过渡金属铜、金和银催化炔类的密度泛函研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作应用量子化学密度泛函B3LYP方法,分别对溴化亚铜催化合成Y,δ-炔基-β-氨基酸衍生物和三氯化金、三氟磺酸银催化1,6-二醇联烯炔环化的反应机理进行了研究,分析了影响催化剂催化活性的因素,讨论了催化剂浓度、催化剂配体对反应化学选择性和催化机理的影响,为设计新型的催化剂提供了有价值的理论依据。
     1.溴化亚铜催化合成γ,δ-炔基-β-氨基酸衍生物反应的密度泛函研究
     用密度泛函理论的B3LYP方法对CuBr(溴化亚铜)催化合成γ,6-炔基-β-氨基酸衍生物的机理进行了理论计算,得到三条反应路线。对所有过渡态、中间体和产物做了频率分析。通过IRC扫描确认了重要过渡态的正确性。分析了反应中各物种的电荷分布、重要化学键的成键临界点和成环临界点的电荷密度。计算表明在气相和液相下,优势路线的决速步都是胺与炔酯的结合过程;建议的机理能合理解释所有实验现象。
     2.三氯化金、三氟磺酸银催化1,6-二醇联烯炔环化反应的理论研究:浓度与配体影响
     用密度泛函理论的B3LYP泛函以及溶剂化模型PCM对金/银过渡金属催化1,6-二醇联烯炔环化反应的机理进行了理论研究,得到了金/银催化反应机理。该机理详细讨论了催化剂浓度、配体、溶剂化效应对反应的影响。计算结果表明,金、银催化机理不同。反应产生Pχ是金催化剂催化体系的优势线路;生成PZ是银催化剂催化的优势线路,它们与实验结果-致。单分子金催化剂催化1,6-二醇联烯炔的所有反应路径需高的活化自由能,双分子金催化剂的参与使所有反应路径的活化能大大降低。这说明产物的化学选择性与催化剂浓度有很大的关系。配体作为质子运输工具参与反应,协助质子转移,进而降低反应的活化能和改变反应的路径。因此配体的合理选择对催化剂的催化效率有重要作用。溶剂化效应对金、银催化机理影响很大,且不同。理论计算给出的机理能合理的解释所有实验现象。
In the present paper, the density functional method (B3LYP functional) is employed to study the reaction mechanisms of direct amination of the synthesis of y,8-alkynyl-β-amino acid derivatives catalyzed by CuBr, and gold/silver-catalyzed cyclization of allenyne-1,6-diols, respectively. Factors that control the efficiency of catalysis are analyzed. The effects of the concentration of catalysts, their ligands on the mechanism and chemoselectivity have been examined, thereby these information for designing new type of catalysis reactions provide in theoretical level.
     1. DFT Study the Mechanism of the Synthesis of y,8-Alkynyl-β-amino Acid Derivatives Catalyzed by CuBr
     The mechanism of the synthesis of y,δ-alkynyl-β-amino acid derivatives is investigated employing the density functional theory (the B3LYP functional is used), and three reaction pathways are suggested. The frequency analysis is performed for all the transition states, intermediates and products. The geometries of the important transition states are confirmed by the IRC scanning. In order to make clear the reaction mechanism, the charge distribution of all species and the electronic densities of the bond critical points (BCP) and the ring critical points (RCP) for the key bonds are calculated and discussed. Our results indicate that in the gas phase and the liquid phase, the rate-determining steps of the dominant pathways are the reaction between amine and alkynyl ester. The suggested mechanism can explain reasonably all experimental observations.
     2. Mechanism of Cyclization of Allenyne-1,6-diols Catalyzed by Gold and Silver Compounds:the Effects of Concentrations and Ligands of Catalysts
     By means of the density functional theory (DFT) combined with the polarized continuum models, the cyclizations of allenyne-1,6-diols catalyzed by the gold and silver complexes are computed, the mechanisms of cyclization are suggested, and the effects of the concentration of catalysts, their ligands, and the solvent on the mechanisms are analysed in detail. As shown, the Au-catalyzed mechanism differs to the Ag-catalyzed mechanism. The most favorable reaction path for the Au-catalyzed mechanism gives the main product Px and that for the Ag-catalyzed mechanism leads to the main product Pz, which are in agreement with the experiment. All the reaction paths for the cyclization of allenyne-1,6-diols catalyzed by single AuCl3 complex have high energy barriers. Participation of two AuCl3 complexes in the catalyzed cyclization can make energy barriers for all the reaction paths be lowered remarkably. These results imply the close relationship between the concentration of catalysts and the chemoselectivity of products. The ligands, as a proton shuttle, can take part in the reaction and assist the transfer of proton, and further lower the reaction energy barriers and change the reaction routes. The choice of the ligands of catalysts may be important to the efficiency of catalysis. The effects of solvent on the gold-and silver-catalyzed mechanisms are remarkable and also quite different. The theoretically suggested mechanisms explain reasonably all the experimental observations.
引文
[1]Hartwig, JF, nature.2008,455,314-322.
    [2]King, A. O. & Yasuda, N. Palladium-catalyzed cross-coupling reactions in the synthesis of pharamaceuticals. Topics Organomet. Chem.2004,6,205-245.
    [3]de Vries, J. G. The Heck reaction in the production of fine chemicals. Can. J. Chem. 2001,79,1086-1092.
    [4]Aizawa, M., Yamada, T., Shinohara, H., Akagi, K. & Shirakawa, H. Electrochemical fabrication of a polypyrrole-polythiophene p-n-junction diode. J. Chem. Soc, Chem. Commun.1986,17, 1315-1317.
    [5]Jen, K.-Y, Miller, G. G. & Elsenbaumer, R. L. Highly conducting, soluble, and environmentally-stable poly(3-alkylthiophenes). J. Chem. Soc., Chem. Commun. 1986,17,1346-1347.
    [6]Sato, M.-A., Tanaka, S. & Kaeriyama, K. Soluble conducting polythiophenes. J. Chem. Soc.Chem. Commun.1986,11,873-874.
    [7]McQuade, D. T., Pullen, A. E. & Swager, T. M. Conjugated polymer-based chemical sensors. Chemical Reviews 2000,100,2537-2574.
    [8]Blaser, H. U. & Schmidt, E. Asymmetric Catalysis on Industrial Scale:Challenges, Approaches and Solutions. (Wiley-VCH,2004).
    [9]Hoveyda, A. H. & Zhugralin, A. R. The remarkable metal-catalysed olefin metathesis reaction. Nature.2007,450,243-251.
    [10]Kakiuchi, F. & Chatani, N. Catalytic methods for C-H bond functionalization: application in organic synthesis. Adv. Synth. Catal.2003,345,1077-1101.
    [11]Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C-H bond activation. Nature. 2002,417,507-514.
    [12]Crabtree, R. H. The Organometallic Chemistry of the Transition Metals 4th edn (Wiley,2005).
    [13]Collman, J. P., Hegedus, L. S., Norton, J. R. & Finke, R. G Principles and Applications of Organotransition Metal Chemistry (University Science Books,1987).
    [14]Marshall J.A; Robinson. E.D, J. Org. Chem.,1990,55,3450.
    [15]Marshall J.A; Wang. X. J, J. Org. Chem.,1991,56,960.
    [16]Marshall J.A; Sehon. C. A, J. Org. Chem.,1995,60,5966.
    [17]Marshall J.A; Bartley. G S, J. Org. Chem.,1994,59,7169.
    [18]Hashmi A. S. K, Schwarz L, Chem. Ber.,1997,130,1449.
    [19]Hashmi A. S. K,Angew. Chem. Int. Ed. Engl.1995.34.1581.
    [20]Ma S; Zhang J, Chem. Commum.,2000,117
    [21]Ma S; Li L, Org. Lett.,2000,2,941.
    [22]Ma S. M., Zhang J. L., Lu L. H., Chem. Eur. J.2003,9,2447.
    [23]Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc.2005,127,10500.
    [24]Dudnik, A. S.; Gevorgyan, V.Angew. Chem. Int. Ed.2007,46,5195.
    [25]Nedolya, N. A.; Schlyakhtina, N. I.; Zinov'eva, V. P.; Albanov, A. I.; Brandsma, L. Tetrahedron Lett.2002,43,1569-1571.
    [26]Olsson, L. I.; Claesson, A. Synthesis.1979,743-745.
    [27]Nikam, S. S.; Chu, K.-H.; Wang, K. K. J. Org. Chem.1986,51,745-747.
    [28]Marshall, J. A.; Wang, X.J. J. Org. Chem.1991,56,4913-4918.
    [29]Aurrecochea, J. M.; Solay, M. Tetrahedron 1998,54,3851-3826.
    [30](a) Sheng H; Lin S; Huang Y. Tetrahedron Lett.,1986,27,483 (b) Sheng H; Lin S; Huang Y. Synthesis,1987,1022.
    [31]Cacchi S; Fabrizi G; Moro L. J. Org. Chem.1997,62,5327.
    [32]Hashmi, A. S. K.; Weyrauch, J. P.; Frey, W; Bats, J. W. Org. Lett.2004,6,4391.
    [33]Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007,129,9868.
    [34]Kel'in A. V.; Gevorgyan V., J. Org. Chem.2002,67,95.
    [35]For the related cyclizations of alkynyl imines to pyrroles, see:a) Kim J. T.; Gevorgyan V., Org. Lett.2002,4,4697; b) Kel'in A. V.; Sromek A.W.; Gevorgyan V., J. Am. Chem. Soc.2001,123, 2074.
    [36]Sromek A.W.; Kel'in A. V.; Gevorgyan V.,Angew. Chem.2004,116,2330; Angew. Chem. Int. Ed.2004,43,2280.
    [37]Hashmi, A. S. K.; Sinha, P. AdV. Synth. Catal.2004,346,432.
    [38]Shu, X.-Z.; Liu, X.-Y.; Xiao, H.-Q.; Ji, K.-G.; Guo, L.-N.; Qi, C.-Z.; Liang, Y.-M. AdV. Synth. Catal 2007,349,2493.
    [39]Seiller B; Bruneau C; Dixneuf P. H., J. Chem. Soc., Chem. Commum.,1994,493.
    [40]Cetinkaya B; Alici B, Dixneuf P. H., J. Organometallic Chem.,1999,575,187.
    [41]Marshall, J. A.; Sehon, C. A. J. Org. Chem.1995,60,5966-5968.
    [42]Trost B. M; Flygare J. A, J. Org. Chem.,1994,59,1078.
    [43]Padwa A; Konder K. R,J. Org. Chem.,1993,58,21.
    [44]kim, S, Lee. PH, Adv. Synth. Catal.2008,350,547.
    [45]Ishitani H.; Ueno M.; Kobayashi S.,J. Am. Chem. Soc.2000,122,8180-8186.
    [46]Hsiao, Y; Rivera, NR; Rosner, T, et al., J. Am. Chem. Soc.2004,126,9918-9919.
    [47]Zhou L; Jiang H. F; Li C. J,Adv. Synth. Catal.2008,350,2226-2230.
    [1]Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules. USA:Oxford Univ. Press, 1989,1-352.
    [2]Seminario, J. M., Politzer, P. Modern Density Functional Theory A Tool For Chemistry. University of New Orleans, New Orleans, LA, USA: ELSEVIER,1995,1-418.
    [3]Ziegler, T. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev.1991,91,651-667.
    [4]Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B.1964,136,864-871.
    [5]Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A.1965,140,1133-1138.
    [6]Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electronliquid correlation energies for local spin density calculations:a critical analysis. Can. J. Phys.1980,58,1200-1211.
    [7]Slater, J. The Self-Consisternt Field for Molecules and Solids:Quantum Theory of Molecules and Solids, Vol.4. New York: McGraw-Hill,1974,1-152.
    [8]Lee, C.; Yang, W.; Parr, R, G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B.1988,37,785-789.
    [9]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic beha-vior. Phys. Rev. A.1988,33,3098-3100.
    [10]Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.1993,98,5648-5652.
    [11]Perdew, J. P.; Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B.1992,45,12947-12954.
    [12]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 1992,46,6671-6687.
    [13]Frisch, M. J.; Trucks, G W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Vreven, J. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz; P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03; Revision B.03; Gaussian: Pittsburgh, PA,2003.
    [14]Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. Gaussian-2 theory for molecular energies of first-and second-row compounds.J. Chem. Phys.1991,94,7221-7230.
    [15]Becke, A. D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys.1996,104.1040-1046.
    [16]Bader R. F. W, Atoms in Molecules, A Quantum Theory; International Series of Monographs in Chemistry; Oxford University Press:Oxford, U. K.,1990, vol.22.
    [17]Popelier, P. L. A. Quantum Molecular Similarity.1. BCP Space. J. Phys. Chem. A.1999,103, 2883-2890.
    [18]Hansch, C.; Leo, A. Hoekman, D. Exploring QSAR; ACS professional reference book; Ameri-can Chemical Society: Washington DC,1995.
    [19]Popelier, P. L. A. In molecular Similarity in Drug Design; Dean, P. M., Eds.; Chapman & Hall: London,1995.
    [20]Moos, W. H.; Green, G D.; Pavia, M. R. Recent advances in the generation of molecular diver-sity. Annu. Rep. Med. Chem.1993,28,315-324.
    [21]Martin, E. J.; Spellmeyer, D. C.; Critchlow, R. E. J.; et al. Rev. Compl. Chem.1997,10-19.
    [22]Paula M. S.; Pendas, A. M.; Luana, V. Polarity inversion in the electron density of BP crystal. Phys. Rev. B.2001,63,125103-125106.
    [23]Field, M. J. Bush, P. A.; Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations.J. Comput. Chem.1990,11 (6), 700-733.
    [24]Onsager, L. Electric Moments of Molecules in Liquids. J. Am. Chem. Soc.1936,58,1486-1493.
    [25]Tapia, O. Goscinski, O. Self-consistent reaction field theory of solvent effects. Mol. Phys.1975, 29(6),1653-1661.
    [26]Mierts, S. Scrocco, E. and Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981,55,117-129.
    [27]Mierts, S. and Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys.1982,65,239-245.
    [28]Cossi, M. Barone, V. Cammi, R. and Tomasi, J. Ab initio study of solvated molecules:a new implementation of the polarizable continuum model. Chem. Phys. Lett.1996,255,327-335.
    [29]Lowdin, P. O. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys. Rev,1955,97,1474-1489.
    [30]Jensen, F. Introduction to Computational Chemistry, John Wiley & Sons,2001,161-446.
    [31]Almlof, J.; Taylor, P. R. Atomic natural orbital basis sets for LCAO calculations. Adv. Quantum Cham.,1991,22,301.
    [32]Reed, A. E. Weinstock, R. B. and Weinhold, F. Weinhold, F. Natural population analysis a). J. Chem. Phys.1985,83,735-746.
    [33]Foster, J. P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc.1980,102,7211-7218.
    [34]Reed, A. E. and Weinhold, F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J. Chem. Phys.1983,78,4066-4073.
    [35]Reed, A. E. Curtidd, L. A. and Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev.1988,88,899-926.
    [1]Griffith OW. Beta-Amino Acids:Mammalian Metabolism and Utility as Alpha-Amino Acid Analogues [J]. Annual Review Of Biochemistry,1986,55:855-878.
    [2]Van Lanen SG, Dorrestein PC, Christenson SD, et al. Biosynthesis of the Beta-amino Acid Moiety of the Enediyne Antitumor Antibiotic C-1027 Featuring Beta-amino Acyl-S-carrier Protein Intermediates [J]. J Am Chem Soc,2005,127:11594-11595.
    [3]Nachman RJ, Ben Aziz O, Davidovitch M, et al. Biostable Beta-amino Acid PK/PBAN Analogs: Agonist and Antagonist Properties [J]. Peptides,2009,30:608-615.
    [4]Josephsohn NS, Carswell EL, Snapper ML, et al. Practical and Highly Enantioselective Synthesis of Beta-Alkynyl-Beta-Amino Esters through Ag-catalyzed Asymmetric Mannich Reactions of Silylketene Acetals and Alkynyl Imines [J]. Org Lett,2005,7:2711-2713.
    [5]JX Ji, Au-Yeung TL, J Wu, et al. Efficient Synthesis of Beta,Gamma-Alkynyl Alpha-Amino Acid Derivatives by Ag(I)-catalyzed Alkynylation of Alpha-imino Esters [J]. Adv Synth Catal,2004, 346; 42-44.
    [6]ZH Shao, XW Pu, XJ Li, et al. Enantioselective, Copper(Ⅰ)-Catalyzed Three-component Reaction for the Synthesis of Beta,Gamma-Alkynyl Alpha-Amino Acid Derivatives [J].Tetrahedron-Asymmetry,2009,20:225-229.
    [7]J Wang, ZH Shao, Yu, et al. Copper(I)-Catalyzed Asymmetric Addition of Terminal Alkynes to beta-Imino Esters:An Efficient and Direct Method in the Synthesis of Chiral beta(3)-Alkynyl beta(2,2)-Dimethyl Amino Acid Derivatives [J]. Adv Synth Catal,2009,351:1250-1254.
    [8]L Zhou, HF Jiang, CJ Li, Efficient Synthesis of gamma,delta-Alkynyl-beta-amino Acid Derivatives by a New Copper-Catalyzed Amine-Alkyne-Alkyne Addition Reaction [J]. Adv Synth Catal,2008,350:2226-2230.
    [9]Parr R G, Yang W. Density-functional Theory of Atoms and Molecules [M]. Oxford University Press:New York,1989.
    [10]Pisano L; Farriol M, Asensio X, et al. Thermodynamics, Kinetics, and Dynamics of the Two Alternative Aniomesolytic Fragmentations of C-O Bonds:An Electrochemical and Theoretical Study [J]JAm Chem Soc,2002,124,4708-4715.
    [11]pierini A B, Vera D M A. Ab Initio Evaluation of Intramolecular Electron Transfer Reactions in Halobenzenes and Stabilized Derivatives [J]. J Org Chem,2003,68:9191-9199; Lee C, Yang W, Parr. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density [J]. Phys Rev B,1988,37:785-789.
    [12]Becke AD, Density-functional Thermochemistry. III. The Role of Exact Exchange [J]. J Chem Phys,1993,98:5648-5652.
    [13]Gonzalez C, Schlegel H B. Reaction Path Following in Mass-Weighted Internal Coordinates [J]. JChem Phsy,1990,94:5523-5527.
    [14](a) Liptak M D, Gross k C, Seybold P G, Feldgus S, Shields G C. Absolute pK(a) Determinations for Substituted Phenols [J].J Am Chem Soc,2002,124:6421. (b) Mader M M, Norrby P. Quantum chemical investigation of mechanisms of silane oxidation [J]. J Am Chem Soc, 2001,123,1970-1976. (c) Washington I, Houk K N. Epoxidations by Peracid Anions in Water: Ambiphilic Oxenoid Reactivity and Stereoselectivity [J]. Org Lett,2002,4:2661. (d) Takano Yu, Houk K N, Houk K N. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules [J]. J Chem Theory Comput,2005,1:70.
    [15]Miertus S, Tomasi. Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes [J]. J Chem Phys,1982,65:239-245.
    [16]Reed A E, Weinstock R B, Weinhold F. Natural population analysis [J]. J Chem Phys,1985, 83:735-746.
    [17]Glendening E D, Badenhoop J K, Reed A E, et al. NBO 5.0 [M]. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI,2001.
    [18]Bader R F W, Atoms in Molecules, A Quantum Theory; International Series of Monographs in Chemistry [M]. Oxford University Press:Oxford, U. K,1990, vol.22.
    [19]Biegler-Konig F, Schonbohm J, Derdau R, et al. AIM 2000, version 2.0 [M]. McMaster University:2002.
    [1]Heller. B, Hapke. M, Chem. Soc. Rev.2007,36,1085.
    [2]Lu. L, Liu, XY, Shu. XZ, et al, J. Org. Chem.2009,74,474.
    [3]Heaney, H.; Ahn, J. S. in:Comprehensive Heterocyclic Chemistry II, (Eds:katritzky, A. R.; Rees,C. W.; Scriven, E. F. V), Pergamon Press, oxford,1996, Vol.2, p 297.
    [4]Hsu, YC, Ting, CM, Liu, RS, J. Am. Chem. Soc.2009,131,2090.
    [5]Tsujihara, T, Takenaka, k, Onitsuka, k, et al,J. Am. Chem. Soc.2009,131,3452.
    [6]Cheng, X, Jiang. XF, Yu. YH, et al, J. Org. Chem.2008,73,8960.
    [7]Wei.H, Zhai.H, Xu. PF, J. Org. Chem.2009,74,2224.
    [8]Murai. k, Hayashi. S, Takaichi, N, et al, J. Org. Chem.2009,74,1418.
    [9]Tsubuki. M, Takahashi. k, Honda. T, J. Org. Chem.2009,74,1422.
    [10]Yu. F, Lian. XD, Zhao. JB, et al, J. Org. Chem.2009,74,1130.
    [11]Moradov. D, Al Quntar. AAA, Youssef. M, et al, J. Org. Chem.2009,74,1029.
    [12]Schwier. T, Sromek. AW, Yap. DML, et al, J. Am. Chem. Soc.2007,129,9868.
    [13]Xia. YZ, Dudnik. AS, Gevorgyan. V, et al, J. Am. Chem. Soc.2008,130,6940.
    [14]Brookes. NJ, Ariafard. A, Stranger. R, et al. J. Am. Chem. Soc.2009,131,5800.
    [15]a) Wang, H.-Y.; Xie Y.-M.; King, R. B.; Schaefer, H. F. J. Am. Chem. Soc.2006,128,11376. b) M. Periasamy, C. Rameshkumar, A. Mukkanti, J. Organomet. Chem.2002,649,209-213. c) M. Periasamy, A. Mukkanti, and D. Shyam Raj, Organometallics.2004,23,619-621. d) M. Periasamy, A. Mukkanti, D. Shyam Raj, Organometallics.2004,23,6323-6326.
    [16]kim, S; Lee, k; Seomoon, D, et al, Adv. Synth. Catal.2007,349,2449.
    [17]kim, S, Lee. PH, Adv. Synth. Catal.2008,350,547.
    [18]R. G Parr, W. Yang, Density-functional Theory of Atoms and Molecules; Oxford University Press: New York,1989.
    [19]1. Pisano, M.Farrio, I. Gallardo, a. Gonzlez-Lefont, J. M. Llunch, J. Marquet,J. Am. Chem. Soc. 2002,124,4708-4715.
    [20]A. B. pierini, D. M. A. Vera, J. Org. Chem.2003,68,9191-9199; Lee. C, Yang. W, Parr (1988) Phys. Rev. B,37:785-789.
    [21]Becke. AD, (1993) J. Chem. Phys,98:5648-5652.
    [22]Gonzalez. C, Schlegel. H B, J. Chem. Phys.1990,94,5523-5527.
    [23](a) Liptak, M. D, Gross, k. C, Seybold. P. G, Feldgus. S, Shields. G. C, J. Am. Chem. Soc.2002, 124,6421. (b) Mader. M. M, Norrby. P,J. Am. Chem. Soc.2001,123,1970. (c) Washington. I, Houk. k. N. Org. Lett.2002,4,2661. (d) Takano. Yu, Houk. k. N, J. Chem. Theory Comput.2005,1, 70.
    [24]Miertus. S.Tomasi,J. Chem. Phys.1982,65,239-245.
    [25]M. J. Frisch, G W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, k. N. kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, k. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. kitao, H. Nakai, M. klene, X. Li, J. E. knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, k. Morokuma, G A. Voth, P. Salvador, J. J. Dannenberg, V. G Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. k. Malick, A. D. Rabuck, k. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G Liu, A. Liashenko, P. Piskorz, I. komaromi, R. L. Martin, D. J. Fox, T. keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT,2004.
    [26]Reed. A. E, Weinstock. R. B, Weinhold. F, J. Chem. Phys.1985,83,735-746.
    [27]Glendening. E. D, Badenhoop. J. k, Reed. A. E, et al. NBO 5.0; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI,2001.
    [28]Bader. R F W, Atoms in Molecules, A Quantum Theory; International Series of Monographs in Chemistry; Oxford University Press:Oxford, U. k.,1990, vol.22.
    [29]Biegler-konig. F, Schonbohm. J, Derdau. R, et al. AIM 2000, version 2.0; McMaster University: 2002.
    [30](a) Balcells, D.; Ujaque, G.; Fernandez, I..; Khiar, N.; Maseras, F.;J. Org. Chem.2006,71, 6388.
    (b)Balcells, D.; Ujaque, G.; Fernandez, I.; Khiar, N.; Maseras, F. Adv. Syn Cat.2007,349, 2103.
    (c)Simon.L.; Muniz, F. M.; Saez, S.; Raposo, C.; Moran, J. R. Eur. J. Org. Chem.2008,14, 2397.
    [31]a) Norberg. D, Larsson. PE, Salhi-Benachenhou. N,J. Phys. Chem. A 2008,112,4694-4702. b) Benfatti. F, Bottoni. A, Cardillo. G, et al, Adv. Synth. Catal.2008,350,2261-2273.
    [32]Zhang, J.; Shen, W.; Li, L.; Li, M. Organometallics 2009,28,3129.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.