糖皮质激素—聚乙烯亚胺作为新型基因给药系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在利用糖皮质激素(GC)与细胞质中糖皮质激素受体(GR)特异性结合后转移入细胞核的能力,合成一种具有细胞核靶向能力,低毒、高效的新型阳离子非病毒基因给药载体,并考察了其体内体外的转染效果。采用了效价(potency)和LogP评价GC结构与转染结果的关系。
     利用Traut's试剂将5种糖皮质激素:倍他米松(BEX),地塞米松(DEX),甲基泼尼松龙(MPL)、泼尼松龙(PNL)和氢化可的松(HC)接枝到PEI 1800,得到了5种GC-PEIs,取代度都在1左右。
     通过琼脂糖凝胶电泳,缓冲能力擦拭,DLS粒径测定和Zeta电位测定实验检测了GC-PEIs/pDNA的理化性质,五种GC-PEIs与pDNA的复合物理化性质相似。然而,体外HEK 293和HepG2两种细胞系上的细胞毒性和转染效率测定结果都证实了GC的修饰显著提高了PEI 1800的转染效率,但是五种GC之间有明显差异。针对GC的结构与转染效果的关系考察,采用了分子模拟对接程序考察了5种GC和GR的结合情况,并比较了用效价和LogP值来评价转染效果的可行性。
     同时,采用激光共聚焦显微镜对载体在细胞内进行定位,发现BET-PEI基本实现了细胞核靶向的目的。小鼠体内肝门静脉注射BET-PEI包载pEGFP-N1复合物,倒置荧光显微成像和流式细胞术FCM测定都再一次证明了BET-PEI能显著提高转染效率,并超过PEI 25k的水平。
In this research,five different but similar Glucocorticoids(GC) were conjugated onto low molecular weight polyethylenimine(PEI 1800) by a two-step reaction by using the Traut's reagent.Our purpose was to create a kind of low cytotoxic and highly efficient gene delivery system which could complex with pDNA to form compact nanoparticles and efficiently translocate into the nucleus.
     The GC-PEIs/pDNA complexes were prepared and their physico-chemical properties were investigated.The results showed that the complexes had similar physicochemical properties.The experiments of cytotoxicity and transfection efficiency of the GC-PEIs were also checked in cultured HEK 293 cell line and HepG2 cell line.The results showed that their cytotoxicity were lower than PEI 25k. Furthermore,DEX-PEI/pDNA and BET-PEI/pDNA polyplexes had similar or even greater gene delivery efficiency compared to PEI 25k/pDNA complex.The results of confocal microscopy examination and in vivo experiments on ICR mice confirmed these findings.
     In order to study the relationships between the structure of GC substitute and transfection activity mediated by GC-PEIs,we performed molecular docking program to check the docking and binding energy between GC and GR.Furthermore,we compared two method used to analyze the relationships—by potency or LogP,and conclude that potency could be a potential index to indicate the transfection effects.
引文
[1] J.C.T. van Deutekom, G.J.B. van Ommen, Advances in Duchenne muscular dystrophy gene therapy. Nature Reviews Genetics 4(10) (2003) 774-783.
    [2] S. Ferrari, D.M. Geddes, E. Alton, Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Adv. Drug Deliv. Rev. 54(11) (2002) 1373-1393.
    [3] D.W. Pack, A.S. Hoffman, S. Pun, P.S. Stayton, Design and development of polymers for gene delivery. Nature Reviews Drug Discovery 4(7) (2005) 581-593.
    [4] G.Y. Wu, C.H. Wu. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. Journal of Biological Chemistry 262(10) (1987) 4429-4432.
    [5] J.A. Gruneich, A. Price, J. Zhu, S.L. Diamond, Cationic corticosteroid for nonviral gene delivery. Gene Therapy 11(8) (2004) 668-674.
    [6] L.Huang, E.Viroonchatapan, Hung M,Wagner E.(Eds). Introduction in:Non-viral vectors for gene therapy. Academic Press, New York (1999) 3-22.
    [7] www.wiley.co.uk/genmed/clinical. The journal of gene medicine. 2009 John Wiley and Sons Ltd.
    [8] A. El-Aneed, An overview of current delivery systems in cancer gene therapy. Journal of Controlled Release 94(1) (2004) 1-14.
    [9] M. Elfinger, S. Uezguen, C. Rudolph, Nanocarriers for Gene Delivery - Polymer Structure, Targeting Ligands and Controlled-Release Devices. Current Nanoscience 4(4) (2008) 322-353.
    [10] J.A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, P.L. Feigner, irect gene transfer into mouse muscle in vivo. Science 247(4949) (1990) 1465-1468.
    [11] M.A. Hickman, R.W. Malone, K. Lehmannbruinsma, T.R. Sih, D. Knoell, F.C. Szoka, R. Walzem, D.M. Carlson, J.S. Powell, Gene expression following direct injection of DNA into liver. Human Gene Therapy 5(12) (1994) 1477-1483.
    [12] J.P. Yang, L. Huang, Direct gene transfer to mouse melanoma by intratumor injection of free DNA. Gene Therapy 3(6) (1996) 542-548.
    [13] R. Niven, R. Pearlman, T. Wedeking, J. Mackeigan, P. Noker, L. Simpson-Herren, J.G. Smith, Biodistribution of radiolabeled lipid-DNA complexes and DNA in mice. Journal of Pharmaceutical Sciences 87(11) (1998) 1292-1299.
    [14] J.M. Stribley, K.S. Rehman, H.R. Niu, G.M. Christman, Gene therapy and reproductive medicine. Fertility and Sterility 77(4) (2002) 645-657.
    [15] D.W. Pack, A.S. Hoffman, S. Pun, P.S. Stayton, Design and development of polymers for gene delivery. Nature Reviews Drug Discovery 4(7) (2005) 581-593.
    [16] E.Marshall Clinical research: gene therapy a suspect in leukemia-like disease. Science 2002;298:34-35.
    [17] E. Marshall, Clinical research - Gene therapy a suspect in leukemia-like disease. Science 298(5591) (2002) 34-35.
    [18] G.Y. Wu, C.H. Wu, Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. Journal of Biological Chemistry 262(10) (1987) 4429-4432.
    [19] C.M. Ward, M.L. Read, L.W. Seymour, Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood 97(8) (2001) 2221-2229.
    [20] H. Lee, J.H. Jeong, T.G. Park, PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. Journal of Controlled Release 79(1-3) (2002) 283-291.
    [21] E. Wagner, C. Plank, K. Zatloukal, M. Cotten, M.L. Bimstiel, Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proceedings of the National Academy of Sciences of the United States of America 89(17) (1992) 7934-7938.
    
    [22] C.W. Pouton, P. Lucas, B.J. Thomas, A.N. Uduehi, D.A. Milroy, S.H. Moss, Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. Journal of Controlled Release 53(1-3) (1998) 289-299.
    
    [23] P.L. Feigner, T.R. Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop, GM. Ringold, M. Danielsen, Lipofection-a highly efficient, lipid-mediated dna-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America 84(21) (1987) 7413-7417.
    
    [24] J.O. Radler, I. Koltover, T. Salditt, C.R. Safinya, Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275(5301) (1997) 810-814.
    
    [25] B. Steinberg, F.L. Sorgi, L. Huang, New structures in complex-formation between dna and cationic liposomes visualized by freeze-fracture electron-microscopy. Febs Letters 356(2-3) (1994) 361-366.
    
    [26] Y. Hattori, Y. Maitani, Low-molecular-weight polyethylenimine enhanced gene transfer by cationic cholesterol-based nanoparticle vector. Biological & Pharmaceutical Bulletin 30 (2007) 1773-1778.
    
    [27] T. Chen, Z. Wang, R.T. Wang, T.L. Lu, W.J. Wang, Polyethylenimifie-DNA solid particles for gene delivery. Journal of Drug Targeting 15(10) (2007) 714-720.
    
    [28] M. Hornof, M. de la Fuente, M. Hallikainen, R.H. Tammi, A. Urtti, Low molecular weight hyaluronan shielding of DNA/PEI polyplexes facilitates CD44 receptor mediated uptake in human corneal epithelial cells. Journal of Gene Medicine 10(1) (2008) 70-80.
    [29] J. Gardiner, S. Freeman, M. Leach, A. Green, J. Alcock, A. D'Emanuele, PAMAM dendrimers for the delivery of the antibacterial Triclosan. Journal of Enzyme Inhibition and Medicinal Chemistry 23(5) (2008) 623-628.
    [30] K. Fant, E.K. Esbjorner, P. Lincoln, B. Norden, DNA condensation by PAMAM dendrimers: Self-assembly characteristics and effect on transcription. Biochemistry 47(6) (2008) 1732-1740.
    [31] S. Lee, K. Nam, J.S. Park, J.S. Choi, S.K. Eo, D.J. Yoo, S.H. Kang, Extra- and intranuclear dynamics and distribution of modified-PAMAM polyplexes in living cells: A single-molecule analysis. Bulletin of the Korean Chemical Society 29(8) (2008) 1565-1568.
    [32] Q. Gan, T. Wang, Chitosan nanoparticle as protein delivery carrier - Systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B-Biointerfaces 59(1) (2007) 24-34.
    [33] T. Satoh, S. Kakimoto, H. Kano, M. Nakatani, S. Shinkai, T. Nagasaki, In vitro gene delivery to HepG2 cells using galactosylated 6-amino-6-deoxychitosan as a DNA carrier. Carbohydrate Research 342(11) (2007) 1427-1433.
    [34] N. Nafee, S. Taetz, M. Schneider, U.F. Schaefer, C.M. Lehr, Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: Effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine-Nanotechnology Biology and Medicine 3(3) (2007) 173-183.
    [35] A. Elouahabi, J.M. Ruysschaert, Formation and intracellular trafficking of lipoplexes and polyplexes. Molecular Therapy 11(3) (2005) 336-347.
    [36] M.A. Mintzer, E.E. Simanek, Nonviral Vectors for Gene Delivery. Chemical Reviews 109(2) (2009) 259-302.
    [37] A.C. Oliveira, M.P. Ferraz, F.J. Monteiro, S. Simoes, Cationic liposome-DNA complexes as gene delivery vectors: Development and behaviour towards bone-like cells. Acta Biomaterialia 5(6) (2009) 2142-2151.
    
    [38] A. Masotti, G. Mossa, C. Cametti, G. Ortaggi, A. Bianco, N. Del Grosso, D. Malizia, C. Esposito, Comparison of different commercially available cationic liposome-DNA lipoplexes: Parameters influencing toxicity and transfection efficiency. Colloids and Surfaces B-Biointerfaces 68(2) (2009) 136-144.
    
    [39] M. Han, J.L. Chen, Y. Hu, C.L. He, W.P. Shuai, J.H. Yu, H.L. Chen, W.Q. Liang, T. Mayumi, N. Shinsaku, J.Q. Gao, In Vitro and In Vivo Tumor Suppressive Activity Induced by Human Telomerase Transcriptase-Targeting Antisense Oligonucleotides Mediated by Cationic Liposomes. Journal of Bioscience and Bioengineering 106(3) (2008) 243-247.
    
    [40] P.L. Feigner, T.R. Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop, GM. Ringold, M. Danielsen, lipofection-a highly efficient, lipid-mediated dna-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America 84(21) (1987) 7413-7417.
    
    [41] P.P. Karmali, A. Chaudhuri, Cationic Liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises. Medicinal Research Reviews 27 (2007) 696-722.
    
    [42] R. Okayama, M. Noji, M. Nakanishi, Cationic cholesterol with a hydroxyethylamino head group promotes significantly liposome-mediated gene transfection. Febs Letters 408(2) (1997) 232-234.
    
    [43] Huang Z, Li W, MacKay JA, et al. Thioeholesteml-based lipids for ordered assembly of bioresponsive gene carriers. Molecular Therapy, 2005, 11(3):409-417.
    [44] S.L. Huang, Liposomes in ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev. 60(10) (2008) 1167-1176.
    [45] E.R. Lee, J. Marshall, CS. Siegel, C.W. Jiang, N.S. Yew, M.R. Nichols, J.B. Nierupski, R.J. Ziegler, M.B. Lane, K.X. Wang, N.C. Wan, R.K. Scheule, D.J. Harris, A.E. Smith, S.H. Cheng, Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Human Gene Therapy 7(14) (1996) 1701-1717.
    [46] J.H. Feigner, R. Kumar, C.N. Sridhar, C.J. Wheeler, Y.J. Tsai, R. Border, P. Ramsey, M. Martin, P.L. Feigner, enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. Journal of Biological Chemistry 269(4) (1994) 2550-2561.
    [47] A. Aljaberi, M. Spelios, M. Kearns, B. Selvi, M. Savva, Physicochemical properties affecting lipofection potency of a new series of 1,2-dialkoylamidopropane ased cationic lipids. Colloids and Surfaces B-Biointerfaces 57(1) (2007) 108-117.
    [48] L. Zhu, Y. Lu, D.D. Miller, R.I. Mahato, Structural and Formulation Factors Influencing Pyridinium Lipid-Based Gene Transfer. Bioconjugate Chemistry 19(12) (2008) 2499-2512.
    [49] G.Y. Wu, C.H. Wu, Receptor-mediated in vitro gene transformation by a soluble DNA carrier system, The Journal of Biological Chemistry. 262 (1987) 4429- 4432.
    [50] C.M. Ward, M.L. Read, L.W. Seymour, Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy. Blood 97 (2001) 2221-2229.
    [51] P.R. Dash, M.L. Read, L.B. Barrett, M.A. Wolfert, L.W. Seymour, Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery, Gene Therapy. 6 (1999) 643- 650.
    [52] C.W. Pouton, P. Lucas, B.J. Thomas, A.N. Uduehi, D.A. Milroy, S.H. Moss, Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids, Journal of Controlled Release 53 (1998) 289- 299.
    [53] L. Shewring, L. Collins, S.L. Lightman, S. Hart, K. Gustafsson, J.W. Fabre, A nonviral vector system for efficient gene transfer to corneal endothelial cells via membrane integrins, Transplantation 64 (1997) 763-769.
    [54] M.D. Brown, A. Schatzlein, A. Brownlie, V. Jack, W. Wang, L. Tetley, A.I. Gray, I.F. Uchegbu, Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents, Bioconjugate Chemistry 11 (2000) 880-891.
    [55] H. Lee, J.H. Jeong, T.G. Park, PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity, Journal of Controlled Release 79 (2002) 283- 291.
    [56] W. Suh, J.K. Chung, S.H. Park, S.W. Kim, Anti-JL1 antibody-conjugated poly(L-lysine) for targeted gene delivery to leukemia T cells, Journal of Controlled Release 72 (2001) 171- 178.
    [57] S. Faraasen, J. Voros, G. Csucs, M. Textor, H.P. Merkle, E. Walter, Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate, Pharmaceutical Research 20 (2003) 237- 246.
    [58] J.W. Nah, L. Yu, S.O. Han, C.H. Ahn, S.W. Kim, Artery wall binding peptide-poly(ethylene glycol)-grafted-poly(L-lysine)-based gene delivery to artery wall cells, Journal of Controlled Release 78 (2002) 273-284.
    [59] M.A. Wolfert, P.R. Dash, O. Nazarova, D. Oupicky, L.W. Seymour, S. Smart, J. Strohalm, K. Ulbrich, Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA, Bioconjugate Chemistry 10 (1999) 993-1004.
    [60] S.H. Huh, H.J. Do, H.Y. Lim, D.K. Kim, S.J. Choi, H. Song, N.H. Kim, J.K. Park, W.K. Chang, H.M. Chung, J.H. Kim, Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals 35(3) (2007) 165-171.
    [61] A. Kichler, C. Leborgne, E. Coeytaux, O. Danos, Polyethylenimine-mediated gene delivery: a mechanistic study. Journal of Gene Medicine 3(2) (2001) 135-144.
    [62] P. Lampela, P. Soininen, A. Urtti, P.T. Mannisto, A. Raasmaja, Synergism in gene delivery by small PEIs and three different nonviral vectors. International Journal of Pharmaceutics 270(1-2) (2004) 175-184.
    [63] A. Kichler, M. Chillon, C. Leborgne, O. Danos, B. Frisch, Intranasal gene delivery with a polyethylenimine-PEG conjugate. Journal of Controlled Release 81(3) (2002) 379-388.
    [64] K. Sagara, S.W. Kim, A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. Journal of Controlled Release 79(1-3) (2002) 271-281.
    [65] J.H. Jeong, S.H. Song, D.W. Lim, H. Lee, T.G. Park, DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). Journal of Controlled Release 73(2-3) (2001) 391-399.
    [66] W.C. Tseng, T.Y. Fang, L.Y. Su, C.H. Tang, Dependence of transgene expression and the relative buffering capacity of dextran-grafted polyethylenimine. Molecular Pharmaceutics 2(3) (2005) 224-232.
    
    [67] M. Ogris, R.C. Carlisle, T. Bettinger, L.W. Seymour, Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. Journal of Biological Chemistry 276(50) (2001) 47550-47555.
    
    [68] H.F. Shi, Y. Zhao, X.Q. Zhang, S.C. Jiang, D.J. Wang, C.C. Han, D.F. Xu, Phase transition and conformational variation of N-alkylated branched poly(ethyleneimine) comblike polymer. Macromolecules 37(26) (2004) 9933-9940.
    
    [69] W.J. Guo, R.J. Lee, Efficient gene delivery via non-covalent complexes of folic acid and polyethylenimine. Journal of Controlled Release 77(1-2) (2001) 131-138.
    
    [70] K. Chul Cho, J. Hoon Jeong, H. Jung Chung, C.O. Joe, S. Wan Kim, T. Gwan Park, Folate receptor-mediated intracellular delivery of recombinant caspase-3 for inducing apoptosis. J Control Release 108(1) (2005) 121-131.
    
    [71] Y. Zheng, Z. Cai, X.R. Song, B. Yu, Y.Q. Bi, Q.H. Chen, D. Zhao, J.P. Xu, S.X. Hou, Receptor mediated gene delivery by folate conjugated N-trimethyl chitosan in vitro. International Journal of Pharmaceutics 382(1-2) (2009) 262-269.
    
    [72] H. Yao, S.S. Ng, W.O. Tucker, Y.K.T. Tsang, K. Man, X.M. Wang, B.K.C. Chow, H.F. Kung, G.P. Tang, M.C. Lin, The gene transfection efficiency of a folate-PEI600-cyclodextrin nanopolymer. Biomaterials 30(29) (2009) 5793-5803.
    
    [73] Z.G. Xu, X.P. Wan, W. Zhang, Z. Wang, R. Peng, F. Tao, L. Cai, Y. Li, Q. Jiang, R. Gao, Synthesis of biodegradable polycationic methoxy poly(ethylene glycol)-polyethylenimine-chitosan and its potential as gene carrier. Carbohydrate Polymers 78(1) (2009) 46-53.
    [74] D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, A NEW CLASS OF POLYMERS - STARBURST-DENDRITIC MACROMOLECULES. Polymer Journal 17(1) (1985) 117-132.
    [75] J.S. Remy, B. Abdallah, M.A. Zanta, O. Boussif, J.P. Behr, B. Demeneix, Gene transfer with lipospermines and polyethylenimines. Adv. Drug Deliv. Rev. 30(1-3) (1998) 85-95.
    [76] E.R. Gillies, J.M.J. Frechet, Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 10(1) (2005) 35-43.
    [77] E.R. Gillies, J.M.J. Frechet, Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today 10(1) (2005) 35-43.
    [78] D.A. Tomalia, Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science 30(3-4) (2005) 294-324.
    [79] J.B. Kim, J.S. Choi, K. Nam, M. Lee, J.S. Park, J.K. Lee, Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. Journal of Controlled Release 114(1) (2006) 110-117.
    [80] P. Jong-sang, K. Tae-il, B. Jung-un, B. Cheng Zhe, Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials 28(11) (2007) 2061-2067.
    [81] H.Y. Nam, K. Nam, H.J. Hahn, B.H. Kim, H.J. Lim, H.J. Kim, J.S. Choi, J.S. Park, Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials 30(4) (2009) 665-673.
    [82] T.I. Kim, C.Z. Bai, K. Nam, J.S. Park, Comparison between arginine conjugated PAMAM dendrimers with structural diversity for gene delivery systems. Journal of Controlled Release 136(2) (2009) 132-139.
    [83] D.K. Smith, Dendrimers and the double helix - From DNA binding towards gene therapy. Current Topics in Medicinal Chemistry 8(14) (2008) 1187-1203.
    
    [84] J.F. Kukowska-Latallo, E. Raczka, A. Quintana, C.L. Chen, M. Rymaszewski, J.R. Baker, Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Human Gene Therapy 11(10) (2000) 1385-1395.
    
    [85] A. Shakhbazau, I. Isayenka, N. Kartel, N. Goncharova, I. Seviaryn, S. Kosmacheva, M. Potapnev, D. Shcharbin, M. Bryszewska, Transfection efficiencies of PAMAM dendrimers correlate inversely with their hydrophobicity. Int J Pharm 383(1-2) (2010) 228-235.
    
    [86] K. Wada, H. Arima, T. Tsutsumi, F. Hirayama, K. Uekama, Enhancing effects of galactosylated dendrimer/alpha-cyclodextrin conjugates on gene transfer efficiency. Biological & Pharmaceutical Bulletin 28(3) (2005) 500-505.
    
    [87] H. Arima, F. Kihara, F. Hirayama, K. Uekama, Enhancement of gene expression by polyamidoamine dendrimer conjugates with alpha-, beta-, and gamma-cyclodextrins. Bioconjugate Chemistry 12(4) (2001) 476-484.
    
    [88] H. Arima, K. Motoyama, Recent Findings Concerning PAMAM Dendrimer Conjugates with Cyclodextrins as Carriers of DNA and RNA. Sensors 9(8) (2009) 6346-6361.
    
    [89] T. Takahashi, K. Kono, T. Itoh, N. Emi, T. Takagishi, Synthesis of novel cationic lipids having polyamidoamine dendrons and their transfection activity. Bioconjugate Chemistry 14(4) (2003) 764-773.
    
    [90] C. Dufes, W.N. Keith, A. Bilsland, I. Proutski, J.F. Uchegbu, A.G. Schatzlein, Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Research 65(18) (2005) 8079-8084
    [91] L. Pujols, J. Mullol, M. Perez, J. Roca-Ferrer, M. Juan, A. Xaubet, J.A. Cidlowski, C. Picado, Expression of the human glucocorticoid receptor alpha and beta isoforms in human respiratory epithelial cells and their regulation by dexamethasone. American Journal of Respiratory Cell and Molecular Biology 24(1) (2001) 49-57.
    
    [92] V. Shahin, L. Albermann, H. Schillers, L. Kastrup, C. Schafer, Y. Ludwig, C. Stock, H. Oberleithner, Steroids dilate nuclear pores imaged with atomic force microscopy. Journal of Cellular Physiology 202(2) (2005) 591-601.
    
    [93] A. Rebuffat, A. Bernasconi, M. Ceppi, H. Wehrli, S.B. Verca, M. Ibrahim, B.M. Frey, F.J. Frey, S. Rusconi, Selective enhancement of gene transfer by steroid-mediated gene delivery. Nature Biotechnology 19(12) (2001) 1155-1161.
    
    [94] J J.A. Gruneich, A. Price, J. Zhu, S.L. Diamond, Cationic corticosteroid for nonviral gene delivery. Gene Therapy 11(8) (2004) 668-674.
    
    [95] J.S. Choi, K.S. Ko, J.S. Park, Y.H. Kim, S.W. Kim, M. Lee, Dexamethasone conjugated poly(amidoamine) dendrimer as a gene carrier for efficient nuclear translocation. International Journal of Pharmaceutics 320(1-2) (2006) 171-178.
    
    [96] Y.M. Bae, H. Choi, S. Lee, S.H. Kang, Y.T. Kim, K. Nam, J.S. Park, M. Lee, J.S. Choi, Dexamethasone-conjugated low molecular weight polyethylenimine as a nucleus-targeting lipopolymer gene carrier. Bioconjugate Chemistry 18 (2007) 2029-2036.
    
    [97] P. Dames, A. Laner, C. Maucksch, M.K. Aneja, C. Rudolph, Targeting of the glucocorticoid hormone receptor with plasmid DNA comprising glucocorticoid response elements improves nonviral gene transfer efficiency in the lungs of mice. Journal of Gene Medicine 9 (2007) 820-829.
    
    [98] L. Cheng, J. Fu, A. Tsukamoto, R.G Hawley. Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nature Biotechnology 14 (1996) 606-609.
    [99] F.R. Maxfield, T.E. McGraw, Endocytic recycling. Nature Reviews Molecular Cell Biology 5(2) (2004) 121-132.
    [100] B.D. Grant, J.G. Donaldson, Pathways and mechanisms of endocytic recycling. Nature Reviews Molecular Cell Biology 10(9) (2009) 597-608.
    [101] V. Mailander, K. Landfester, Interaction of Nanoparticles with Cells. Biomacromolecules 10(9) (2009) 2379-2400.
    [102] M. Harada-Shiba, K. Yamauchi, A. Harada, I. Takamisawa, K. Shimokado, K. Kataoka, Polyion complex micelles as vectors in gene therapy - pharmacokinetics and in vivo gene transfer. Gene Therapy 9(6) (2002) 407-414.
    [103] M. Lee, J. Rentz, S.O. Han, D.A. Bull, S.W. Kim, Water-soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Therapy 10(7) (2003) 585-593.
    [104] Y. Teramura, Y. Kaneda, T. Totani, H. Iwata, Behavior of synthetic polymers immobilized on a cell membrane. Biomaterials 29(10) (2008) 1345-1355.
    [105] J.W. Wiseman, C.A. Goddard, W.H. Colledge, Steroid hormone enhancement of gene delivery to a human airway epithelial cell line in vitro and mouse airways in vivo. Gene Therapy 8(20) (2001) 1562-1571.
    [106] S. Braun, C. Jenny, C. Thioudellet, F. Perraud, M.C. Claudepierre, F. Langle-Rouault, D. Ali-Hadji, K. Schughart, A. Pavirani, In vitro and in vivo effects of glucocorticoids on gene transfer to skeletal muscle. Febs Letters 454(3) (1999)277-282.
    [107] A.G. Rebuffat, A.R. Nawrocki, P.E. Nielsen, A.G. Bernasconi, E. Bernal-Mendez, B.M. Frey, F.J. Frey, Gene delivery by a steroid-peptide nucleic acid conjugate. FASEB Journal 16(9) (2002) 1426-1428.
    [108] B. Kauppi, C. Jakob, M. Farnegardh, J. Yang, H. Ahola, M. Alarcon, K. Calles, O. Engstrom, J. Harlan, S. Muchmore, A.K. Ramqvist, S. Thorell, L. Ohman, J. Greer, J.A. Gustafsson, J. Carlstedt-Duke, M. Carlquist, The three-dimensional structures of antagonistic and agonistic forms of the glucocorticoid receptor ligand-binding domain - RU-486 induces a transconformation that leads to active antagonism. Journal of Biological Chemistry 278(25) (2003) 22748-22754.
    
    [109] J Fried, A Borman. Synthetic derivates of cortical hormones. Vitam Horm 16 (1958) 303-374.
    
    [110] C. Grossmann, T. Scholz, M. Rochel, C. Bumke-Vogt, W. Oelkers, A.F.H. Pfeiffer, S. Diederich, V. Bahr, Transactivation via the human glucocorticoid and mineralocorticoid receptor by therapeutically used steroids in CV-1 cells: a comparison of their glucocorticoid and mineralocorticoid properties. European Journal of Endocrinology 151(3) (2004) 397-406.
    
    [111] F.A. Alvarez Nunez, S.H. Yalkowsky, Correlation between log P and ClogP for some steroids. Journal of Pharmaceutical Sciences 86(10) (1997) 1187-1189.
    
    [112] P. Buchwald, Glucocorticoid receptor binding: A biphasic dependence on molecular size as revealed by the bilinear LinBiExp model. Steroids 73(2) (2008) 193-208.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.