AP与HMX、RDX反应机理的理论研究及UA光致异构化反应的动力学模拟
摘要
本论文的内容分为两部分,第一部分重点讨论高氯酸铵(AP)与含能材料奥克托金(HMX)及黑索金(RDX)混合后的裂解机理;第二部分利用半经典的电子-辐射-离子动力学(Semiclassical electron-radiation-ion dynamics, SERID)方法实时模拟咪唑丙烯酸(UA)光致异构化的动力学过程。
     第一章概述了分子热力学和动力学的理论基础,包括计算方法简介、过渡态理论、频率计算和热力学校正、IRC理论、半经典的电子-辐射-离子动力学(SERID)模拟以及SERID方法程序的实现。
     第二章主要讨论了AP分解后的小分子产物OH及OH-对HMX裂解的影响。计算发现,β-HMIX与NH3、ClO3结合后其N-NO2键解离能与HMX相比均变化不大,但一旦复合物裂解有NO2生成,生成的N02极易与NH3发生反应,放出大量热,从而可引发HMX的后续裂解反应;NO2易与HMX骨架环上亚甲基(-CH2-)中的H作用,“置换”出H而引发HMX的热解,从而改变了HMX的初始分解通道;OH对HMX的N-NO2键解离影响不大,而OH-与β-HMX结合后其N-NO2键解离能比β-HMX降低近200 kJ-mol-1,表明OH-对其裂解有明显的促进作用。此外,我们还计算了常压、4 MPa及6 MPa高压下P-HMX与NH3、ClO3形成复合物的N-NO2键解离能,发现高压环境不改变这些小分子对HMX初始裂解的影响。
     第三章介绍了酸性条件对RDX三种裂解方式的影响。计算发现H+对RDX的开环有明显的促进作用;H+接近RDX中的N原子形成RDX_HN后,更有利于断裂N02和HONO的消去,而接近RDX中的O原子形成RDX_HO对于两者的进行没有明显影响。
     第四章利用一种半经典非绝热动力学模拟方法—半经典的电子-辐射-离子动力学(SERID)实时模拟咪唑丙烯酸(UA)光致异构化的动力学过程。模拟发现,给定不同的激光流量和光子能量,UA由反式转化为顺式的路径不同,各轨道存在的时间也有所不同。最后,我们在CASSCF/MRPT2水平上用4-31G基组构造了绝热态的势能剖面图,其中CASSCF采用GAMESS量子化学程序包完成,而MRPT2的计算则是采用我们小组自主研发的基于图形酉群理论和空穴粒子对应的XIAN-CI程序包完成的。
The dissertation can be divided into two parts. In One part, we focus on the effects of products of ammonium perchlorate (AP) on the initial pyrolysis of HMX、RDX. In the other part, by using a semiclassical nonadiabatic molecular dynamic simulation-a semiclassical electron-radiation-ion dynamic approach (SERID), we simulating dynamics of the photoisomerization process of urocanic acid.
     In chapter 1, we briefly show the theoretical background of molecular thermodynamics and molecular dynamics, including the introduction of calculation methods, transition state theory, the frequency calculation and thermodynamic correction, IRC theory, a semiclassical electron-radiation-ion dynamic approach (SERID) methods and the implementation of this program.
     In the second chapter, we report the effects of NH3、Cl03、NO2、OH and OH- on the initial pyrolysis of HMX. The results indicate that, there are trivial changes on the N-NO2 bond dissociation energies when P-HMX combines with NH3 or ClO3. However, once the complexes decompose, the product NO2 can react with NH3 more easily. This exothermic reaction may induce the subsequent pyrolysis process of HMX. NO2 can easily capture H of the methylene on the HMX ring, which will change the initial pyrolysis channel of HMX. The influence of OH is negligible. The N-NO2 bond dissociation energies of OH- complexes decrease about 200 kJ-mol-1, in comparison with that ofβ-HMX, which indicates that OH- can clearly promote the initial pyrolysis ofβ-HMX. We also obtained bond dissociation energies for N-NO2 in P-HMX and its complexes at Normal Pressure,4 MPa and 6 MPa. The high pressure has no influence on the effects of NH3 and ClO3 on the initial pyrolysis mechanism of HMX.
     The third chapter describes the effects of H+ on the three kinds of initial pyrolysis of RDX. Our calculation results showed that the H+ can significantly promote the initial thermal decomposition of C-N bond of RDX; We found that H+ induce the RDX to trigger the N-NO2 heterolysis and HONO elimination evidently when H+ approach the N of RDX, which, however, is influenced slightly when H+ approach the O of RDX.
     In the last chapter, by using a semiclassical electron-radiation-ion dynamic approach (SERID), we study the dynamics of photoisomerization process of urocanic acid. Through the simulation we find that the excited molecule decays to the electronic ground state through different radiationless pathways by given the different photon energy and laser pulses, and the life time of the tracks is also different. Finally, we calculate the potential energy curves with the CASSCF/MRPT2 method.
引文
[1]徐光宪,黎乐民,王德民.量子化学(中册)[M].北京:科学出版社,1985
    [2]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982
    [3]BARRY J, LOCKE G, SCOLLARD D, et al. 1,1,1,3,3,-pentafluorobutane(HFC-365mfc): atmospheric degradation and contribution to radiative forcing [J]. Int. J. Chem. Kinet., 1997,29:607-617
    [4]徐光宪,黎乐民,王德民.量子化学基本原理和从头算法[M].科学出版社,北京,1999
    [5]Shaefer H F III.The Electronic Structure of Atoms and Molecules. A Survey of rigourous Quantum Mechanical Results, Addison-Wesley, Reading, Massachusetts (1972)
    [6]Slater J C. Atomic Shielding Constants [J]. Phys. Rev.,1930,509:57-64
    [7]Sinanoglu O. Many-Electron Theory of Atoms and Molecules, proc. Nat. Acad. Sci. USA,1961,47:1217-1226
    [8]Silverstone H J, Sinanoglu O. Many-Electron Theory of Nonclosed-Shell Atoms and Molecules. I. Orbital Wavefunction and Perturbation Theory[J], J. Chem.Phys.,1966,44: 1899-1907
    [9]P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas[J], Phys. Rev.,1964,136, B864
    [10]W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev.,1965,140, A1133
    [11]J.C. Slater, Quantum Theory of Molecular and Solids. Vol.4:The Self-Consistent Field for Molecular and Solids McGraw-Hill:New York,1974
    [12]D. R. Salahub and M. C. Zerner, eds., The Challenge of d and f Electrons ACS: Washington, D.C.1989
    [13]R. G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press:Oxford,1989
    [14]J. A. Pople, P. M. W. Gill and B. G. Johnson, Chem. Phys. Lett.,1992,199,557
    [15]B. G. Johnson and M. J. Frisch, B. G. Johnson and M. J. Frisch, "An implementation of analytic second derivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys.,1994,100,7429
    [16]J. K. Labanowski, J. W. Andzelm, eds., Density Functional Methods in Chemistry, Springer-Verlag:New York,1991
    [17]R. G. Parr, W. yang. Density-Functional Theory of Atoms and Molecules [M]. Oxford Univ. Press, Oxford,1989
    [18]帅志刚,邵久书.理论化学原理与应用[M].北京:科学出版社,2008
    [19]Axel Becke. Density-Functional Thermochemistry III the Role of exact Exchange [J]. J Chem Phys,1993,98(7):5648-5652
    [20]戴大地,黎乐民,镱硫属化合物的密度泛函理论研究[J],高等学校化学学报,1997,18(6):923-927
    [21]戴大地,黎乐民,几种密度泛函理论公式用于镧系硫属化合物计算的比较[J],高等学校化学学报,1997,18(7):1166-1170
    [22]Doltsinis, N. L., "Quantum Simulations of Complex Many-Body System:From Theory to Algorithms", Lecture Notes, Grotendorst, J.; Muramatsu, A. (Eds.) John von Neumann Institute for Computing, Julich, NIC Series,2002,10:377-397
    [23]雷依波.激光诱导光化学反应模拟与半经验MRCI及其解析梯度程序化研究[D].西安:西北大学博士论文,2009
    [24]Hack, M. D.; Truhlar, D. G, Nonadiabatic trajectories at an exhibition[J]. J. Phys. Chem. A,2000,104,7917-7926
    [25]Born, M.; Oppenheimer, R., Zur quantentheorie der molekeln. Ann. Phys.,1927,84, 457-484
    [26]Nikitin, E. E., "Chemische Elementarprozesse", Hartmann, H. (Eds.) Springer, Berlin, 1968
    [27]Nikitin, E. E.; Zulicke, L., "Theory of Chemical Elementary Processes", Springer, Berlin, 1978
    [28]Graves, J. S.; Allen, R. E., "Tight-binding Approach to computational material science", Turchi, P. E. A.; Gonis, A.; Colombo, L. (Eds.) Mat. Res. Soc., Warrendale, Pennsylvania,1998
    [29]Dou, Y.; Torralva, B. R.; Allen, R. E., Semiclassical electron-radiation-ion dynamics (SERID) and cis-trans photoisomerization of butadiene [J]. J. Mod. Optics.,2003,50, 2615
    [30]Dou, Y.; Torralva, B. R.; Allen, R. E., Chem. Phys. Lett.,1998,378,323
    [31]Torralva, B.R., Ph.D. Thesis, "Photophysics and photochemistry of molecules", Texas A&M University,2001
    [32]Ehrenfest, P., Bemerkung uber die angenaherte Gultigkeit der klassischen Mechanik innerhalb der Quantenmechanik[J]. Z. Phys.,1927,45,455-457
    [33]Meyer, H.-D.; Miller, W. H., J. Chem. Phys.,1979,70,3214
    [34]Micha, D. A., self-consistent eikonal treatment of electronic transitions in molecular collisions[J]. J. Chem. Phys.,1983,78:7138-7145
    [35]Tully, J. C., "Classical and Quantum Dynamics in Condensed Phase Simulations", Berne, B. J.; Cicotti, G.; Coker, D. F. (Eds.) World Scientific, Singapore,1998
    [36]Tully, J. C., "Modern Methods for Multidimensional Dynamics Computations in Chemistry", Thompson, D. L. (Eds.) World Scientific, Singapore,1998
    [37]Xu, C. H.; Wang, C. Z.; Chan, C. T.; Ho, K. M., A transferable tight-binding potential for carbon[J]. J. Phys. Condens. Matter,1992,4,6047-6054
    [38]Boykin, T. B.; Bowen, R. C.; Klimeck, G, Electromagnetic coupling and gauge invariance in the emperical tight-binding method[J]. Phys. Rev. B.,2001,63,245314
    [39]Porezag, D.; Trauenheim, T.; Kohler, T.; Seifert, G.; and Kaschner, R., Construction of tight-binding-like potentials on the basis of density-functional theory:Application to carbon[J]. Phys. Rev. B.,1995,51,12947
    [40]Torralva, B. R.; Niehaus, T. A.; Elstner, M.; Suhai, S.; Frauenheim, T.; Allen, R. E., Phys. Rev. B.,2001,64,153105
    [41]Allen, R. E.; Dumitrica, T.; and Torralva, B. R., "Ultrafast Physical Processes in Semiconductors", Academic:New York,2001, Chapter 7
    [42]Gould, H.; and Tobochnik, J., "An Introduction to Computer Simulation Methods", Addison-Wesley, New York,1988
    [43]Torralva, B.; Niehaus, T. A.; Elstner, M.; Suhai, S.; Frauenheim, Th.; Allen, R. E., Response of C6o and Cn to ultrashort laser pulses[J]. Phys. Rev. B,2001,64,153105
    [44]Hertel, I. V.; Laarmann, T.; Schulz, C. P., Ultrafast excitation, ionization and fragmentation of C60[J]. Adv. Mol. Opt. Phys.,2005,50,219
    [45]Dou, Y.; Allen, R. E., Detailed Dynamics of a Complex Photochemical Reaction: Cis-Trans Photoisomerization of Stilbene[J]. J. Chem. Phys.2003,119,10658
    [46]Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., J. Comput. Chem.,1993,14,1347
    [47]Wang, Y.; Wen, Z.; Du, Q.; Zhang, Z., J. Comput. Chem.,1992,13,187
    [48]Wang, Y.; Zhai, G.; Suo, B.; Gan, Z.; Wen, Z., Chem. Phys. Lett.,2003,375,134
    [49]Suo, B.; Zhai, G.; Wang, Y.; Wen, Z.; Hu, X.; Li, L., J. Comput. Chem.,2005,26,88
    [50]Wang, Y.; Gan, Z.; Su, K.; Wen, Z., Science in China B,2000,43,568
    [51]Peng, Q.;Wang, Y.; Suo, B.; Shi, Q.; Wen, Z., J. Chem. Phys.,2004,121,778
    [52]Patchkovskii, S.; Thiel, W., Theor. Chem. Acc.,1997,98,1
    [53]Izzo, R.; Klessinger, M., J. Comput. Chem.,2000,21,52
    [1]肖继军,张冀,肖鹤鸣等.环四甲撑四硝胺(HMX)结构和性质的DFT研究[J].化学物理学报,2002,15(1):41-45
    [2]陈煜,刘云飞,谭惠民.NEPE推进剂的细观力学性能研究[J].火炸药学报,2008,31(1):56-59
    [3]刘子如,施震灏,阴翠梅.热红联用研究AP与RDX和HMX混合体系的热分解[J].火炸药学报,2007,30(5):57-61
    [4]R.S.Zhu, M.C.Lin. A computational study on the decomposition of NH4ClO4:Comparison of the gas-phase and condensed-phase results[J]. Chem Phys Lett,2006,431:272-277
    [5]刘子如,阴翠梅,孔扬辉等.高氯酸铵的热分解[J].含能材料,2000,8(2):75-79
    [6]Boldyrev, V. V. Thermal decomposition of ammonium perchlorate[J]. Thermochimica Acta.2006,443:1-36
    [7]Tanaka M, Beckstead M W. A three-phase combustion model of ammonium perchlorate[R]. AIAA,96-2888
    [8]李疏芬,方翀.AP与HMX作用的“连锁互动”机制[J].推进技术,2002,23(1):79-83.
    [9]Cobos C.J. DFT study of the thermochemistry of gas-phase of 1,3,5,7-tetranitro-1,3,5,7-Tetraazacyclooctane (P-HMX)[J]. J. Mol. Struct. (Theochem), 2005,714:147-152
    [10]Lewis, J. P. Energeties of intermolecular HONO formation in condensed-phaseoctahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX)[J]. Chem Phys Lett,2003,371:588-593
    [11]Zhang, S. W.; Thanh, N. T. Thermal Rate Constants of the NO2 Fission Reaction of Gas Phase a-HMX:A Direct ab Initio Dynamics Study [J]. J. Phys. Chem. A.2000,104, 7304-7307
    [12]Chakraborty, D.; Muller, R. P.; Dasgupta, S.; et al. a detailed model for the decomposition of nitramines:RDX and HMX[J]. J. Comput. Aided Mater. Des.,2001(8): 203
    [13]Chakraborty, D.; Muller, R. P.; Dasgupta, S.; et al. Mechanism for Unimolecular Decomposition of HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocine) an ab Initio Study [J].J. Phys Chem. A,2001,105:1302-1314
    [14]王罗新,刘勇,庹新林等.H+、NH4+对HMX的N-N02键解离能的影响[J].物理化学学报,2007,23(10):1560-1564
    [15]WANG Luo-xin, TUO Xin-lin, YI Chang-hai, et al. Ab initio calculations of the effects of H+ and NH4+ on the initial decomposition of HMX[J]. Journal of Molecular Graphics and Modelling.2008,27:388-393
    [16]Hussain, G.; Rees, G. J. Thermal decomposition of RDX and mixtures[J]. Rees.Fuel. 1995,74(2),273-277
    [17]刘子如,阴翠梅,孔扬辉等.推进技术,2000,21(6):70
    [18]姬广富,肖鹤呜,董海山.β-HMX晶体结构及其性质的高水平计算研究[J].化学学报,2002,60(2):194-199
    [19]王爱英,陈树森,李丽洁等.不同量子化方法计算β-HMX分子结构的比较[J].火炸药学报,2007,30(2):21-25
    [20]Frisch, M. J., et al. Gaussian 03, Revision D.01, Gaussian Inc., Pittsburgh, PA,2003
    [21]Lewis, J. P.; Sewell, T. D.; Evans, R. B; et al. Electronic Structure Calculation of the Structures and Energies of the Three Pure Polymorphic Forems of Crystalline HMX[J]. J Phys Chem B,2000,104:1009-1013
    [22]王新峰.气相RDX热分解及溶剂影响的理论研究[D],北京:中国工程物理研究院硕士论文,2005
    [23]Brill, T. B.; Brush, P. J.; Patil, D. G. Thermal decomposition of energetic material 58: Chemistry of ammonium nitrate and ammonium dinitramide near the burning surface temperature[J]. Combust Flame,1993,92:178-186
    [24]肖鹤鸣,居学海.高能体系中的分子间相互作用[M],第一版.北京:科学出版社,2004:71-108
    [1]肖继军,姬广富,杨栋等.环三甲撑三硝胺(RDX)结构和性质的DFT研究[J].结构化学,2002,7(21):437-441
    [2]陆裕平.RDX的电子结构和热解机理及Ar-N2, H2O-H2O分子间相互作用势的从头算研究[D].四川:四川大学硕士学位论文,2005
    [3]Chakraborty, D.; Muller, R. P.; Dasgupta, S. The Mechanism for Unimolecular Decomposition of RDX (1,3,5-Trinitro-1,3,5-triazine), an ab Initio Study[J]. J. Phys. Chem. A.2000,104,2261-2272
    [4]王罗新,刘勇,庹新林等.H+、NH4+对HMX的N-N02键解离能的影响[J].物理化学学报,2007,23(10):1560-1564
    [5]WANG Luo-xin, TUO Xin-lin, YI Chang-hai, et al. Ab initio calculations of the effects of H+ and NH4+ on the initial decomposition of HMX[J]. Journal of Molecular Graphics and Modelling.2008,27:388-393
    [6]姜富灵,翟高红,丁黎,岳可芬,刘妮,史启祯,文振翼.NO2、OH、OH-对HMX初始热解的影响[J].物理化学学报,2010,26(2):409-414
    [7]Frisch M J, et al. Gaussian 03, Revision D.01, Gaussian Inc., Pittsburgh, PA,2003
    [8]王新峰.气相RDX热分解及溶剂影响的理论研究[D],北京:中国工程物理研究院研究生部,2005
    [1]Parrish J.A., Therapeutic in vivo photochemistry:photochemical toxicity studies in humans. Therapeutic in vivo photochemistry:photochemical toxicity studies in humans[J]. J. Natl. Cancer Inst.,1982,69,273-278
    [2]Mohammad T., Morrison H. and HogenEsch H., Invited Review Urocanic Acid Photochemistry and Photobiology[J]. Photochem. Photobiol.,1999,69,115-135
    [3]De Fabo E.C. and Noonan F.P., Mechanism of immune suppression by ultraviolet irradiation in vivo.I.Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology[J]. J. Exp. Med.,1983,158,84-98
    [4]Beissert S., Mohammad T., Torri H., Lonati A., Yan Z., Morrison H. and Granstein R., Regulation of tumor antigen presentation by urocanic acid[J]. J. Immunol,1997,159, 92-96
    [5]Morrison H., Photochemistry and photobiology of urocanic acid[J]. Photodermatology, 1985,2,158-165
    [6]Morrison H. and Deibel R.M., Photochemistry and photobiology of urocanic acid[J]. Photochem. Photobiol.,1986,43,663-665
    [7]Norval M., Simpson T.J. and Ross J.A., Urocanic acid and immunosuppression[J]. Photochem. Photobiol.,1989,50,267-275
    [8]Noonan F.P. and De Fabo E.C., Immunosuppression by ultraviolet B radiation:initiation by urocanic acid[J]. Immunol. Today,1992,13,250-254
    [9]Noonan F.P. and De Fabo E.C., In Environmental UV Photobiology (Edited by Young A.R., Bjorn L.O., Moan J. and Nultsch W.). Plenum Press, New York,1994,113-148
    [10]Norval M., Gibbs N.K. and Gilmour J., The role of urocanic acid in UV-induced immunosuppression:Recent advances (1992-1994) [J]. Photochem. Photobiol.,1995,62, 209-217
    [11]Norval M., Chromophore for UV-induced imniunosuppression:urocanic acid[J]. Photochem. Photobiol.,1996,63,386-390
    [12]Morrison H., Bernasconi C. and Pandey G, Bernasconi and G. Pandey(1984) A wavelength effect on urocanic acid e/z photoisomerisation[J]. Photochem. Photobiol., 1984,40,549-550
    [13]Shukla M. and Mishra P., Electronic spectra, structure and photoisomerization of urocanic acid[J]. Spectrochim. Acta A-Mol. Biomol. Spectrosc.,1995,51,831-838
    [14]Laihia J., Lemmetyinen H., Pasanen P. and Jansen C., Establishment of a kinetic model for urocanic acid photoisomerization[J]. J. Photochem. Photobiol. B:Biol.,1996,33, 211-217
    [15]Ryan W.L. and Levy D., Electronic Structure and Photoisomerization of trans-Urocanic Acid in a supersonic jet[J]. J. Am. Chem. Soc.,2001,123,961-966
    [16]Danielsson J., Ulicny J. and Laaksonen A., A TD-DFT study of the photochemistry of urocanic acid in biologically relevant ionic, rotameric and protomeric forms[J]. J. Am. Chem. Soc.,2001,123,9817-9821
    [17]Haralumpus-Grynaviski N., Ransom C., Ye T., Rozanowaka M., Wrona M., Sarna T. and Simon J.D., Photogeneration and quenching of reactive oxygen species by urocanic acid[J]. J. Am. Chem. Soc.,2002,124,3461-3468
    [18]Brookman J., Chacon J.N. and Sinclair R.S., Some Photophysical Studies of cis-and trans-Urocanic Acid[J]. Photochem. Photobiol. Sci.,2002,1,327-332
    [19]Menon E.L. and Morrison H., Formation of singlet oxygen by urocanic acid by UVA irradiation and some consequences thereof[J]. Photochem. Photobiol.,2002,75,565-569
    [20]Danielsson J. and Laaksonen A., Gas phase photoisomerization of urocanic acid-a theoretical study[J]. Chem. Phys. Lett.,2003,370,625-630
    [21]Wondrak G.T., Jacobson M.K. and Jacobson E.L., Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection[J]. Photochem. Photobiol. Sci.,2006,5,215-237
    [22]Shen L. and Ji H.F., Theoretical investigation of the photosensitization mechanisms of urocanic acid[J]. J. Photochem. Photobiol. B:Biol.,2008,91,96-98
    [23]Runge E. and Gross E., Density-functional theory for time-dependent systems[J]. Phys. Rev. Lett.,1984,52,997-1000
    [24]Page C., MerchAn M., Serrano-Andres L. and Olivucci M., A Theoretical Study of the Low-Lying Excited States of trans-and cid-Urocanic Acid Page[J]. J. Phys. Chem. A, 1999,103,9864-9871
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.