钙信号途径及有丝分裂原蛋白激酶信号通路在δ氨基酮戊酸—光动力疗法杀伤结肠癌细胞中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光动力疗法(photodynamic therapy,PDT)是指光敏剂选择性地聚集在肿瘤组织中,接受光照后在细胞内产生活性氧物质,而导致肿瘤细胞凋亡或坏死的一种治疗方法。迄今为止,加拿大、美国、法国、荷兰、德国和日本等国家已先后批准PDT用于一些恶性肿瘤,但常规光敏剂副反应重和需要较长时间避光等缺点又限制了其进一步临床应用。δ氨基酮戊酸(aminolevulinic acid,ALA)-PDT是基于ALA孵育癌细胞后产生内源性原卟啉Ⅸ(protoporphyrin,PPIX),并绕过血红素的反馈调节机制,最终导致血红素前体物质-PPIX(光敏剂)在癌细胞内积累,用可见光照射后将导致癌细胞的破坏。因ALA副作用小,所以ALA-PDT是一种很有前途的治疗方法。在结肠癌体外和体内实验研究表明,ALA诱导的PPIX均高于常组织,PDT后可明显杀伤癌细胞,但杀伤作用还不够强,为进一步增强PDT对结肠癌细胞的作用效果,探讨其作用的信号传导机制是重要的研究方向之一。ALA-PDT能诱导很多细胞系发生细胞凋亡,但其所诱导的细胞凋亡是否存在钙信号途径仍不清楚。有丝分裂原蛋白激酶(mitogen activated protein kinases, MAPKs)信号通路在肿瘤的放疗和化疗中起着重要作用,但在ALA-PDT对结肠癌细胞中的作用也不清楚。
Photodynamic therapy(PDT) of cancer is based on the tumor-specific accumulation of a photosensitizer, followed by irradiation with visible light, reactive oxygen species(ROS) is generated, which induces cell death and apoptosis. So far, PDT of some malignant tumors has been ratified by Canada, American, French, Dutch Germany, Japan and so on. But common photosensitizer needs patients to avoid light exposure for more than 20 days and it have many side effects, whose drawbacks may limit applicability of PDT in treatment of tumors.δ-aminolevulinic acid(ALA)-PDT based on endogenously formed protoporphyrin IX (PPIX) following incubation of cells withδ-aminolaevulinic acid. By this procedure the feedback control of haem biosynthesis is bypassed and high amounts of ultimate heme precursor, the photosensitizing compound PPIX, are accumulated in cancerous cells. Subsequent irradiation of ALA-treated cells with visible light leads to destruction of cancerous cell. ALA-PDT is a
引文
[1] Johansen LS. Photodynamic therapy: A new method for the treatment of cancer [J]. Ugeskr-Laeger, 1999, 161(12): 3992-3995
    [2] Bartosova J, Hrkal Z. Accumulation of protoporphyrin IX (PPIX) in leukemic cell lines following induction by 5-aminolevulinic acid (ALA) [J]. Comp Biochem Physiol C Toxicol Pharmacol, 2000, 126(3):245-252
    [3] Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy[J]. J Natl Cancer Inst, 1998, 90(12):889-905
    [4] Haddad R, Kaplan O, Greenberg R, et al. Photodynamic therapy of murine colon cancer and melanoma using systemic aminolevulinic acid as a photosensitizer[J]. Int J Surg Investing, 2000, 2:171-178
    [5] Fimia GM and Sassone-Corsi P. Cyclic AMP sigalling[J]. J Cell Sci, 2001, 114(Pt 11):1971-1972
    [6] Almeida RD, Manadas BJ, Carvalho AP, et al. Intracellular signaling mechanisms in photodynamic therapy[J]. Biochim Biophys Acta, 2004, 1704(2): 59-86
    [7] Saczko J, Kulbacka J, Chwilkowska A, et al. The influence of photodynamic therapy on apoptosis in human melanoma cell line[J]. Folia Histochem Cytobiol 2005, 43(3): 129-132
    [8] Sarissky M, Lavicka J, Kocanova S, et al. Diazepam enhances hypericin-induced photocytotoxicity and apoptosis in human glioblastoma cells[J]. Neoplasma, 2005, 52(4):352-359
    [9] Huang HF, Chen YZ, Wu Y. ZnPcS2P2-based photodynamic therapy induces mitochondria-dependent apoptosis in K562 cells[J]. Acta Biochim Biophys Sin, 2005, 37(7):488-494
    [10] Marchal S, Bezdetnaya L, Guillemin F. Modality of cell death induced by Foscan-based photodynamic treatment in human colon adenocarcinoma cell line HT29[J]. Biochemistry (Mosc), 2004, 69(1):45-49
    [11] Teiten MH, Marchal S, D'Hallewin MA, et al. Primary photodamage sites and mitochondrial events after Foscan photosensitization of MCF-7 human breastcancer cells[J]. Photochem Photobiol, 2003, 78(1): 9-14
    [12] Dolgachev V, Nagy B, Taffe B, et al. Reactive oxygen species generation is independent of de novo sphingolipids in apoptotic photosensitized cells[J]. Exp Cell Res, 2003, 288(2): 425-36
    [13] Ben-Hur E, Dubelman TMAR, Van Stevennick. Effect of fluoride on inhibition of plasma membrane functions in Chinese hamster ovary cells photosensitized by aluminum phathalocyanine[J]. Radiat Res, 1992, 131(1): 47-52
    [14] Uzdensky A, Juzeniene A, Ma LW, et al. Photodynamic inhibition of enzymatic detachment of human cancer cells from a substratum[J]. Biochim Biophys Acta, 2004, 1670(1): 1-11
    [15] Sharma M, Bansal H, Gupta PK. Photodynamic action of merocyanine 540 on carcinoma of cervix cells[J]. Indian J Exp Biol, 2002, 40(3): 252-7
    [16] Lam M, Oleinick NL, Nieminen AL. Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization[J]. J Biol Chem, 2001, 276(50): 47379-47386
    [17] Kriska T, Korytowski W, Girotti AW. Hyperresistance to photosensitized lipid peroxidation and apoptotic killing in 5-aminolevulinate-treated tumor cells overexpressing mitochondrial GPX4[J]. Free Radic Biol Med, 2002, 33(10): 1389-1402
    [18] Molgo J, Colasantei C, Adams DS, et al. IP3 receptors and Ca2+ signals in adult skeletal muscle satellite cells in situ[J]. Biol Res, 2004, 37(4): 635-639
    [19] Hanson CJ, Bootman MD, Roderick HL. Cell signalling: IP3 receptors channel calcium into cell death[J]. Curr Biol, 2004, 14(21): R933-935
    [20] van Dijk M, Muriana FJ, van Der Hoeven PC, et al. Diacylglycerol generated by exogenous phospholipase C activates the mitogen-activated protein kinase pathway independent of Ras- and phorbol ester-sensitive protein kinase C: dependence on protein kinase C-zeta[J]. Biochem J, 1997, 323(Pt3): 693-699
    [21] Jiang G, Wei Q. Function and structure of N-terminal and C-terminal domains of calcineurin B subunit[J]. Biol Chem, 2003, 384(9):1299-1303
    [22] Sancho R, Macho A, de La Vega L, et al. Immunosuppressive activity of endovanilloids: N-arachidonoyl-dopamine inhibits activation of the NF-kappa B, NFAT, and activator protein 1 signaling pathways[J]. J Immunol, 2004, 172(4):2341-2351
    [23] Faubert Kaplan BL, Kaminski NE. Cannabinoids inhibit the activation of ERK MAPK in PMA/Io-stimulated mouse splenocytes[J]. Int Immunopharmacol, 2003, 3(10-11):1503-1510
    [24] He KL, Ting AT. Essential role for IKKgamma/NEMO in TCR-induced IL-2 expression in Jurkat T cells[J]. Eur J Immunol, 2003, 33(7):1917-1924
    [25] Agarwal ML, Larkin HE, Zaidi SI, et al. Phospholipase activation triggers apoptosis in photosensitized mouse lymphoma[J]. Cancer Res, 1993, 53(24): 5897-5902
    [26] Zulin Chen, Jianmin Tang, Zhitang Shan, et al. Effects of materials of cell culture on transmittance[J]. SPIE, 1998, 3344(35): 256-263
    [27] Peng Q, Warloe T, Moan, et al. Antiumor effect of 5-aminolevulinic acid-mediated photodynamic therapy can be enhanced by the the use of a low dose if photofrin in human tumor xenografts[J]. Cancer Res 2001, 61(15):5824-5832
    [28] Feofanov A, Sharonov G, Grichine A, et al. Comparative study of photodynamic properties of 13,15-N-cycloimide derivatives of chlorin p6[J]. Photochem Photobiol, 2004, 79(2): 172–188
    [29] Tsai T, Hong RL, Tsai JC, et al. Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells[J]. Lasers Surg Med, 2004, 34(1): 62–72
    [30] Piette J, Volanti C, Vantieghem A, et al. Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers[J]. Biochemical Pharmacology, 2003, 66(8):1651-1659
    [31] Bruner H, Hausmann F, Krieg RC, et al. The effect of 5-aminolevulinic acid esters on protoporphyrin Ⅸ production in human adenocarcinoma cell lines[J].Photochem Photobiol, 2001, 74(5): 721-725
    [32] Gahlen J, Stern J, Laubach HH, et al. Improving diagnostic staging laparoscopy using intraperitoneal lavage of delta-aminolevulinic acid (ALA) for laparoscopic fluorescence diagnosis[J]. Surgery, 1999, 126(3): 469-473
    [33] Mlkvy P, Messmann H, Regula J, et al. Photodynamic therapy for gastrointestinal tumors using three photosensitizers-ALA induced PPIX, photofrin, and MTHPC. A pilot study[ J]. Neoplasma, 1998, 45(3):157-161
    [34] Friesen SA, Hjortland GO, Madsen SJ, et al. 5-Aminolevlinic acid-based photodynamic detection and therapy of brain tumors[J]. Int J Oncol, 2002, 21(3):577-582
    [35] Kelleher DK, Bastian J, Thews O, et al. Enhanced effects of aminolaevulinic acid-based photodynamic therapy through local hyperthermia in rat tumors[J]. Br J Cancer, 2003, 89(2):405-411
    [36] Chen Zulin, Tang Jianming. Gastrointestinal tumor and present laser[M]。Beijing:Military Medicine Science Publication, 1999, 70~80
    [37] McConkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis[J]. Biochem Biophys Res Commun, 1997, 239(2): 357 – 366
    [38] Antoine F, Faure JE, Dumas C, et al. Differential contribution of cytoplasmic Ca2+ and Ca2+ influx to gamete fusion and egg activation in maize[J]. Nat Cell Biol, 2001, 3(12): 1120 – 1123
    [39] Hubmer A, Hermann A, Uberriegler K, et al. Role of calcium in photodynamically induced cell damage of human fibroblasts.Photochem[J]. Photobiol, 1996, 64 (1): 211– 215
    [40] Valenzeno DP, Tarr M. Calcium as a modulator of photosensitized killing of H9c2 cardiac cells[J]. Photochem Photobiol, 2001, 74 (4):605 – 610
    [41] Penning LC, Rasch MH, Ben-Hur E, et al. A role for the transient increase of cytoplasmic free calcium in cell rescue after photodynamic treatment[J].Biochim Biophys Acta, 1992,1107(2): 255 – 260
    [42] Ben-Her E, Dubbelman TM. Cytoplasmic free calcium changes as a triggermechanism in the response of cells to photosensitization[J]. Photochem Photobiol, 1993, 58(6): 890 – 894
    [43] Kuzalova K, Grebenova D, Pluskanova M, et al. Early apoptotic features of K562 cell death induced by 5-aminolaevulinic acid-based photodynamic therapy[J]. Photochem Photobiol, 2004, 73(1-2): 67-78
    [44] Tajiri H, Hayakawa A, Matsumoto Y, et al. Changes in intracellular Ca2+ concentrations related to PDT-induced apoptosis in photosensitized human cancer cell[J]. Cancer Lett, 1998, 128(2): 205-210
    [45] Zhou ZH, Yang HG, Zhang ZY. Role of calcium in phototoxicity of 2-butylamino-2-demethoxy-hypocrellin A to human gastric cancer MGC-803[J]. Biochim Biophys Acta, 2003, 1593(2-3): 191-200
    [46] Wyld L, Reed MW, Brown NJ. Differential cell death response to photodynamic therapy is dependent on dose and cell type[J]. Br J Cancer, 2001, 84(10):1384-1386
    [47] Grebenova D, Kuzelova K, Smetana K, et al. Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells[J]. J Photochem Photobiol B, 2003, 69(2): 71-85
    [48] Krebs J. The role of calcium in apoptosis[J]. Biometals, 1998, 11(4): 375–382
    [49] Giacca AJ, Kastan MB.Complexity of p53 modulation: emerging patterns from divergent signals[J]. Genes Dev, 1998, 12(19): 2973–2983
    [50]McKay BC, Ljungman M, Rainbow AJ. Potential roles for p53 in nucleotide excision repair[J]. Carcinogenesis, 1999, 20(8): 1389–1396
    [51] Tao Wang, Fei Chen, Zhe Chen, et al. Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO[J]. World J Gastroenterol, 2004, 10(15): 2205-2208
    [52] Zacal N, Espiritu M, Singh G, et al. Increased BNip3 and decreased mutant p53 in cisplatin-sensitive PDT-resistant HT29 cells[J]. Biochem Biophys Res Commun, 2005, 331(2): 648-657
    [53] Parvathenani LK, Buescher ES, Chacon-cruz E, et al. Type Ι cAMP-dependent protein kinase delays apoptosis in human neutrophils at a site upstream of caspase-3[J]. J Biol Chem, 1998, 273 (12): 6736-6743
    [54] Wolvetang EJ, Johnson KL, Krauer K, et al. Mitochondrial respiratory chain inhibitors induce apoptosis[J]. FEBS Lett, 1994, 339(1-2): 40-44
    [55] Rossi AG, Cousin JM, Dransfield I, et al. Agents that elevate cAMP inhibit human neutrophil apoptosis[J]. Biochem Biophys Res Commun, 1995, 217(3): 892-899
    [56] Garcia-bermejo L, Perez C, Vilaboa NE, et al. cAMP increasing agents attenuate generation of apoptosis by etoposide in promonocytic leukemia cells[J]. J Cell Sci, 1998; 111(Pt 5 ): 637-644
    [57] Penning LC, VanSteveninck J, Dubbelman TM. HPD-induced photodynamic changes in intracellular cyclic AMP levels in human bladder transitional carcinoma cells, clone T24[J]. Biochem Biophys Res Commun, 1993; 194(3): 1084-1089
    [58] Inanami O, Yoshito A, Takahashi K, et al. Effects of BAPTA-AM and forskolin on apoptosis and cytochrome c release in photosensitized Chinese hamster V79 cells[J]. Photochem. Photobiol, 1999; 70(4): 650-655
    [59] Loweth AC, Williams GT, Scarpello JH, et al. Evidence for the involvement cGMP and protein kinase G in nitric-oxide induced apoptosis in the pancreatic B cell line,HIT-T15[J]. FEBS Lett, 1997; 400(3): 285-288
    [60] Wu CF, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes[J]. J Biol Chem, 1997; 272(23): 14860-14866
    [61] Genaro AM, Hortelano S, Alvarez A, et al. Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels[J]. J Clin Invest, 1995; 95(4): 1884-1890
    [1] Kick G., Messer G., Plewig G., et al. Strong and prolonged induction of c-jun and c-fos proto-oncogenes by photodynamic therapy[J]. Br J Cancer, 1996, 74(1): 30–36
    [2] Gomer CJ, Ryter SW, Ferrario A, el al. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins[J]. Cancer Res, 1996, 56(10): 2355–2360
    [3] Fimia GM, Sassone-Corsi P. Cyclic AMP sigalling[J]. J Cell Sci, 2001, 114(Pt 11): 1971-1972
    [4] Jing Dongyin, Li Mengfeng. Molecular Cloning Manual, Second edtion[M]. Beijing: Sceince Publication,1998,880-898
    [5] Wang YZ, Bonner JC. Mechanism of extracellular signal-regulated kinase(ERK)-1 and ERK-2 activation by vanadium pentoxide in rat pulmonary myofibroblasts[J].Am J Respir Cell Mol Biol, 2000, 22: 590–596
    [6] Yoshizumi M, Abe J, Haendeler J, et al. Src and Cas mediate JNK activation but not ERK1/2 and p38 kinases by reactive oxygen species[J].J Biol Chem, 2000, 275: 11706–11712
    [7] Piret, B, Legrand-Poels S, Sappey C, et al. NF-kappa B transcription factor and human immunodeficiency virus type 1 (HIV-1) activation by methylene blue photosensitization[J]. Eur J Biochem, 1995, 228: 447–455
    [8] Zheng Jianghua, Shi De, Chen Zulin. Influence of 5-Aminolevulinate(ALA)-Photodynamic Therapy(PDT) on intracellular free calcium concentration of human colon carcinoma cell lines. Chinese Journal of Experimental Surgery,2005,22(2):250-251(in Chinese)
    [9] Assefa Z, Vantieghem A, Declercq W, et al. The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin[J]. J Biol Chem, 1999, 274(13): 8788–8796
    [10] Xue L, He J, and Oleinick NL. Promotion of photodynamic therapy-induced apoptosis by stress kinases[J]. Cell Death Differ, 1999, 6(9): 855–864
    [11] Seger R, Krebs EG. The MAPK signaling cascade[J]. FASEB J, 1995, 9(9): 726–735
    [12] Davis RJ. The mitogen-activated protein kinase signal transduction pathway[J]. J Biol Chem, 1993, 268(20): 14553–14556
    [13] Eastman A. Survival factors, intracellular signal transduction, and the activation of endonucleases in apoptosis[J]. Cancer Biol, 1995, 6(1): 45–52
    [14] Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis[J]. Science, 1995, 270(5240):1326–1331
    [15] Thrane EV, Schwarze PE, Thoresen GH, et al. Persistent versus transient map kinase (ERK) activation in the proliferation of lung epithelial type 2 cells[J]. Exp Lung Res, 2001, 27(4): 387–400
    [16] Cui W, Yazlovitskaya EM, Mayo MS, et al. Cisplatin-induced response of c-jun N-terminal kinase 1 and extracellular signal– regulated protein kinases 1 and 2 in a series of cisplatin-resistant ovarian carcinoma cell lines[J]. Mol Carcinog, 2000, 29(4): 219–228
    [17] Anderson CN, and Tolkovsky AM. A role for MAPK/ERK in sympathetic neuron survival: protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside[J]. J Neurosci, 1999, 19(2): 664–673
    [18] Kimura A, Ohmichi M, Kurachi H, Ikegami H, et al. Role of mitogenactivated protein kinase/extracellular signal-regulated kinase cascade in gonadotropin-releasing hormone-induced growth inhibition of a human ovarian cancer cell line[J]. Cancer Res, 1999, 59: 5133–5142
    [19] Guyton KZ, Liu Y, Gorospe M, et al. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury[J]. J Biol Chem, 1996, 271: 4138–4142
    [20] Liang CC, Chen H C. Sustained activation of extracellular signal-regulated kinase stimulated by hepatocyte growth factor leads to integrin alpha 2 expression that is involved in cell scattering[J]. J Biol Chem, 2001, 276: 21146–21152
    [1] Assefa Z, Vantieghem A, Declercq W, et al. The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin[J]. J Biol Chem, 1999, 274(13): 8788–8796
    [2] Xue L, He J, Oleinick NL. Promotion of photodynamic therapy-induced apoptosis by stress kinases[J]. Cell Death Differ, 1999, 6(9): 855–864
    [3] Gupta S,Barrett T,Whitmarsh AJ, et al.Selective interaction of JNK protein kinase isoforms with transcription factors[J].EMBO J,1996,15(11):2760-2770
    [4] Minden A,Lin A,Claret FX et al.Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTP ases Rac and Cdc42Hs[J].Cell,1995,81(7):1147-1157
    [5] Vander Griend DJ, Kocherginsky M, Hickson JA, et al.Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7[J].Cancer Res, 2005, 65(23):10984-10991
    [6] Karandikar M, Xu S, Cobb MH. MEKK1 binds raf-1 and the ERK2 cascade components[J].J Biol Chem, 2000, 275(51):40120-40127
    [7] Singh R, Ahmed S, Malemud CJ, et al. Epigallocatechin-3-gallate selectively inhibits interleukin-1beta-induced activation of mitogen activated protein kinase subgroup c-Jun N-terminal kinase in human osteoarthritis chondrocytes[J]. J Orthop Res, 2003, 21(1):102-109
    [8] Brewster JL,De Valoir T,Dwyer NC et al.An osmosensing signal transduction pathway in yeast[J].Science,1993,259(5102):1760-1763
    [9] Brancho D, Tanaka N, Jaeschke A, et al.Mechanism of p38 MAP kinase activation in vivo[J].Genes Dev. 2003, 17(16):1969-1978
    [10]Huang YF, Gong KZ, Zhang ZG. Different roles of ERK(1/2) and p38 MAPK(alpha/beta) in cellular signaling during cardiomyocyte anoxia preconditioning[J]. Sheng Li Xue Bao, 2003, 55(4):454-458
    [11]Li ZJ,Jiang Y,Ulevitch RJ, et al.The primary structure of p38λ:A new memberof p38 group of MAP kinase[J].Biochem Biophys Res Commun,1996,228(2):334-340
    [12]Xia Z,Dickens M,Raingeand J, et al.Opposing effects of ERK and JNK-p38 MAP kinase on apoptosis[J].Science,1995,270(5240):1326-1331
    [13]Berglund CM, Radesater AC, Persson MA, et al.UV-induced apoptosis in SH-SY5Y cells: contribution to apoptosis by JNK signaling and cytochrome c[J]. J Neurosci Res, 2004, 78(4):580-5899
    [14]Chen YR,Meyer CF,Tan TH.Persistent activation of c-Jun N-terminal kinase1(JNK1)in γ radiation-induced apoptosis[J].J Biol Chem,1996,2719(2):631-634
    [15]Xu C, Shen G, Yuan X, et al. ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells[J].Carcinogenesis, 2006, 27(3):437-445
    [16]Allen J, Khwaja F, Byers S, et al. The p75NTR mediates a bifurcated signal transduction cascade through the NF kappa B and JNK pathways to inhibit cell survival[J].Exp Cell Res, 2005, 304(1):69-80
    [17]Wang YB,Su B,Sah VP, et al.Cardiac Hypertrophy induced by mitogen-activated protein kinase kinase 7,a specific activator for c-Jun NH2-terminal kinase in ventricular cells[J].J Biol Chem,1998,273(10):5423-5426
    [18]Antonyak MA,Moscatello DK,Wong AJ.Constitutive activation of c-Jun N-terminal kinase by a mutant EGF receptor[J].J Biol Chem,1998,273(5):2817-2824
    [19]Bian ZM, Elner SG, Yoshida A, et al. Activation of p38, ERK1/2 and NIK pathways is required for IL-1beta and TNF-alpha-induced chemokine expression in human retinal pigment epithelial cells[J].Exp Eye Res, 2001, 73(1):111-121
    [20]Cohen PS,Schmidtmayerova H,Dennis J et al.The critical role of p38 MAP kinase in T cell HIV-1 replication[J].Mol Med,1997,3(5):339-346
    [21]Guan Z , Baier LD , Morrison AR . p38 mitogen-activated protein kinase dwon-regulates nitric oxide and up-regulates prostaglandin E2 biosynthesis stimulated by interleukin-1 beta[J].J Biol Chem,1997,272(12):8083-8089
    [22]Sutherland CL,Heath AW,Pelech SL et al.Differential activation of the ERK,JNK and p38 mitogen-activated protein kinase by CD40 and the B cell antigen receptor[J].J Immunol,1996,157(8):3381-3390
    [23]Sheikh-Hamad D,Mari JD,Suki WN et al.p38 kinase activity is essential for osmotic induction of mRNAs for HSP 70 and transporter for organic solute betain in Madin Darby Canin Kidney cells[J].J Biol Chem,1998,273(3):1832-1837
    [24]Lavoie JN,Lambert H,Hickey E et al.Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation induced changes in the oligomeric structure of heat shock protein 27[J]. Mol Cell Biol,1995,15(1):505-516
    [25]Nemoto S,Xiang JL,Huang S et al.Induction of apoptosis by SB202190 through inhibition of p38β mitogen-activated protein kinase[J].J Biol Chem,1998,273(26):16415-16420
    [26]Cheng HL,Feldman EL.Bidirectional regulation of p38 kinase and c-Jun N-terminal protein kinase by insulin-like growth factor-I[J].J Biol Chem,1998,273(23):14560-14565
    [27]Kick G, Messer G, Plewig G, et al. Strong and prolonged induction of c-jun and c-fos proto-oncogenes by photodynamic therapy[J].Br J Cancer, 1996 , 74(1):30-36
    [28]Tao J, Sanghera JS, Pelech SL, et al. Stimulation of stress-activated protein kinase and p38 HOG1 kinase in murine keratinocytes following photodynamic therapy with benzoporphyrin derivative[J].J Biol Chem, 1996, 271(43):27107-27115
    [29]Klotz LO, Fritsch C, Briviba K, et al. Activation of JNK and p38 but not ERK MAP kinases in human skin cells by 5-aminolevulinate-photodynamic therapy[J]. Cancer Res, 1998, 58(19):4297-4300
    [30]Lawen A. Apoptosis—an introduction[J]. Bioessays. 2003, 25 (9):888–896
    [31]Wallach D, Varfolomeev EE, Malinin NL, et al. Tumor necrosis factor receptor and Fas signaling mechanisms[J]. Annu Rev Immunol, 1999, 17: 331–367
    [32]Adams JM, Cory S. Apoptosomes: engines for caspase activation[J]. Curr Opin Cell Biol, 2002, 14 (6): 715–720
    [1] Johansen LS. Photodynamic therapy. A new method for the treatment of cancer [J]. Ugeskr-Laeger, 1999,161(12): 3992-3995
    [2] Niedre M, Patterson MS, Wilson BC. Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem Photobiol. 2002, 75(4): 382–391
    [3] Feofanov A, Sharonov G, Grichine A, et al. Comparative study of photodynamic properties of 13,15-N-cycloimide derivatives of chlorin p6[J]. Photochem Photobiol. 2004, 79(2): 172–188
    [4] Tsai T, Hong RL, Tsai JC, et al. Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells[J]. Lasers Surg Med. 2004, 34(1): 62–72
    [5] Piette J, Volanti C, Vantieghem A, et al. Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers[J]. Biochemical Pharmacology.2003, 66(8):1651-1659
    [6] Lawen A. Apoptosis—an introduction[J]. Bioessays. 2003, 25 (9):888–896
    [7] Wallach D, Varfolomeev EE, Malinin NL, et al. Tumor necrosis factor receptor and Fas signaling mechanisms[J]. Annu Rev Immunol. 1999. 17: 331–367
    [8] Adams JM, Cory S. Apoptosomes: engines for caspase activation[J]. Curr Opin Cell Biol. 2002, 14 (6): 715–720
    [9] Ahmad N, Gupta S, Feyes DK, et al. Involvement of Fas (APO-1/CD-95)during photodynamic-therapy-mediated apoptosis in human epidermoid carcinoma A431cells[J]. J Invest Dermatol. 2000, 115 (6):1041–1046
    [10]Yokota T, Ikeda H, Inokuchi T, et al. Enhanced cell death in NR-S1 tumor by photodynamic therapy: possible involvement of Fas and Fas ligand system[J]. Lasers Surg Med, 2000, 26 (5): 449–460
    [11]Tan KH , Hunziker W. Compartmentalization of Fas and Fas ligand may prevent auto-or paracrine apoptosis in epithelial cells[J]. Exp Cell Res, 2003, 284(2):283–290
    [12]Ali SM, Chee SK, Yuen GY, et al. Photodynamic therapy induced Fas-mediated apoptosis in human carcinoma cells[J]. Int J Mol Med, 2002, 9 (3 ): 257–270
    [13]Vantieghem A, Assefa Z, Vandenabeele P, et al. Hypericin-induced photosensitization of HeLa cells leads to apoptosis or necrosis. Involvement of cytochrome c and procaspase-3 activation in the mechanism of apoptosis[J]. FEBS Lett, 1998, 440 (1-2): 19–24
    [14]Antonsson B and Martinou JC. The Bcl-2 protein family[J]. Exp Cell Res, 2000, 256 (1): 50–57
    [15]Harris MH and Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability[J]. Cell Death Differ, 2000, 7 (12): 1182–1191
    [16]Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch[J]. Nat. Rev Cancer, 2002, 2 (9): 647–656
    [17]Zhuang S, Demirs JT, Kochevar IE. p38 Mitogen-activated protein kinase mediates Bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide[J]. J Biol Chem, 2002, 75 (34): 25939–25948
    [18]Zhuang S, Lynch MC , Kochevar IE. Caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis of HL-60 cells[J]. Exp Cell Res, 1999, 250 (1): 203–212
    [19]Zhuang S, Kochevar IE. Ultraviolet A radiation induces rapid apoptosis of human leukemia cells by Fas ligand-independent activation of the Fas death pathways[J]. Photochem Photobiol, 2003, 78 (1): 61–67
    [20]Nagy B, Yeh WC, Mak TW, et al. FADD null mouse embryonic fibroblasts undergo apoptosis after photosensitization with the silicon phthalocyanine Pc 4[J]. Arch Biochem Biophys, 2001, 385 (1):194–202
    [21]Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death[J]. Cell, 2003, 112 (4):481–490
    [22]Teiten MH, Marchal S, D'Hallewin MA, et al.Primary photodamage sites andmitochondrial events after Foscan photosensitization of MCF-7 human breast cancer cells[J]. Photochem Photobiol, 2003, 78 (1): 9–14
    [23]Inanami O, Yoshito A, Takahashi K, et al. Effects of BAPTA-AM and forskolin on apoptosis and cytochrome c release in photosensitized Chinese hamster V79 cells[J]. Photochem Photobiol, 1999,70 (4):650–655
    [24]Varnes ME, Chiu SM, Xue LY , et al. Photodynamic therapy-induced apoptosis in lymphoma cells: translocation of cytochrome c causes inhibition of respiration as well as caspase activation[J]. Biochem Biophys Res Commun, 1999, 255 (3): 673–679[25]Oberdanner CB, Kiesslich T, Krammer B, et al. Glucose is required to maintain high ATP-levels for the energy-utilizing steps during PDT-induced apoptosis[J]. Photochem Photobiol, 2002, 76 (6): 695–703
    [26]Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates and function during apoptosis [J]. Annu Rev Biochem, 1999, 68: 383-424
    [27]Kessel D, Luo Y. Photodynamic therapy: a mitochondrial inducer of apoptosis[J]. Cell Death Differ, 1999, 6 (1): 28–35
    [28]Vantieghem A, Xu Y, Declercq W, et al. Different pathways mediate cytochrome crelease after photodynamic therapy with hypericin[J]. Photochem Photobiol, 2001, 74 (2): 133–142
    [29]Chaloupka R, Petit PX, Israel N, et al. Over-expression of Bcl-2 does not protect cells from hypericin photo-induced mitochondrial membrane depolarization, but delays subsequent events in the apoptotic pathway[J]. FEBS Lett, 1999, 462 (3):295–301
    [30]Chiu S, Evans HH, Lam M, et al. Phthalocyanine 4 photodynamic therapy-induced apoptosis of mouse L5178Y-R cells results from a delayed but extensive release of cytochrome c from mitochondria[J]. Cancer Lett, 2001, 165 (1): 51–58
    [31]Reiners JJ Jr, Caruso JA, Mathieu P, et al. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photo damage involves Bid cleavage[J]. Cell Death Differ, 2002, 9 (9): 934–944
    [32]Granville DJ, Carthy CM, Jiang H, et al. Rapid cytochrome c release, activation of caspases 3, 6, 7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy[J]. FEBS Lett, 1998, 437 (1-2): 5–10
    [33]Vantieghem A, Assefa Z, Vandenabeele P, et al. Hypericin-induced photosensitization of HeLa cells leads to apoptosis or necrosis. Involvement of cytochrome c and procaspase-3 activation in the mechanism of apoptosis[J]. FEBS Lett, 1998, 440 (1-2): 19–24
    [34]Granville DJ, Levy JG, Hunt DW. Photodynamic therapy induces caspase-3 activation in HL-60 cells[J]. Cell Death Differ. 1997, 4 (7): 623–628
    [35]Granville DJ, Jiang H, An MT, et al. Overexpression of Bcl-X(L) prevents caspase-3-mediated activation of DNA fragmentation factor (DFF) produced by treatment with the photochemotherapeutic agent BPD-MA[J]. FEBS Lett, 1998, 422 (2): 151–154
    [36]Carthy CM, Granville DJ, Jiang H, et al. Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-xL overexpression do not prevent early mitochondrial events but still depress caspase activity[J]. Lab Invest, 1999, 79 (8): 953–965
    [37]He J, Agarwal ML, Larkin HE, et al.The induction of partial resistance to photodynamic therapy by the protooncogene BCL-2[J]. Photochem Photobiol, 1996, 64 (5): 845–852
    [38]Granville DJ, Jiang H, An MT, et al. Bcl-2 overexpression blocks caspase activation and downstream apoptotic events instigated by photodynamic therapy[J]. Br J Cancer, 1999, 79 (1): 95–100
    [39]Carthy CM, Granville DJ, Jiang H, et al. Early release of mitochondrial cytochrome c and expression of mitochondrial epitope 7A6 with a porphyrin-derived photosensitizer: Bcl-2 and Bcl-xL overexpression do not prevent early mitochondrial events but still depress caspase activity[J]. Lab Invest, 1999, 79 (8): 953–965
    [40]Zhang WG, Ma LP, Wang SW, et al. Antisense bcl-2 retrovirus vector increases the sensitivity of a human gastric adenocarcinoma cell line to photodynamic therapy[J].Photochem Photobiol, 1999, 69 (5): 582–586
    [41]Kim HR, Luo Y, Li G, Kessel D. Enhanced apoptotic response to photodynamic therapy after bcl-2 transfection[J]. Cancer Res, 1999, 59 (14):3429–3432
    [42]Ruvolo PP, Deng X, May WS. Phosphorylation of Bcl2 and regulation of apoptosis[J]. Leukemia, 2001, 15 (4): 515–522
    [43]Deng X, Xiao L, Lang W, et al. Novel role for JNK as a stress-activated Bcl2 kinase[J]. J Biol Chem, 2001, 276 (26): 23681–23688
    [1] Johansen LS. Photodynamic therapy: A new method for the treatment of cancer [J]. Ugeskr-Laeger, 1999,161(12): 3992-3995
    [2] Konan YN, Gurny R, Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy[J]. J Photochem Photobiol B, 2002, 66 (2): 89– 106
    [3] Reddi E. Role of delivery vehicles for photosensitizers in the photodynamic therapy of tumors[J]. J Photochem Photobiol, 1997, 37 (3): 189– 195
    [4] Foley MS, Beeby A, Parker AW, et al. Excited triplet state photophysics of the sulfonated aluminum phthalocyanines bound to human serum albumin[J]. J Photochem Photobiol, 1997, 38 (1): 10–17
    [5] Gantchev TG, Ouellet R, van Lier JE. Binding interactions and conformational changes induced by sulfonated aluminum phthalocyanines in human serum albumin[J]. Arch Biochem Biophys, 1999, 366 (1):21–30
    [6] Larroque C, Pelegrin A, van Lier JE. Serum albumin as a vehicle for zinc phthalocyanine: photodynamic activities in solid tumor models[J].Br J Cancer, 1996, 74 (12) :1886– 1890
    [7] Hamblin MR, Newman EL. Photosensitizer targeting in photodynamic therapy I. Conjugates of haematoporphyrin with albumin and transferrin[J]. J Photochem Photobiol B, 1994, 26 (1): 45– 46
    [8] Brasseur N, Langlois R, La Madeleine C, et al. Receptor-mediated targeting of phthalocyanines to macrophages via covalent coupling to native or maleylated bovine serum albumin[J]. Photochem Photobiol, 1999, 69 (3):345– 352
    [9] Hamblin MR, Miller JL, Ortel B. Scavenger-receptor targeted photodynamic therapy[J]. Photochem. Photobiol, 2000, 72 (4): 533–540
    [10] Gueddari N, Favre N, Hachem H, et al. Evidence of up-regulated low density lipoprotein receptor in human lung adenocarcinoma cells line A549[J]. Biochemie, 1993, 75 (9):811 –819
    [11] Maziere JC, Moliere P, Santus R. The role of the low density lipoprotein receptor pathway in the delivery of lipophilic photosensitizers in the photodynamic therapyof tumors[J]. J Photochem Photobiol B, 1991, 8 (4) 351– 360
    [12] Martins J, Madeira V, Almeida L, et al. Photoactivation of phthalocyanine-loaded low density lipoproteins induces a local oxidative stress that propagates to human erythrocytes: protection by caffeic acid[J]. Free Radic Res, 2002, 36 (3) 319–328
    [13] Versluis AJ, Rensen PC, Kuipers ME, et al. Interaction between zinc (II)-phthalocyanine-containing liposomes and human low density lipoprotein[J]. J Photochem Photobiol B, 1994, 23 (2-3): 141–148
    [14] Jori G, Reddi E. The role of lipoproteins in the delivery of tumor-targeting photosensitizers[J]. Int J Biochem, 1993, 25 (10): 1369–1375
    [15] Rensen PC, W.G. Love, Taylor PW. In vitro interaction of zinc (II)-phthalocyanine-containing liposomes and plasma lipoproteins[J]. J Photochem. Photobiol B, 1994, 26 (1): 29– 35
    [16] Polo L, Valduga G, Jori G, et al. Low-density lipoprotein receptors in the uptake of tumor photosensitizers by human and rat transformed fibroblasts[J]. Int J BiochemCell Biol, 2002, 34 (1): 10–23
    [17] de Smidt PC, Versluis AJ, van Berkel TJ. Properties of incorporation, redistribution and integrity of porphyrin– lowdensity lipoprotein complexes[J]. Biochemistry, 1993, 32 (11): 2916–2922
    [18] Soucin M, Polo L, Reddi E, et al. Effect of axial ligation and delivery system on the tumor-localising and photosensitizing properties of Ge(IV)-octabutoxy-phthalocyanines[J].Br J Cancer1995, 71(4): 727– 732
    [19] Urizzi P, Allen CM, Langlois R, et al. Low-density lipoprotein-bound aluminum sulfophthalocyanine: targeting tumor cells for photodynamic therapy[J]. J Porphyrins Phthalocyanines, 2000, 4 (1): 1 – 7
    [20] Obochi M O, Boyle RW, van Lier JE. Biological activities of phthalocyanines. XIII. The effects of human serum components on the in vitro uptake and photodynamic activity of zinc phthalocyanine[J]. Photochem Photobiol, 1993, 57 (4): 634– 640
    [21] Hamblin MR, Newman EL. Photosensitizer targeting in photodynamic therapy.II. Conjugates of haematoporphyrin with serum lipoproteins[J]. J Photochem PhotobiolB, 1994, 26 (2): 147–157
    [22] Allison BA, Pritchard PH, Levy JG. Evidence for low density lipoprotein receptor-mediated uptake of benzoporphyrin derivative[J]. Br J Cancer 1994, 69 (5): 833– 839
    [23] Schmidt-Erfurth U, Bauman W, Gragoudas E, et al. Photodynamic therapy of experimental choroidal melanoma using lipoprotein-delivered benzoporphyrin[J]. Ophthalmology, 1994101 (1): 89–99
    [24] Miller JW, Walsh AW, Kramer M, et al. Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin[J]. Arch Ophthalmol, 1995,113 (6): 810– 818
    [25]Schmidt-Erfurth U, Flotte TJ, Gragoudas ES, et al. Benzoporphyrin-lipoprotein-mediated photodestruction of intracocular tumors[J]. Exp Eye Res, 1996, 62 (1): 1 – 10
    [26] Schmidt-Erfurth U, Diddens H, Birngruber R, et al. Photodynamic targeting of human retinoblastoma cells using covalent low-density lipoprotein conjugates[J]. Br J Cancer, 1997, 75 (1): 54– 61
    [27] Ponka P, Beaumont C Richardson DR. Function and regulation of transferrin and ferritin[J]. Semin Hematol, 1998, 35 (1): 35– 54
    [28] Sposi NM, Cianetti L, Tritarelli E,et al. Mechanisms of differential transferrin receptor expression in normal hematopoiesis[J].Eur J Biochem, 2000, 267(23): 6762-6774
    [29] Cavanaugh PG. Synthesis, and photodynamic therapymediated anti-cancer, and other uses of chlorin e6-transferrin[P]. US Patent application Publication Number US 2002/0137901 A1, 2002-09- 26
    [30] Cavanaugh PG. Synthesis of chlorin e6-transferrin and demonstration of its light-dependent in vitro breast cancer cell killing ability[J]. Breast Cancer Res Treat, 2002, 72 (2): 117– 130
    [31] Seaton BA, Dedman JR. Annexins[J]. Biometals, 1998, 11 (4): 399– 404
    [32] Gerke V, Moss SE. Annexins: from structure to function[J]. Physiol Rev, 2002, 82(2): 331–371
    [33] van Engleland M, Nieland LJ, Ramaekers FC,et al. Reutelingsperger, Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure[J]. Cytometry, 1998, 31 (1):1– 9
    [34] Quinn PJ. Plasma membrane phospholipids asymmetry[J]. Subcell Biochem, 2002, 36: 39– 60
    [35] Green AM. Methods for using annexin for detecting cell death in vivo and treating associated conditions[P]. WO Patent application publication number WO 02/080754 A2, 2002-10- 17
    [36] Meyer DL, Mallet RW. Pretargeting methods and compounds[P]. US Patent number 6,271,869, 2001-04-17
    [37] Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance[J]. Science, 2000, 289(5489): 1501– 1504
    [38] Teitelbaum SL. Bone resorption by osteoclasts[J]. Science, 2000, 289 (5484): 1504– 1508
    [39] Rodan GA. Martin TJ. Therapeutic approaches to bone diseases[J]. Science, 2000, 289 (5484): 1508– 1514
    [40] Chen J. Compositions and methods for the treatment of metabolic bone disorders and bone metastases, WO patent application publication number WO 00/41725, 2000- 07- 20
    [41] Zheng G, Li H, Zhang M, et al. Low-density lipoprotein reconstituted by pyropheophorbide cholesteryl oleate as target-specific photosensitizer[J]. Bioconjug Chem, 2002, 13 (3): 392– 396
    [42] Golab J, Nowis D, Skrzycki M, et al. Antitumour effects of photodynamic therapy are potentiated by 2-methoxyestradiol. A superoxide dismutase inhibitor[J]. J Biol Chem, 2003, 278 (1): 407– 414
    [43] Cowled PA, Mackenzie L, Forbes I J. Potentiation of photodynamic therapy with haematoporphyrin derivatives by glucocorticoids[J]. Cancer Lett, 1985, 29 (1): 107– 114
    [44] Biade S, Maziere JC, Mora L, et al. Lovastatin potentiates the photocytotoxic effect of Photofrin II delivered to HT29 human colonic adenocarcinoma cells by low density lipoproteins[J]. Photochem Photobiol, 1993, 57 (2): 371– 375
    [45] Aranda A, Pascual A. Nuclear hormone receptors and gene expression[J]. Physiol Rev, 2001, 81 (3): 1269– 1304
    [46] Nahoum V, Gangloff A, Shi R, How estrogen-specific proteins discriminate estrogens from androgens: a common steroid binding site architecture[J]. FASEB J, 2003, 17(10):1334-1336
    [47] Ferguson AT, Lapidus RG, Davidson NE. The regulation of estrogen receptor expression and function in human breast cancer[J]. Cancer Treat Res, 1998, 94: 255– 278
    [48] Murphy LC, Hilsenbeck SG, Dotzlaw H, et al. Relationship of clone 4 estrogen receptor variant messenger RNA expression to some known prognostic variables in human breast cancer[J]. Clin Cancer Res, 1995, 1 (2): 155–159
    [49] Gotteland M, May E, May-Levin F, et al. Estrogen receptors (ER) in human breast cancer. The significance of a new prognostic factor based on both ER protein and ER mRNA contents[J]. Cancer, 1994, 74 (3): 864–871
    [50] Boyle RW, Dolphin D, Johnson CK. Meso-mono-iodosubstituted tetrameacrocyclic compounds and methods for making and using the same. US Patent 5,703,230, 1997-12- 30
    [51] Katzenellenbogen JA, O’Malley BW, Katzenellenbogen BS. Tripartite steroid hormone receptor pharmacology: interaction with multiple effector sites as a basis for the cell- and promoter-specific action of these hormones[J]. Mol Endocrinol, 1996, 10 (2): 119– 131
    [52] Arstead GM, Carlson KE, Katzenellenbogen JA. The estradiol pharmacophore: ligand structure-estrogen receptor binding affinity relationships and a model for the receptor binding site[J]. Steroids, 1997, 62 (3):268–303
    [53] Brzozowski AM, Pike AC, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor[J]. Nature, 1997, 389 (6652): 752– 758
    [54] Tannenbaum DM, Wang Y, Williams SP, et al. Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains[J]. Proc Natl Acad Sci USA, 1998, 95 (11):5998– 6003
    [55] Mohr SC, Ray R. Photodynamic therapy using nuclear hormone receptors to target photosensitizers[P]. WO patent application publication number WO97/34637, 1997-09- 25
    [56] Ray R, Mohr SC, Swamy N. Selective nuclear receptortargeted systems for delivery of cytotoxins to cancer cells for targeted photodynamic therapy[P]. WO patent application publication number WO01/78606, 2001-10-25
    [57] Khan EH, Ali H, Tian H, et al. Synthesis and biological activities of phthalocyanine – estradiol conjugates[J]. Bioorg Med Chem Lett, 2003, 13 (7): 1287–1290
    [58] James DA, Swamy N, Paz N, et al. Synthesis and estrogen receptor binding affinity of a porphyrin–estradiol conjugate for targeted hotodynamic therapy of cancer[J]. Bioorg Med Chem Lett, 1999, 9 (16): 2379– 2384
    [59] Swamy N, James DA, Mohr SC, et al. An estradiol– porphyrin conjugate selectively localizes into estrogen receptor-positive breast cancer cells[J]. Bioorg Med Chem, 2002, 10 (10): 3237–3243
    [60] Bitzan M, te Loo DM. Interaction of Shiga toxin with endothelial cells[J]. Methods Mol Med, 2003, 73: 243– 262
    [61] Lingwood CA. Shiga toxin receptor glycolipid binding. Pathology and utility[J]. Methods Mol Med, 2003, 73: 165–186
    [62] Gariepy J. The use of Shiga-like toxin 1 in cancer therapy[J]. Crit Rev Oncol Hematol, 2001, 39 (1-2): 99– 106
    [63] Gariepy J. Method of selectively purging CD77+ cells from bone marrow[P]. US Patent number 5,801,145, 199809-01
    [64] Lingwood CA, Hill R, Farkas-Himsley H, et al. Verotoxin pharmaceutical compositions and medical treatments therewith[P]. US Patent number 5,968,894, 1999-10-19
    [65] Storrie B, Tarrago-Trani M, English S. B/B-like fragment for the purposes of photodynamic therapy and medical imaging[P]. WO patent application publication number 02/067850, 2002-09-06
    [66] Sudha Komath S, Bhanu K, Maiya BG, et al. Binding of porphyrins by the tumor-specific lectin, Jaclin [Jack Fruit (Artocarpus integrifolia) agglutinin][J]. Biosci Rep, 2000, 20 (4): 265–276.
    [67] Harris RC, Chung E, Coffey RJ. EGF receptor ligands[J]. Exp Cell Res, 2003, 284 (1): 2– 13
    [68] Khalid MY, Grandis JR, Shin DM. Targeting epidermal growth factor receptor: novel therapeutics in the management of cancer[J]. Exp Rev Anticancer Ther, 2003, 3 (3): 367–380
    [69] Fanuel-Barret D, Patrice T, Foultier MT, V. et al. Influence of epidermal growth factor on photodynamic therapy of glioblastoma cells in vitro[J].Res Exp Med, 1997, 197 (4): 219–233
    [70] Lutsenko SV, Feldman NB, Finakova GV, et al. Targeting phthalocyanines to tumor cells using epidermal growth factor conjugates[J]. Tumour Biol, 1999, 20 (4): 218– 224
    [71] Gijsens A, de Witte P. Photocytotoxic action of EGF-PVASn(IV)chlorin e6 and EGF-dextran-Sn(IV)chlorin e6 internalizable conjugates on A431 cells[J]. Int J Oncol 1998, 13 (6): 1171– 1177
    [72] Gijsens A, Missiaen L, Merleved W, et al. Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic therapy[J]. Cancer Res, 2000, 60 (8): 2197– 2202
    [73] Savellano P, Hasan T. Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates[J]. Photochem Photobiol, 2003, 77 (4): 431– 439
    [74] Rosenkranz AA, Jans DA, Sobolev AS. Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency[J]. Immunol Cell Biol, 2000, 78 (4): 452– 464
    [75] Akhlynina TV, Rosenkranz AA, Jans DA,et al. The use of internalizable derivative of chlorin e6 for increasing its photosensitizing activity[J]. Photochem Photobiol, 1993, 58 (1): 45– 48
    [76] Akhlynina TV, Rosenkranz AA, Jans DA, et al. Insulin-mediated intracellular targeting enhances the photodynamic activity of chlorin e6[J]. Cancer Res, 1995, 55 (5): 1014–1019
    [77] Akhlynina TV, Jans DA, Rosenkranz AA, et al. Nuclear targeting of chlorin e6 enhances its photosensitizing activity[J]. J Biol Chem, 1997, 272 (33): 20328–20331
    [78] Rosenkranz AA, Lunin VG, Gulak PV, et al. Recombinant modular transporters for cell-specific nuclear delivery of locally acting drugs enhance photosensitizer activity[J]. FASEB J, 2003, 17 (9):1121–1123
    [79] Sobolev AS, Rozenkrants AA, Akhlynina TV, et al. Composition and method for causing photodynamic damage to target cells[P]. US patent number 6,500,800 B1, 2002-12- 31
    [80] Sobolev AS, Rozenkrants AA, Akhlynina TV, et al. Composition and method for causing photodynamic damage to target cells[P]. US patent application publication number US 2003/0059401 A1, 2003-03-01
    [81] Deonarain MP, Stafford S. Conjugate[P]. WO patent application publication number WO 03/015825 A2, 2003-02- 27
    [82] Bisland SK, Singh D, Gariepy J. Potentiation of chlorin e6 photodynamic activity in vitro with peptide-based intracellular vehicles[J]. Bioconjug Chem, 1999, 10 (6): 982– 992
    [83] Brokx RD, Bisland SK, Gariepy J. Designing peptidebased scaffolds as drug delivery vehicles[J]. J Control Release, 2002, 78 (1-3): 115– 123
    [84] Akhlynina TV, Jans DA, Statsyuk NV, et al. Adenoviruses synergize with nuclear localization signals to enhance nuclear delivery and photodynamic action of internalizable conjugates containing chlorin e6[J]. Int J Cancer, 1999, 81 (5): 734–740
    [85] Allen CM., Sharman WM, La Madeleine C, et al. Photodynamic therapy: tumor targeting with adenoviral proteins[J]. Photochem Photobiol, 1999, 70 (4): 512– 523
    [86] Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for coxsackie B virus and adenovirus 2 and 5[J]. Science, 1997, 275(5304): 1320–1323
    [87] Wickham TJ, Filardo EJ, Cheresh DA, et al. Integrin αvβ5 selectively promotes adenovirus mediated cell membrane permeabilization[J]. J Cell Biol, 2002, 127 (1): 257– 264
    [88] Wickham TJ, Mathias JP, Cheresh DA, et al. Integrinsαvβ3 andαvβ5 promote adenovirus internalization but not virus attachment[J]. Cell, 1998, 73 (3): 309– 319
    [89] Cuzange A, Chroboczek J, Jacrot B. The penton base of human adenovirus type 3 has the RGD motif[J]. Gene, 2002, 146 (2): 257–259
    [90] Falcioni R, Cimino L, Gentileschi MP, et al. Expression of β1, β3, β4 and β5 integrins by human lung carcinoma cells of different histologies[J]. Exp Cell Res, 2002, 210 (1): 113– 122.
    [91] Hirasawa M, Shijubo N, Uede T, et al. Integrin expression and ability to adhere to extracellular matris proteins and endothelial cells in human lung cancer lines[J]. Br J Cancer, 2002, 70 (3): 466– 473
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.