, V.; Mignotte, B.; Tronik-Le Roux, D.; Vayssiere, J. L. Transcriptional repression by p53 promotes a Bcl-2-insensitive and mitochondria-independent pathway of apoptosis. Nucleic Acids Res 32:4480-4490; 2004.
    [16] Gross, A.; McDonnell, J. M.; Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899-1911; 1999.
    [17] Nakazawa, Y.; Kamijo, T.; Koike, K.; Noda, T. ARF tumor suppressor induces mitochondria-dependent apoptosis by modulation of mitochondrial Bcl-2 family proteins. J Biol Chem 278:27888-27895; 2003.
    [18] Oliver, C. L.; Miranda, M. B.; Shangary, S.; Land, S.; Wang, S.; Johnson, D. E. (-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Mol Cancer Ther 4:23-31; 2005.
    [19] Kuwana, T.; Newmeyer, D. D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691-699; 2003.
    [20] Bhatt, K.; Feng, L.; Pabla, N.; Liu, K.; Smith, S.; Dong, Z. Effects of targeted Bcl-2 expression in mitochondria or endoplasmic reticulum on renal tubular cell apoptosis. Am J Physiol Renal Physiol 294:F499-507; 2008.
    [21] Antonsson, B. Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256-257:141-155; 2004.
    [22] Castanares, M.; Vera, Y.; Erkkila, K.; Kyttanen, S.; Lue, Y.; Dunkel, L.; Wang, C.; Swerdloff, R. S.; Hikim, A. P. Minocycline up-regulates BCL-2 levels in mitochondria and attenuates male germ cell apoptosis. Biochem Biophys Res Commun 337:663-669; 2005.
    [23] Ghribi, O.; DeWitt, D. A.; Forbes, M. S.; Herman, M. M.; Savory, J. Co-involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res 903:66-73; 2001.
    [24] Murphy, K. M.; Ranganathan, V.; Farnsworth, M. L.; Kavallaris, M.; Lock, R. B. Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ 7:102-111; 2000.
    [25] Yin, X. M. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 10:161-167; 2000.
    [26] Zecchin, K. G.; Seidinger, A. L.; Chiaratti, M. R.; Degasperi, G. R.; Meirelles, F. V.; Castilho, R. F.; Vercesi, A. E. High Bcl-2/Bax ratio in Walker tumor cells protects mitochondria but does not prevent H2O2-induced apoptosis via calcineurin pathways. J Bioenerg Biomembr 39:186-194; 2007.
    [27] Gabriel, B.; Sureau, F.; Casselyn, M.; Teissie, J.; Petit, P. X. Retroactive pathway involving mitochondria in electroloaded cytochrome c-induced apoptosis. Protective properties of Bcl-2 and Bcl-XL. Exp Cell Res 289:195-210; 2003.
    [28] Sun, J.; Li, Z. M.; Hu, Z. Y.; Lin, X. B.; Zhou, N. N.; Xian, L. J.; Yang, D. J.; Jiang, W. Q. ApoG2 inhibits antiapoptotic Bcl-2 family proteins and induces mitochondria-dependent apoptosis in human lymphoma U937 cells. Anticancer Drugs 19:967-974; 2008.
    [29] Takagi-Morishita, Y.; Yamada, N.; Sugihara, A.; Iwasaki, T.; Tsujimura, T.; Terada, N. Mouse uterine epithelial apoptosis is associated with expression of mitochondrial voltage-dependent anion channels, release of cytochrome C from mitochondria, and the ratio of Bax to Bcl-2 or Bcl-X. Biol Reprod 68:1178-1184; 2003.
    [30] Wu, T. W.; Wang, J. M.; Chen, S.; Brinton, R. D. 17Beta-estradiol induced Ca2+ influxvia L-type calcium channels activates the Src/ERK/cyclic-AMP response element binding protein signal pathway and BCL-2 expression in rat hippocampal neurons: a potential initiation mechanism for estrogen-induced neuroprotection. Neuroscience 135:59-72; 2005.
    [31] Subramanian, M.; Shaha, C. Up-regulation of Bcl-2 through ERK phosphorylation is associated with human macrophage survival in an estrogen microenvironment. J Immunol 179:2330-2338; 2007.
    [32] Kumar, P.; Coltas, I. K.; Kumar, B.; Chepeha, D. B.; Bradford, C. R.; Polverini, P. J. Bcl-2 protects endothelial cells against gamma-radiation via a Raf-MEK-ERK- survivin signaling pathway that is independent of cytochrome c release. Cancer Res 67:1193-1202; 2007.
    [33] Chen, J.; Tang, X. Q.; Zhi, J. L.; Cui, Y.; Yu, H. M.; Tang, E. H.; Sun, S. N.; Feng, J. Q.; Chen, P. X. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943-953; 2006.
    [34] Clement, M. V.; Hirpara, J. L.; Pervaiz, S. Decrease in intracellular superoxide sensitizes Bcl-2-overexpressing tumor cells to receptor and drug-induced apoptosis independent of the mitochondria. Cell Death Differ 10:1273-1285; 2003.
    [35] Kurland, J. F.; Voehringer, D. W.; Meyn, R. E. The MEK/ERK pathway acts upstream of NF kappa B1 (p50) homodimer activity and Bcl-2 expression in a murine B-cell lymphoma cell line. MEK inhibition restores radiation-induced apoptosis. J Biol Chem 278:32465-32470; 2003.
    [36] Feng, H.; Xiang, H.; Mao, Y. W.; Wang, J.; Liu, J. P.; Huang, X. Q.; Liu, Y.; Liu, S. J.; Luo, C.; Zhang, X. J.; Li, D. W. Human Bcl-2 activates ERK signaling pathway to regulate activating protein-1, lens epithelium-derived growth factor and downstream genes. Oncogene 23:7310-7321; 2004.
    [37] Li, J. L.; Jing, Z. Z.; Yi, H. [Effects of lithium on the activity of ERK-1/2 signal pathway and expression of Bcl-2 family proteins in the central nervous system in vivo]. Hunan Yi Ke Da Xue Xue Bao 28:330-334; 2003.
    [38] Li, J. L.; Zhu, J. H.; Jing, Z. Z.; Chen, Z. C.; Xiao, Z. Q. [G-protein-coupled muscarinic acetylcholine receptor activation up-regulates Bcl-2 and phospho-bad viaRas-ERK-1/2 signaling pathway]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:41-48; 2003.
    [39] Li, X.; Zhang, Q.; Cai, L.; Wang, Y.; Wang, Q.; Huang, X.; Fu, S.; Bai, J.; Liu, J.; Zhang, G.; Qi, J. Inhibitor of growth 4 induces apoptosis in human lung adenocarcinoma cell line A549 via Bcl-2 family proteins and mitochondria apoptosis pathway. J Cancer Res Clin Oncol; 2008.
    [40] Pan, M. H.; Chiou, Y. S.; Cheng, A. C.; Bai, N.; Lo, C. Y.; Tan, D.; Ho, C. T. Involvement of MAPK, Bcl-2 family, cytochrome c, and caspases in induction of apoptosis by 1,6-O,O-diacetylbritannilactone in human leukemia cells. Mol Nutr Food Res 51:229-238; 2007.
    [41] Siddiqa, A.; Long, L. M.; Li, L.; Marciniak, R. A.; Kazhdan, I. Expression of HER-2 in MCF-7 breast cancer cells modulates anti-apoptotic proteins Survivin and Bcl-2 via the extracellular signal-related kinase (ERK) and phosphoinositide-3 kinase (PI3K) signalling pathways. BMC Cancer 8:129; 2008.
    [42] Ling, X.; Cheng, Q.; Black, J. D.; Li, F. Forced expression of survivin-2B abrogates mitotic cells and induces mitochondria-dependent apoptosis by blockade of tubulin polymerization and modulation of Bcl-2, Bax, and survivin. J Biol Chem 282:27204-27214; 2007.
    [43] Tamura, Y.; Simizu, S.; Osada, H. The phosphorylation status and anti-apoptotic activity of Bcl-2 are regulated by ERK and protein phosphatase 2A on the mitochondria. FEBS Lett 569:249-255; 2004.
    [44] Villedieu, M.; Briand, M.; Duval, M.; Heron, J. F.; Gauduchon, P.; Poulain, L. Anticancer and chemosensitizing effects of 2,3-DCPE in ovarian carcinoma cell lines: link with ERK activation and modulation of p21WAF1/CIP1, Bcl-2 and Bcl-xL expression. Gynecol Oncol 105:373-384; 2007.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.