Pseudomonas stutzeri SDM催化特性及蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙酮酸(pyruvic acid)是一种重要的医药、化工产品,其生产一直是生物化工领域的研究热点。酶催化法生产丙酮酸具有生产成本低、造成的污染少等优点,成为关注的焦点。乳酸是生产丙酮酸的原材料之一,目前为止人们发现自然界存在三种可以催化乳酸生成丙酮酸的酶类,分别是:乳酸脱氢酶(lactate dehydrogenase,LDH),乳酸氧化酶(lactate oxidase,LOX)和细胞色素氧化酶b2(flavocytochrome b2,FCB2)。其中FCB2研究较少,未见用于生产丙酮酸的报道。利用乳酸氧化酶生产丙酮酸已有报道,但由于在催化乳酸生成丙酮酸的过程中有过氧化氢的产生,导致丙酮酸的稳定性降低,所以使该酶在丙酮酸生产中的应用受到限制。催化乳酸生成丙酮酸的脱氢酶是NAD~+非依赖性的乳酸脱氢酶,该酶催化乳酸生成丙酮酸,不依赖NAD~+为辅酶,同时催化过程没有过氧化氢的生成,因此利用该酶生产丙酮酸具有广阔的应用前景。
     酶催化法生产丙酮酸的核心是筛选具有高催化活性的菌株,该菌株不仅具有催化合成丙酮酸的高活性的酶或酶系,同时要满足催化条件简便易行,副产物少,后续加工程序简单等特性。研究该菌株的催化活性,确定关键酶的性质和催化机理,确定参与的代谢途径,对优化转化条件、提取纯化关键酶蛋白、构建相关的基因工程菌具有重要指导意义,并有助于最终达到提高转化效率,提高丙酮酸产量的目的。
     经典的研究代谢途径的方法是推测和验证相结合,随着蛋白质组学的迅速发展,利用蛋白质组学研究代谢途径已经逐步代替了以往的方法,双向电泳技术自1975年问世以来已经成为一种分离蛋白质的有效工具,伴随着基质辅助激光解吸飞行时间质谱分析技术(matrix assisted laser desorption/ionization time of flight mass spectrometry,MALDI-TOF MS)的广泛应用,使得蛋白质鉴定变得较可行。并在一定条件下对蛋白质的表达进行分析为研究代谢网络的组成及功能提供了重要的信息;另外酶活性的测定也是探讨代谢通路的途径之一。
     Pseudomonas stutzeri SDM由本实验室从土壤中筛选得到,DL-乳酸是该菌的最佳碳源,在含有DL-乳酸为唯一碳源的培养基上培养并收集菌体作为休止细胞
Pyruvate is an important starting material widely used as an effective precursor in the chemical, drug and agrochemical industries. At present time pyruvate can be produced by both fermentation and enzyme-catalyzed reaction. Nowadays more and more attentions were focused on the enzyme-catalyzed reaction for environmental reasons and the cost of the raw material. It is very important to find an enzyme which has high catalyzing efficiency utilized for pyruvate producing. There are three kinds of enzymes that can catalyze lactate to pyruvate. One is named flavocytochrome b2 which was seldom used to produce pyruvate from lactate. Another is lactate oxidase (LOX) which were found in many species. The last one is lactate dehydrogenase (LDH) which was divided into two types as follows: nicotinamide adenine dinucleotide-linked LDH (nLDH) and nicotinamide adenine dinucleotide-independent LDH (iLDH).
    Fortunately we found a useful strain of Pseudomonas stutzeri SDM which can grow well at simple mediums containing lactate as sole carbon source. It is the first time that this bacterial was found to be able to produce pyruvate. However the enzymes responsible for the conversion of lactate to pyruvate have not been identified and a little was known about the metabolic mechanism of this strain.
    This paper mainly focused on:
    1. P. stutzeri SDM which was newly isolated from soil could grow in a simple medium containing lactate as sole carbon source. When it was cultured on lactate-containing medium the free cells had the capacity of coupling the oxidation of D- and L-lactate and producing pyruvate. To get clearly insight into the lactate-utilization mechanisms two-dimensional gel electrophoresis (2DE) were carried out on total cell lysates. High performance liquid chromatography (HPLC) was performed to detect tricarboxylic acid cycle intermediate and several metabolites including malic acid, pyruvic acid, lactic acid, acetic acid, α-ketoglutaric acid and
引文
1. Aebersold RH, Leavitt J, Saavedra RA, Hood LE, Kent SB. 1987. Internal amino acid sequence analysis of proteins separated by oneor two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci USA. 84: 6970-6974.
    
    2. Aebersold RH, Pipes G, Hood LE, Kent SB. 1988. N-terminal and internal sequence determination of microgram amounts of proteins separated by isoelectric focusing in immobilized pH gradients. Electrophoresis. 9: 520-530.
    
    3. Aivaliotis M , Corvey C, Tsirogianni I, Karas M, Tsiotis G. 2004. Membrane proteome analysis of the green-sulfur bacterium Chlorobium tepidum. Electrophoresis. 25: 3468-3474.
    
    4. Aivaliotis M, Neofotistou E, Remigy H, Tsimpinos G, Lustig A, Lottspeich F, Tsiotis G. 2004. Isolation and Characterization of an Outer Membrane Protein of Chlorobium tepidum. Photosynth. Res. 79: 161-166.
    
    5. Allison N, O'Donell MJ, Fewson CA. 1985b. Membrane-bound lactate dehydrogenase and mandelate dehydrogenase of Acinetobacter calcoaceticus. Purification and properties. Biochem J. 231: 407-416.
    
    6. Allison N, O'Donell MJ, Hoey ME, Fewson CA. 1985a. Membrane-bound lactate dehydrogenase and mandelate dehydrogenase of Acinetobacter calcoaceticus. Location and regulation of expression. Biochem J. 227: 753-757.
    
    7. Ames GF and Nikaido K. 1976. Two-dimensional gel electrophoresis of membrane proteins. Biochemistry. 15: 616-23.
    
    8. Andersen JS and Mann M. 2000. Functional genomics by mass spectrometry. FEBS Lett. 480: 25-31.
    
    9. Armstrong JM. 1964. The molar extinction coefficient of 2, 6-dichlorophenol indophenol. Biochim Biophys Acta. 86: 194-197.
    
    10. Baik SC, Kim KM, Song SM, Kim DS, Jun JS, et al. 2004. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol. 186:949-55.
    11. Benz R, Maier E, Gentschev I. 1993. TolC of Escherichia coli functions as an outer membrane channel. Zentralbl Bakterial. 278:187-196.
    
    12. Bhatnagar RK, Hendry AT, Shanmugam KT and Jensen RA. 1989. The broad-specificity, membrane-bound lactate dehydrogenase of Neisseria gonorrhoeae: ties to aromatic metabolism. J Gen Microbiol. 135: 353-360.
    
    13. Bjellqvist B, Ek K, Righetti PG, et al.. 1982. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods. 6:317-339.
    
    14. Blackstock WP and Weir MP. 1999. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17: 121-127.
    
    15. Blonder J, Yu LR, Radeva G, Chan KC, Lucas DA, Waybright TJ, Issaq HJ, Sharom FJ, Veenstra TD. Combined chemical and enzymatic stable isotope labeling for quantitative profiling of detergent-insoluble membrane proteins isolated using Triton X-100 and Brij-96. J Proteome Res. 2006. 5:349-60.
    
    16. Bochkareva ES, Solovieva ME, Girshovich AS. 1998. Targeting of GroEL to SecA on the cytoplasmic membrane of Escherichia coli. Proc Natl Acad Sci USA. 95:478-83.
    
    17. Bordier C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 256: 1604-1607.
    
    18. Boyce JD, Cullen PA, Nguyen V, Wilkie I, Adler B. Analysis of the Pasteurella multocida outer membrane sub-proteome and its response to the in vivo environment of the natural host. Proteomics. 2006, 6: 870-880
    
    19. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248-254.
    
    20. Broder S and Venter JC. 2000. Sequencing the entire genomes of free-living organisms: the foundation of pharmacology in the new millennium. Annu Rev Pharmacol Toxicol. 40: 97-132.
    
    21. Burley SK, Almo SC, Bonanno JB, et al. 1999. Structural genomics: beyond the human genome project. Nat Genet. 23: 151-157.
    22. Capeillere-Blandin C, Michael J. Barber, Robert C. 1986. Bray Comparison of the processes involved in reduction by the substrate for two homologous flavocytochromes b2 from different species of yeast. Biochem J. 238: 745-756.
    
    23. Carboni L, Piubelli C, Righetti PG, Jansson B, Domenici E. 2002.Proteomic analysis of rat brain tissue: comparison of protocols for two-dimensional gel electrophoresis analysis based on different solubilizing agents. Electrophoresis. 23: 4132-41.
    
    24. Cash P. 2000. Proteomics in medical microbiology. Electrophoresis. 21: 1187-1201.
    
    25. Causey TB, Shanmugam KT, Yomano LP, Inram LO. 2004. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA. 101:2235-2240.
    
    26. Celis JE, Ratz GP, Celis A. 1987. Secreted proteins from normal and SV40 transformed human MRC-5 fibroblasts: toward establishing a database of human secreted proteins. Leukemia. 1: 707-717.
    
    27. Chapman SK, Reid GA, Bell C, Short D, Daff S. 1996. Flavocytochrome b2: an ideal model for studying protein-mediated electron transfer. Biochem Soc Trans. 24: 73-77.
    
    28. Churchward MA, Butt RH, Lang JC, Hsu KK, Coorssen JR. 2005. Related Articles, Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis. Proteome Sci. 3:5-15.
    
    29. Danielsson R, Suorsa M, Paakkarinen V, Albertsson P, Styring S, Aro E, Mamedov F. 2006. Dimeric and monomeric organization of photosystem II: distribution of five distinct complexes in the different domains of the thylakoid membrane. J Biol Chem. 281:14241-14249.
    
    30. Devreese B, Vanrobaeys F, Smet J, Van Beeumen J, Van Coster R. 2002. Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis. Electrophoresis. 23: 2525-2533
    31. Dym O and Eisenberg D. 2001. Sequence-structure analysis of FAD-containing Enzymes. Protein Sci. 10: 1712-1728.
    
    32. Dym O, Pratt EA, Ho C, Eisenberg D. 2000. The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci USA. 97:9413-9418.
    
    33. Edman P. 1949. A method for the determination of the amino acid sequence of peptides. Arch. Biochem. Biophys. 22: 475-483.
    
    34. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO. 2000. Protein function in the post-genomic era. Nature. 405: 823-826.
    
    35. Eisenstein E, Gilliland GL, Herzberg O, et al. 2000. Biological function made crystal clear—annotation of hypothetical proteins via structural genomics. Curr Opin Biotechnol. 11: 25-30.
    
    36. Erwin AL and Gotschlich EC. 1993. Oxidation of D-lactate and L-lactate by Neisseria meningitidis: purification and cloning of meningococcal D-lactate dehydrogenase. J Bacteriol. 175: 6382-6391.
    
    37. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science. 246: 64-71.
    
    38. Fewson CA, Baker DP, Chalmers RM, Keen JN, Hamilton ID, Scott AJ, Yasin M. 1993. Relationships amongst some bacterial and yeast lactate and mandelate dehydrogenases. J Gen Microbiol. 139: 1345-1352.
    
    39. Fischer RS, Martin GC, Rao P, Jensen RA. 1994. Neisseria gonorrhoeae possesses two nicotinamide adenine dinucleotide-independent lactate dehydrogenases. FEMS Microbiol Lett. 115: 39-44.
    
    40. Fivaz M, Vilbois F, Pasquali C, van der Goot FG. 2000. Analysis of glycosyl phosphatidylinositol-anchored proteins by two-dimensional gel electrophoresis. Electrophoresis. 21: 3351-3356.
    
    41. Fleischmann RD, Adams MD, White O, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 269: 496-512.
    42. Futai M and Kimura H. 1977. Inducible membrane-bound L-lactate dehydrogenase from Escherichia coli: purification and properties. J Biol Chem. 252: 5820-5827.
    
    43. Futai M. 1973. Membrane D-lactate dehydrogenase from Escherichia coli. Purification and properties. Biochemistry. 12, 2468-2474.
    
    44. Garavito RM and Ferguson-Miller S. 2001. Detergents as Tools in Membrane Biochemistry. J Biol Chem. 276: 32403-32406.
    
    45. Garvie EI. 1980. Bacterial lactate dehydrogenases. Microbiol Rev. 44: 106-139.
    
    46. Ghisla S and Massey V.. 1977. Studies on the mechanism of action of the flavoenzyme lactate oxidase. Proton uptake and release during the binding of transition state analogs. J Biol Chem. 252:6729-6735.
    
    47. Graves PR and Haystead TAJ. 2002. Molecular Biologist's Guide to Proteomics. Microbiology and Molecular biology Reviews. 66: 39-63.
    
    48. Hagopian K. 1999. Preparative electrophoretic method for the purification of a hydrophobic membrane protein: subunit c of the mitochondrial ATP synthase from rat liver. Anal Biochem. 273:240-251.
    
    49. Hancock REW and Carey AM. 1979. Outer membrane of Pseudomonas aeruginosa: heat- and 2-mercaptoethanol-modifiable proteins. J Bacteriol. 140:902-910.
    
    50. Hancock REW and Carey AM. 1980. Protein D1—a glucose inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa. FEMS Microbiol Lett. 8:105-109.
    
    51. Haugaard N. 1959. D- and L-Lactic acid oxidases of Escherichia coli. Biochim Biophys Acta. 31: 66-72.
    
    52. Helenius A, McCaslin DR, Fries E, Tanford C. 1979. Properties of detergents. Methods Enzymol. 56: 734-749.
    
    53. Henzel WJ, Billed TM, Watanae C, et al. 1993. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragements in protein sequence database. Proc Natl Acad Sci U.S.A. 90: 5011-5015.
    54. Herbert BR, Molloy MP, Gooley AA, Walsh BJ, Bryson WG, Williams KL. 1998. Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis. 19: 845-851.
    
    55. Herskovits AA, Shimoni E, Minsky A, Bibi E. 2002. Accumulation of endoplasmic membranes and novel membrane-bound ribosome-signal recognition particle receptor complexes in Escherichia coli. J Cell Biol. 159:403-410.
    
    56. Ho C, Pratt EA and Rule GS. 1989. Membrane-bound D-lactate dehydrogenase of Escherichia coli: a model for protein interactions in membranes. Biochim Biophys Acta. 988: 173-184.
    
    57. Hou WC, Chen HJ, Lin YH, Chen YC, Yang LL, Lee MH. 2001. Activity staining of isocitrate lyase after electrophoresis on either native or sodium dodecyl sulfate polyacrylamide gels. Electrophoresis. 22:2653-2655.
    
    58. Huang H, Hancock REW. 1993. Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonas aeruginosa. J Bacteriol. 175:7793-7800.
    
    59. Humphery-Smith I, Cordwell SJ, Blackstock WP. 1997. Proteome research: complementarity and limitations with respect to the RNA and DNA words. Electrophoresis. 18: 1217-1242.
    
    60. Hunter T. 1995. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 80: 225-236.
    
    61. Ideker T, Thorsson V, Ranish JA, et al. 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 292: 929-934
    
    62. Jasso-Chavez R, Torres-Marquez ME and Moreno-Sanchez R. 2001. The membrane-bound L- and D-lactate dehydrogenase activities in mitochondria from Euglena gracilis. Arch Biochem Biophys. 390: 295-303.
    
    63. Jung E, Heller M, Sanchez JC and Hochstrasser DF. 2000. Proteomics meets cell biology: the establishment of subcellular proteomes. Electrophoresis. 21: 3369-3377.
    
    64. Karas M and Hilleukamp F. 1988. Laser desorption ionization of proteins with molecular mass execeeding 10000 daltons. Anal Chem. 60: 2299-2301.
    
    65. Kashino Y, Koike H, Satoh K. 2001. An improved sodium dodecyl sulfate-polyacrylamide gel electrophoresis system for the analysis of membrane protein complexes. Electrophoresis. 22: 1004-1007.
    
    66. Kashino Y. 2003. Separation methods in the analysis of protein membrane complexes. J Chromatogr B Analyt Technol Biomed Life Sci. 797: 191-216.
    
    67. Kline ES and Mahler HR. 1965. The lactic dehydrogenases of Escherichia coli. Ann N Y Acad Sci. 119: 905-917.
    
    68. Klose J. 1975. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 26: 231-243.
    
    69. Koch KW. 1991. Purification and identification of photoreceptor guanylate cyclase. J Biol Chem. 266: 8634-8637.
    
    70. Kohn LD and Kaback HR. 1973. Mechanism of active transport in isolated membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli. J Biol Chem. 248: 7012-7017.
    
    71. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.
    
    72. Lalucat J, Bennasar A, Bosch R, Garcia-Valdes E, Palleroni NJ. 2006. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev. 70: 510-47.
    
    73. Lee DY, Park YC, Kim HJ, Ryu YW, Seo JH. 2003. Proteomic analysis of Candida magnoliae strains by two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 3: 2330-2338.
    
    74. Lescuyer P, Strub JM, Luche S, Diemer H, Martinez P, Van Dorsselaer A, Lunardi J, Rabilloud T. Progress in the definition of a reference human mitochondrial proteome. Proteomics. 2003. 3:157-167.
    
    75. Lewis TS, Hunt JB, Aveline LD, et al.. 2000. Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol Cell. 6:1343-1354.
    
    76. Li Y, Chen J, Lun SY. 2001b. Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol. 57: 451-459.
    
    77. Li Y, Chen J, Lun SY, Rui XS. 2001a. Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl Microbiol Biotechnol. 55: 680-685
    
    78. Lindqvist Y, Branden CY, Mathews FS et al.. 1991. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding. J Biol Chem.266: 3198-3207.
    
    79. Locher KP, Lee AT, Rees DC. 2002 The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science. 296:1091-1098.
    
    80. Lodi T and Ferrero Y. 1993. Isolation of the DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme d-lactate ferricytochrome coxidoreductase. Mol Gen Genet. 238: 315-324.
    
    81. London J. 1968. Regulation and function of lactate oxidation in Streptococcus faecium. J Bacteriol. 95: 1380-1387.
    
    82. Louise MC, Barton JD, Chen Z, et al. 2005. Crystal Structure Analysis of Recombinant Rat Kidney Long Chain Hydroxy Acid Oxidase. Biochemistry. 44: 1521-1531.
    
    83. Luche S, Santoni V, Rabilloud T. 2003. Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in twodimensional electrophoresis. Proteomics. 3:249-253.
    
    84. Ma CQ, Xu P, Dou YM, Qu YB. 2003. Highly efficient conversion of lactate to pyruvate using whole cells of Acinetobacter sp. Biotechnol Prog. 9: 1672-1276.
    
    85. Ma CQ, Xu P, Qiu JH, Zhang ZJ, Wang KW, Wang M, Zhang YN. 2004. An enzymatic route to produce pyruvate from lactate. Appl Microbiol Biotechnol. 66: 34-39.
    
    86. Maeda-Yorita K, Aki K, Sagai H, Misaki H, Massey V. 1995. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural. Biochemistry. 77: 631-642.
    
    87. Mastro R and Hall M. 1999. Protein delipidation and precipitation by trin-butylphosphate, acetone, and methanol treatment for isoelectric focusing and two-dimensional gel electrophoresis. Anal Biochem 273:313-315.
    
    88. McCarthy FM, Burgess SC, van den Berg BH, Koter MD, Pharr GT. 2005. Differential detergent fractionation for non-electrophoretic eukaryote cell proteomics. J Proteome Res. 4: 316-324.
    
    89. Medzihradszky KF, Leffler H, Baldwin MA, Burlingame AL. 2001. Protein identification by in-gel digestion, high-performance liquid chromatography, and mass spectrometry: peptide analysis by complementary ionization techniques. J Am Soc Mass Spectrom. 12: 215-221.
    
    90. Mitaku S, Ono M, Hirokawa T, Boon-Chieng S, Sonoyama M. 1999. Proportion of membrane proteins in proteomes of 15 single-cell organisms analyzed by the SOSUI prediction system. Biophys Chem. 82: 165-171
    
    91. Molloy MP. 2000. Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal Biochem. 280: 1-10.
    
    92. Moreno-Sanchez R, Covian R, Jasso-Chavez R, et al. 2000. Oxidative phosphorylation supported by an alternative respiratory pathway in mitochondria from Euglena. Biochim Biophys Acta. 1457: 200-210.
    
    93. Musatov A, Ortega-Lopez J, Robinson NC. 2000. Detergent-solubilized bovine cytochrome c oxidase: dimerization depends on the amphiphilic environment. Biochemistry. 39: 12996-13004.
    
    94. Nandakumar R, Nandakumar MP, Marten MR, Ross JM. 2005. Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus. J Proteome Res. 4:250-257.
    
    95. Newman A. 1998. RNA splicing. Curr Biol. 8: R903-R905.
    
    96. Nijtmans LGJ, Henderson NS, Holt IJ. 2002. Blue Native electrophoresis to study mitochondrial and other protein complexes. Methods. 26: 327-334
    
    97. Nikaido H. 1994. Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem. 269:3905-3908.
    98. Nouwens AS, Cordwell SJ, Larsen MR, Molloy MP. 2000. Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAO1. Electrophoresis. 21: 3797-3809.
    
    99. Nouwens AS, Willcox MD, Walsh BJ, Cordwell SJ. 2002. Proteomic comparison of membrane and extracellular proteins from invasive (PAO1) and cytotoxic (6206) strains of Pseudomonas aeruginosa. Proteomics. 2: 1325-46.
    
    100. O'Farrell PH. 1975. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 250: 4007-4021.
    
    101. Ogawa J, Soong CL, Masashi I & Shimizu S. 2001. Enzymatic production of pyruvate from fumarates-An application of microbial cyclic-imide transforming pathway. J Mol Catal B: Enzyme. 11: 355-359.
    
    102. Oh JE, Krapfenbauer K, Lubec G. 2004. Proteomic basis for the possible use of lymphocytes for metabolic screenings. Amino Acids. 27: 141-147
    
    103. Ostergaard S, Olsson L, Nielsen J. 2000. Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 64: 34-50.
    
    104. Pandey A and Lewitter F. 1999. Nucleotide sequence databases: a gold mine for biologists. Trends Biochem Sci. 24: 276-280.
    
    105. Parish CR, Classon BJ, Tsagaratos J, Walker ID, Kirszbaum L, McKenzie IF. 1986. Fractionation of detergent lysates of cells by ammonium sulphate-induced phase separation. Anal Biochem. 156: 495-502.
    
    106. Pascal MC and Pichinoty F. 1965. Regulation of the biosynthesis and function of D- and L-lactate dehydrogenases in Aerobacter aerogenes. Biochim Biophys Acta. 105:54-69.
    
    107. Pawson T and Nash P. 2000. Protein-protein interactions define specificity in signal transduction. Genes Dev. 14:1027-1047.
    
    108. Petersen BL, Kannangara CG, Henningsen KW. 1999. Distribution of ATPase and ATP-to-ADP phosphate exchange activities in magnesium chelatase subunits of Chlorobium vibrioforme and Synechocystis PCC6803. Arch Microbiol. 171:146-50.
    
    109. Poole K and Hancock REW. 1986. Isolation of a Tn501 insertion mutant lacking porin protein P of Pseudomonas aeruginosa. Mol Gen Genet. 202: 403-409.
    
    110. Rabilloud T, Adessi C, Giraudel A et al. 1997. Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 18: 307-316.
    
    111. Rabilloud T. 1996. Solubilization of proteins for electrophoretic analyses. Electrophoresis. 17: 813-829.
    
    112. Rabilloud T. 1998. Use of thiourea to increase the solubility of membrane proteins in two-dimensional electrophoresis. Electrophoresis. 19: 758-760.
    
    113. Rain JC, Selig L, De Reuse H, et al.. 2001. The protein-protein interaction map of Helicobacter pylori. Nature. 409: 211-215.
    
    114. Rawyler A, Meylan M, Siegenthaler PA. Galactolipid export from envelope to thylakoid membranes in inTCAt chloroplasts. I. Characterization and involvement in thylakoid lipid asymmetry. Biochim Biophys Acta. 1992. 1104:331-341.
    
    115. Roepstorff P. 1997. Mass spectrometry in protein studies from gemone to function. Curr Opin Biotechnol. 8: 6-13.
    
    116. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y and Chait BT. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol. 148: 635-651.
    
    117. Ruppert C, Kavermann H, Wimmers S, Schmid R, Kellermann J, Lottspeich F, Huber H, Stetter KO, Muller V. 1999. The proteolipid of the A(1)A(0) ATP synthase from Methanococcus jannaschii has six predicted transmembrane helices but only two protontranslocating carboxyl groups. J Biol Chem. 274: 25281-25284.
    
    118. Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T. 2000. Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis. 21: 3329-44.
    
    119. Santoni V, Molloy M, Rabilloud T. 2000. Membrane proteins and proteomics: un amour impossible? Electrophoresis. 21: 1054-1070.
    120. Schagger H and von Jagow G. 1991. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem199: 223-231
    
    121. Schagger H and von Jagow G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 166: 368-379.
    
    122. Schagger H. 2001. Blue-native gels to isolate protein complexes from mitochondria. Methods Cell Biol. 65: 231-44.
    
    123. Scheifinger CC, Latham MJ, Wolin MJ. 1975. Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium. Appl Microbiol. 30: 916-921.
    
    124. Scheifinger CC, Linehan B, Wolin MJ. 1975. H_2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl Microbiol. 29: 480-3.
    
    125. Schena M, Shalon D, Davis RW, Brown PO. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270:467-470.
    
    126. Schinschel C and Simon H. 1993. Preparation of pyruvate from R-lactate with Proteus species. J Biotechnol. 31:191-203.
    
    127. Schulein K, Schmid K, Benz R. 1991. The sugar-specific outer membrane channel ScrY contains functional characteristics of general diffusion pores and substrate-specific porins. Mol Microbiol. 5:2233-2241.
    
    128. Shevchenko A, Jensen ON, Podtelejnikov AV, et al. 1996. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA. 93: 14440-14445.
    
    129. Short SA and Kaback HR. 1974. Mechanisms of active transport in isolated membrane vesicles. Further studies on amino acid transport in Staphylococcus aureus membrane vesicles. J Biol Chem 249: 4275-4281.
    
    130. Shouse B. 2001. Human genome. Less can be more, U.K. study finds. Science. 293: 1238-1239.
    131. Siehnel RJ, Egli C, Hancock REW. 1992. Polyphosphate-selective porin OprO of Pseudomonas aeruginosa: expression, purification, and sequence. Mol Microbiol. 6:2319-2326.
    
    132. Singh R, Chenier D, Beriault R, Mailloux R, Hamel, Appanna VD. 2005. Blue native polyacrylamide gel electrophoresis and the monitoring of malate- and oxaloacetate-producing enzymes. J Biochem Biophys Methods. 64: 189-199
    
    133. Skalidis G, Trifilieff E, Luu B. 1986. Selective extraction of the DM-20 brain proteolipid. J Neurochem. 46: 297-299.
    
    134. Snoswell AM. 1963. Oxidized nicotinamide-adenine dinucleotide-independent lactate dehydrogenases of Lactobacillus arabinosus 17.5. Biochim Biophys Acta. 77: 7-19.
    
    135. Somlo M. 1965. Induction des lactico-cytochrome c reductase (d- et 1-) de la leuvre aerobie par les (d- et 1-). Biochim Biophys Acta. 97: 183- 201.
    
    136. Tanaka Y, Anraku Y, Futai M. 1976. Escherichia coli membrane D-lactate dehydrogenase. Isolation of the enzyme in aggregated form and its activation by Triton X-100 and phospholipids. J Biochem (Tokyo). 80: 821-830.
    
    137. Tanford C and Reynolds JA. 1976. Characterization of membrane proteins in detergent solutions. Biochim Biophys Acta. 457:133-170.
    
    138. Tastet C, Charmont S, Chevallet M, Luche S, Rabilloud T. 2003. Structure efficiency relationships of zwitterionic detergents as protein solubilizers in two-dimensional electrophoresis. Proteomics. 3:111-121.
    
    139. Timpeman AT and Aebersold R. 2000. Peptide electroextraction for direct coupling of in gel digest with capillary LC MS/MS for protein identification and sequencing. Anal Chem. 72: 4115-4121
    
    140. Trias J and Nikaido H. 1990. Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem. 265:15680-15684.
    
    141. Trias J, Rosenberg EY, Nikaido H. 1988. Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa. Biochim Biophys Acta. 938:493-496.
    142. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. 1995. Serial analysis of gene expression. Science. 270: 484-487.
    
    143. Wallin E and von Heijne G. 1998. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7: 1029-1038.
    
    144. Wandersman C, Schwartz M, Ferenci T. 1979. Escherichia coli mutants impaired in maltodextrin transport. J Bacteriol. 140:1-13.
    
    145. Wang W, Sun J, Hartlep M, Deckwer WD, Zeng AP. 2003 Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnol Bioeng. 83: 525-536.
    
    146. Wilkins MR, Sanchez JC, Gooley AA, et al.. 1995. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 13:19-50.
    
    147. Wilkins MR, Sanchez JC, Williams KL and Hochstrasser DF. 1996. Current challenges and future applications for protein maps and posttranslational vector maps in proteome projects. Electrophoresis. 17: 830-838.
    
    148. Wylie JL, Bernegger-Egli C, O'Neil JDJ, Worobec EA. 1993. Biophysical characterization of OprB, a glucose-inducible porin of Pseudomonas aeruginosa. J Bioenerg Biomembr. 25:547-556.
    
    149. Xie DL, Lill H, Hauska G, Maeda M, Futai M, Nelson N. 1993. The atp2 operon of the green bacterium Chlorobium limicola. Biochim Biophys Acta. 1172: 267-273.
    
    150. Yokota A, Henmi M, Takaoka N, et al.. 1997. Enhancement of glucose metabolism in pyruvic acid-hyperproducing Escherichia coli mutant defective in F1-ATPase activity. J Ferment Bioeng. 83: 132-138.
    
    151. Yokota A, Terasawa Y, Takaoka N, Shimizu H, Tomita F. 1994. Pyruvic acid production by an F1-ATPase-defective mutant of Escherichia coli W14851ip2. Biosci Biotechnol Biochem. 58: 2164-2167.
    
    152. Yorita K, Aki K, Sagai H, Misaki H, Massey V. 1995. L-Lactate oxidase and L-lactate monooxygenase: Mechanistic variations on a common structural theme. Biochemistry. 77: 631-642.
    
    153. Yoshimura F and H Nikaido. 1982. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol. 152:636-642.
    
    154. Zboril P and Wernerova V. 1996. The isolation and some properties of the membrane-bound lactate dehydrogenase of Paracoccus denitrificans. Biochem Mol Biol Int. 39: 595-605.
    
    155. Zuobi-Hasona K, Crowley PJ, Hasona A, Bleiweis AS, Brady LJ. 2005. Solubilization of cellular membrane proteins from Streptococcus mutans for two-dimensional gel electrophoresis. Electrophoresis. 26:1200-1205.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.