介观纳米体系的电子输运性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介观纳米体系的研究是目前凝聚态物理十分活跃的前沿研究领域之一。它不断揭示出一系列重要的物理内禀,同时也展现出广泛的应用前景。本论文运用格林函数方法研究了介观纳米体系的电子输运现象。其目的在于揭示这些结构中的新效应及其物理机制,并为设计和实现具有优良性能的量子器件提供物理模型和理论依据。
     本论文共分八章。第一章介绍了介观纳米体系的结构和性质特征,特别是电子输运性质。
     在第二章中,简单介绍了格林函数方法,并利用该方法计算了T型量子线在势调制下的电子输运性质。讨论了单个和耦合T型量子线垂直手臂中的势垒对输运的影响。对于单个T型量子线,在势调制下水平和拐角方向的电导上出现了一个谷峰对;势垒宽度的变化使得谷峰对变得更明显。这个谷峰对是由T型量子线中的束缚态引起的。对于两个耦合T型量子线,势调制与水平方向电导上的两个谷是紧密关联的。我们可以通过势调制来实现对电导谱的裁剪。
     在第三章中,用模匹配方法计算了十字型、T型和L型量子线及量子点中束缚态在势调制下的能量和波函数,发现了束缚态能量与势调制之间的普适关系。用电子几率密度图显示了不同量子结构中束缚态之间的演化。同时我们的计算表明局域在量子点中的电子态在势调制下经历了一个从束缚态到准束缚态再到束缚态的演化过程。
     在第四章中,研究了一个有限量子反点阵列中的束缚态及其引起的传输共振现象。我们计算了几种不同几何结构的电导,讨论了量子反点之间的距离对量子束缚态及电子输运的影响,也讨论了反点阵列的周期对高能束缚态的影响。发现了一些有趣的高能准束缚态,电子在这些态中主要是局域在结的交叉区域而不是在结中。
     在第五章中,我们计算了两种典型的开放周期型结构的电导。对于包含n个限制区域的多波导管结构,在低能区域出现了(n-1)重的共振劈裂峰而在高能区域则是(n-2)重的共振劈裂峰。前者主要是由局域在突起中的束缚态引起的,而后着则对应于局域在限制区域的高能束缚态。对于高能束缚态,结构中突起的作用相当于一个势垒而不是一个势阱。当限制区域的长度增加时,更多的束缚态将存在于限制区域中。对于量子反点阵列结构,在电导第一起始能量处同样存在(n-2)重的共振劈裂。
     在第五章的基础上,第六章研究了在磁调制下两种典型的周期结构中由束缚态引起的传输共振现象。对于包含n个垒的电超晶格结构,在第一电导台阶开始的地方出现了(n-1)重共振劈裂。这些共振峰是由磁场调制下的束缚态引起的,处于这些束缚态中的电子主要是局限在势垒而不是势阱中。对于包含n个限制区域的多波导管结构,高能区的(n-2)重共振劈裂在磁调制下变成了(n-1)重共振劈裂。
     在第七章中,研究了四种L型石墨纳米带的电导和局域态密度。结果表明,这些结构在费米面附近的电导取决于扶手椅型边界石墨带的类型。当石墨纳米带的横向尺寸较小时,其电导及态密度对几何结构非常敏感。
     第八章对本论文的工作进行了总结,并对以后的工作提出了一些设想。
Mesoscopic nano-systems are forefront in condensed matter physics. There existing in these systems a great deal of novel and marvelous physics properties and prospective potential applications. In this thesis, we study the electron transport properties of mesoscopic nano-system by using the Green’s function method. The aim is to explore the physical mechanisms of the found new effects in these systems, and to supply physical models and theoretical validity in designing novel quantum devices with better properties.
     The thesis consists of eight chapters. In chapter one, we introduce typical structure of mesoscopic nano-systems and their characteristics, especially their transport properties.
     In chapter two, the Green’s function method is simply introduced. By applying the method, we calculate the electron transport properties of T-shaped quantum wires under potential modulation. The influence of potential modulation in vertical quantum wire on electronic transport across one or two-coupled T-shaped quantum wire(s) is discussed. For a single T-shaped quantum wire, the potential induces a dip-peak couple structure in the conductance curves for parallel and bend transport. The change of the potential thickness induces the dip-peak couple more pronounced. For two coupled T-shaped quantum wires, two dips in the parallel conductance are associated with the potential modulation. Conductance profiles can be tailored by the modulation.
     In chapter three, we calculate the bound state energies and wave functions of crossed, T-shaped, L-shaped quantum wire and quantum dot under potential modulation by using mode-match method. The relation of the bound state energy and the potential height for different structures is found. The contour plots of the probability density visualize the evolution of the bound state in different structures. The calculation to the lifetime of bound states in quantum dot indicates that there is an evolution of eigenstate in quantum dot from a bound state to a quasibound state and then to a bound state.
     In chapter four, the resonant peaks via the quasibound states in the confined array of antidots are studied. We calculate the conductance of several structures, and discuss the influence of the distance between antidots on the bound states and electron transport. The influence of the period of antidot array on the higher-energy bound states is also discussed. Some interesting higher-energy bound states are found, electrons in the states are not localized at the junctions but at the intersections of the junctions.
     In chapter five, we calculate the conductance of two typical open periodic structures. For the periodic multiwaveguide structure including n constrictions, (n-1)-fold splitting peaks appear at the low energies of conductance while (n-2)-fold splitting peaks appear at the high energies. The former resonant peaks are induced by the quasibound states mainly localized in the stubs, while the latter peaks are originated from the high quasibound states mainly localized in the constrictions. To the high quasibound states, the stubs act as potential barriers rather than wells. More quasibound states will exist in the constriction between two stubs, as the length of the constriction increases. For the periodic antidots arrays, (n-2)-fold splitting rule is also found around the first threshold energy.
     Based on chapter five, transmission resonant via quantum bound states in two typical periodic structures under magnetic field is studied in chapter six. For the electric superlattice consisting of n barriers, (n-1)-fold resonant peaks are shown in the beginning of the first conductance step under magnetic modulation. The peaks are induced by the magnetically quasibound states which wavefunctions are confined in the potential barriers rather than in the wells. For the open periodic multi-waveguides consisting of n constrictions, under magnetic modulation, the (n-2)-fold resonant splitting at the higher-energy region will change into (n-1)-fold splitting.
     In chapter seven, we study the conductance and local density of states of four kinds of L graphene nanoribbon. It is found that, the conductance around the Fermi-surface is determined by the type of graphene nanoribbon with armchair edge. As the nanoribbon is narrow, the conductance and density of states are very sensitive to the geometry of the structure.
     The last chapter presents a conclusion of this thesis and some prospects for this investigation.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2]Guozhong Cao. Nanostructures and Nanomaterials: Synthesis, Properties and Applications[M]. London:Imperial College Press,2004.
    [3]施利毅. 纳米材料[M]. 上海:华东理工大学出版社,2007.
    [4]http://www.icas.ac.cn/5_keyanxitong/lpcas/yanjiuxiaozu/Web/organicnano.htm.
    [5]C. Kittel. Introduction to Solid State Physics[M]. New York: Chemical Industry Press, 2005.
    [6]冯端,金国钧. 凝聚态物理学新论[M].上海:上海科学技术出版社,1992.
    [7]Yosep Imry. Introduction to Mesoscopic Physics[M]. London:Oxford University Press, 1997.
    [8]阎守胜,甘子钊.介观物理[M]. 北京:北京大学出版社,1995.
    [9]B. L. Altshuler, P. A. Lee, and R. A. Webb. Mesoscopic Phenomena in Solids[M]. New York: North-Holland Press,1991.
    [10] H. Fukuyama and T. Ando. Transport Phenomena in Mesoscopic Systems[M]. Berlin:Springer-Verlag,1992.
    [11] David Ferry, Stephen Marshall Goodnick. Transport in Nanostructures[M]. England: Cambridge university press,1999.
    [12] P. A. Lee and T. V. Ramakrishnan. Disordered Electronic System[J]. Rev. Mod. Phys., 1986,57:287-337.
    [13] B. J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D.van der Marel and C.T.Foxon. Quantized Conductance of Point Contacts in a Two Dimensional Electron Gas[J]. Phys. Rev. Lett.,1988,60:848-850.
    [14] L. Esaki and R. Tsu. IBM J. Res. Dev.,1970,14:61.
    [15] 夏建白,朱邦芬.半导体超晶格物理[M]. 上海:上海科学技术出版社,1995.
    [16] K. Pallab Bhattacharya, Albert Chin, S. Seo Kwang. A controlled-avalanche superlattice transistor[J]. IEEE Electron Device Letters, 1987, EDL-8:19-21.
    [17] Perng-Fei Yuh, K. L. Wang. Novel infrared band-aligned superlattice laser[J]. Appl. Phys. Lett., 1987,51:1404-1406.
    [18] Z. W. Pan, Z. R. Dai and Z. L. Wang. Nanobelts of semiconducting oxides[J]. Science, 2001,291:1947-1949.
    [19] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,2004,306:666-669.
    [20] A. K. Geim, K. S. Novoselov. The rise of graphene[J]. Nature Materials, 2007, 6:183-191.
    [21] Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, Philip Kim. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438:201-204.
    [22] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim. Room-Temperature Quantum Hall Effect in Graphene[J]. Science,2007,315(5817):1379.
    [23] Vadim V. Cheianov,Vladimir Falko, B. L. Altshuler. The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions[J]. Science, 2007, 315(5816):1252-1255.
    [24] http://www.physorg.com/news91891899.html
    [25] Young-Woo Son, Marvin L. Cohen,Steven G. Louie. Half-metallic graphene nanoribbons[J]. Nature,2006,444:347-349.
    [26] Y.-W. Son, M. L. Cohen, and S. G. Louie. Energy Gaps in Graphene Nanoribbons[J]. Phys. Rev. Lett., 2006, 97:216803.
    [27] Y. Arakawa and H. Sakaki. Mutidimensional quantum well laser and temperature dependence of its threshold current[J]. Appl. Phys. Lett., 1982, 40:939.
    [28] A. Yacoby, H. L. Stormer, Ned S. Wingreen, L. N. Pfeiffer, K. W. Baldwin, and K. W. West. Nonuniversal Conductance Quantization in Quantum Wires[J]. Phys. Rev. Lett., 1996, 77:4612-4615.
    [29] J. C. Nabity and M. N. Wybourne. A versatile pattern generator for high-resolution electron-beam lithography[J]. Rev. Sci. Instrum.,1989,60: 27.
    [30] J. U. Kim, I. V. Krive, and J. M. Kinaret. Nonequilibrium Plasmons in a Quantum Wire Single-Electron Transistor[J]. Phys. Rev. Lett., 2003,90:176401.
    [31] J. Wang and H. Guo. Time-dependent transport in two-dimensional quantum-wire structures[J]. Phys. Rev. B, 1993, 48:12072-12075.
    [32] S. Iijima. Helical Microtubules of Graphitic Carbon[J]. Nature, 1991, 354: 56-58.
    [33] S. Iijima and T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363:603.
    [34] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquezand, R. Beyers. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature, 1993,363:605.
    [35] Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Andrew G. Rinzler, Daniel T. Colbert, Gustavo E. Scuseria, David Tománek, John E. Fischer, and Richard E. Smalley. Crystalline Ropes of Metallic Carbon Nanotubes[J]. Science, 1996, 273:483-487.
    [36] W. Z. Li, S. Xie, L. Qian, B. Chang, B. Zou, W. Zhou, R. Zhao and G. Wang. Large-Scale Synthesis of Aligned Carbon Nanotubes[J]. Science,1996, 274:1701-1703.
    [37] L.M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, and D. G. Pettifor. Stability of Carbon Nanotubes: How Small Can They Be? [J]. Phys. Rev. Lett., 2000, 85:3249-3252.
    [38] D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De Vita, and R. Car. Electronic structure and localized states at carbon nanotube tips[J]. Phys Rev Lett, 1997, 78(14): 2811-2814.
    [39] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes[J]. Appl. Phys. Lett., 2002, 80:3817.
    [40] R. Martel, T. Schmidt, H. R. Shea, J. Appenzeller, K. K. Chan, J. Tersoff, and Ph. Avouris. Single- and multiwall carbon nanotube field-effect transistors[J]. Appl Phys Lett, 1998, 73:2447
    [41] S. Seidl, M. Kroner, P. A. Dalgarno, A. H?gele, J. M. Smith, M. Ediger, B. D. Gerardot, J. M. Garcia, P. M. Petroff, K. Karrai, and R. J. Warburton. Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot[J]. Phys. Rev. B,2005,72:195339.
    [42] R. J. Warburton, C. S. Durr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff. Charged Excitons in Self-Assembled Semiconductor Quantum Dots[J]. Phys. Rev. Lett., 1997, 79: 5282-5285.
    [43] M. C. Rogge, C. Fühner, and R. J. Haug. Multiple Transitions of the Spin Configuration in Quantum Dots[J]. Phys. Rev. Lett., 2006, 97:176801.
    [44] A. Jerez, P. Vitushinsky, and M. Lavagna. Theoretical Analysis of the Transmission Phase Shift of a Quantum Dot in the Presence of Kondo Correlations[J]. Phys. Rev. Lett., 2005, 95:127203.
    [45] H. A. Weidenmuller. Crossing of two Coulomb blockade resonances[J]. Phys. Rev. B, 2003, 68:125326.
    [46] J. C. Chen, Z. An, T. Ueda, S. Komiyama, K. Hirakawa, and V. Antonov. Metastable excited states of a closed quantum dot probed by an aluminum single-electron transistor[J]. Phys. Rev. B, 2006, 74:045321.
    [47] C. J. Bolech and N. Shah. Prediction of the Capacitance Line Shape in Two-Channel Quantum Dots[J]. Phys. Rev. Lett.,2005,95:036801.
    [48] 王广厚. 团簇物理学[M]. 上海: 上海科技出版社. 2003.
    [49] S. N. Khanna and P. Jena. Atomic clusters: Building blocks for a class of solids[J]. Phys. Rev. B, 1995, 51:13705.
    [50] Joanna Hunter, James Fye, and Martin F. Jarrold. Annealing C60+: Synthesis of Fullerenes and Large Carbon Rings[J]. Science, 1993, 260: 784-786.
    [51] Yia-Chung Chang, L. L. Chang, and L. Esaki. A new one-dimensional quantum well structure[J]. Appl. Phys. Lett., 1985, 47:1324.
    [52] Loren Pfeiffer, K.W. West, H.L. Stormer, J.P. Eisenstein, K.W. Baldwin, D. Gershoni, and J. Spector. Formation of a high quality two-dimensional electron gas on cleaved GaAs[J]. Appl. Phys. Lett., 1990, 56:1697.
    [53] A. R. Goni, L. N. Pfeiffer, K. W. West, A. Pinczuk, H. U. Baranger, and H. L. Stormer. Observation of quantum wire formation at intersectingquantum wells[J]. Appl. Phys. Lett., 1992, 61:1956.
    [54] M. H. Szymanska, P. B. Littlewood, and R. J. Needs. Excitons in T-shaped quantum wires[J]. Phys. Rev. B, 2001, 63:205317.
    [55] H. Akiyama, T. Someya, and H. Sakaki. Concentrated oscillator strength of one-dimensional excitons in quantum wires observed with photoluminescence excitation spectroscopy[J]. Phys. Rev. B, 1996, 53: R16160.
    [56] Harold U. Baranger. Multiprobe electron waveguides: Filtering and bend resistances[J]. Phy. Rev. B, 1990, 42:11479.
    [57] Harold U. Baranger, A. Douglas Stone, David. P. Divincenzo. Resistance fluctuations in multiprobe microstructures: Length dependence and nonlocality[J]. Phys. Rev. B, 1988, 37:6512.
    [58] G. Goldoni, F. Rossi, and E. Molinari. Quantum interference in nanometric devices: Ballistic transport across arrays of T-shaped quantum wires[J]. Appl. Phys. Lett., 1997, 71:1519.
    [59] J.L. Bohn. Theory of electron transport through a periodic array of devices with transverse exit leads[J]. Phys. Rev. B, 1997, 56:4132.
    [60] Y.K. Lin, Y.N. Chen and D.S. Chuu. Bound states of L- or T-shaped quantum wires in inhomogeneous magnetic fields[J]. Phys. Rev. B, 2001,64:193316,
    [61] L.A. Openov. Localized electron state in a T-shaped confinement potential[J]. Europhys. Lett., 2001, 55:539.
    [62] Supriyo Datta. Electronic Transport in Mesoscopic systems[M]. England:Cambridge university Press. 1997.
    [63] R. Peierls. Z. Phys., 1933, 80:763.
    [64] T. Ando. Edge states in quantum wires in high magnetic fields[J]. Phy. Rev. B, 1990, 42:5626.
    [65] A. MacKinnon. The calculations of transport properties and density of states of disordered solids[J]. Z. Phys. B, 1985, 59:385.
    [66] S. Sanvito, C. J. Lambert, J. H. Jefferson,A. M. Bratkovsky. General Green's-function formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers[J]. Phy. Rev. B, 1999,59:11936.
    [67] Fernando Sols,M. Macucci,U. Ravaioli,Karl Hess. Theory for a quantum modulated transistor[J]. J. Appl.Phys., 1989, 66:3892.
    [68] Fernando Sols,M. Macucci,U. Ravaioli,Karl Hess. On the possibility of transistor action based on quantum interference phenomena[J]. Appl. Phys. Lett., 1989, 54:350.
    [69] D. Guan, U. Ravaioli, R.W. Giannetta, M. Hannan, I. Adesida, M.R. Melloch. Nonequilibrium Green's function method for a quantum Hall device in a magnetic field[J]. Phy. Rev. B, 2003, 67:205328.
    [70] Michael J. McLennan, Yong Lee, and Supriyo Datta. Voltage drop in mesoscopic systems: A numerical study using a quantum kinetic equation[J]. Phy. Rev. B, 1991,43: 13846.
    [71] T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue, and H. Q. Le. Observation of millimeter-wave oscillations from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits[J]. Appl. Phys. Lett., 1987, 50:332.
    [72] Zhi-an Shao, Wolfgang Porod, and Craig S.Lent. Transmission resonances and zeros in quantum waveguide systems with attached resonators[J]. Phy. Rev. B, 1994, 49:7453.
    [73] P. J. Price. Transmission and reflection peaks in multichannel ballistic transport[J]. Phy. Rev. B, 1993, 48:17301.
    [74] M. Reed. Nanostructured Systems[M]. Boston:Academic press.1992:Chap. 1.
    [75] R. L. Schult, D. G. RavenHall, and H.W. Wyld. Quantum bound states in a classically unbound system of crossed wires[J]. Phys. Rev. B, 1989, 39:5476.
    [76] F. Sols and M. Macucci. Circular bends in electron waveguides[J]. Phys. Rev. B, 1990, 41:11887.
    [77] J. Goldstone and R. L. Jaffe. Bound states in twisting tubes[J]. Phys. Rev. B, 1992, 45:14100-14107.
    [78] H. Gislason, W. Langbein, and J. M. Hvam. Asymmetric GaAs/AlGaAs T wires with large confinement energies[J]. Appl. Phys. Lett., 1996, 69:3248.
    [79] S. N. Walck, T. L. Reinecke and P. A. Knipp. Exciton binding energy in T-shaped semiconductor quantum wires[J]. Phys. Rev. B, 1997, 56:9235.
    [80] S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites[J]. Phys. Rev. B, 1987, 35:8113.
    [81] W. Wegscheider, L. N. Pfeiffer, M. M. Dignam, A. Pinczuk, K. W. West, S. L. McCall, and R. Hull. Lasing from excitons in quantum wires[J]. Phys. Rev. Lett., 1993, 71:4071.
    [82] M. Grundmann, O. Stier, and D. Bimberg. Electronic states in strained cleaved-edge-overgrowth quantum wires and quantum dots[J]. Phys. Rev. B, 1998, 58:10557-10561.
    [83] M. Razavy. Bound states and propagating modes in quantum wires with sharp bends and/or constrictions[J]. Phys. Rev. A ,1997,55:4102-4108.
    [84] Y. Avishai, D. Bessis, B. G. Giraud, and G. Mantica. Quantum bound states in open geometries[J]. Phys. Rev. B, 1991,44:8028.
    [85] O. Olendski and L. Mikhailovska. Bound-state evolution in curved waveguides and quantum wires[J]. Phys. Rev. B, 2002, 66:035331.
    [86] M. Grundmann, O. Stier, and D. Bimberg. Electronic states in strained cleaved-edge-overgrowth quantum wires and quantum dots[J]. Phys. Rev. B, 1998, 58:10557.
    [87] R. Akis, P. Vasilopoulos and P. Debray. Bound states and transmission antiresonances in parabolically confined cross structures: Influence of weak magnetic fields[J]. Phys. Rev. B, 1997, 56:9594.
    [88] Hidefumi Akiyama, Masahiro Yoshita, Loren N.Pfeiffer, Ken W.West and Aron Pinczuk. One-dimensional continuum and exciton states in quantum wires[J]. Appl. Phys. Lett., 2003, 82:379.
    [89] Yuan Ping Chen, Xiao Hong Yan, and Yue E. Xie. Transport through T-shaped quantum wires under potential modulation: Lattice Green's function approach[J]. Phy. Rev. B, 2005, 71:245335.
    [90] Karl-Fredrik Berggren and Z.-L. Ji. Resonant tunneling via quantum bound states in a classically unbound system of crossed, narrow channels[J]. Phys. Rev. B, 1991, 43:4760.
    [91] P. J. Price. Transmission and reflection peaks in multichannel ballistic transport[J]. Phy. Rev. B, 1993, 48:17301.
    [92] Chuan-Kui Wang, K.F. Berggren, and Zhen-Li Ji. Quantum bound states in a double-bend quantum channel[J]. J. Appl. Phys., 1995, 77:2564.
    [93] Zhen-Li Ji and Karl-Fredrik Berggren. Quantum bound states in narrow ballistic channels with intersections[J]. Phy. Rev. B, 1992, 45:6652.
    [94] J. P. Carini, J. T. Londergan, and D. P. Murdock. Bound states in waveguides and bent quantum wires. II. Electrons in quantum wires[J]. Phys. Rev. B, 1997,55:9852-9859.
    [95] J. P. Carini, J. T. Londergan, D. P. Murdock, D. Trinkle, and C. S. Yung. Bound states in waveguides and bent quantum wires. I. Applications to waveguide systems[J]. Phys. Rev. B, 1997, 55:9842-9851.
    [96] R. Schuster, K. Ensslin, D. Wharam, S. Kuhn, J. P. Konhaus, G. Bohm, W. Klein, G. Trankle, and G. Weimann. Phase-coherent electrons in a finite antidot lattice[J]. Phys. Rev. B, 1994, 49:8510.
    [97] R. Tsu and L. Esaki. Tunneling in a finite superlattice[J]. Appl. Phys. Letter., 1973, 22:562.
    [98] L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke. The Growth of a GaAs–GaAlAs Superlattice[J]. J. Vac. Sci. Technol., 1973, 10:11.
    [99] H. A. Carmona, A. K. Geim, A. Nogaret, P. C. Main, T. J. Foster, and M. Henini, S. P. Beaumont, M. G. Blamire. Two Dimensional Electrons in a Lateral Magnetic Superlattice[J]. Phys. Rev. Lett., 1995, 74:3009.
    [100] R. Akis, P. Vasilopoulos, and P. Debray. Bound states and transmission antiresonances in parabolically confined cross structures: Influence of weak magnetic fields[J]. Phy. Rev. B,1997, 56:9594.
    [101] J. E. F. Frost, I. M. Castleton, C.-T. Liang, M. Pepper, D. A. Ritchie, E. H. Linfield, C. J. B. Ford, C. G. Smith, and G. A. C. Jones. One-dimensional ballistic channel with a triple-barrier longitudinal potential: Measurement and model[J]. Phy. Rev. B,1994, 49:14078.
    [102] P. Kleinert and V. V. Bryksin. Magnetization in lateral superlattices induced by strong dc and ac electric fields[J]. Phys. Rev. B, 2005, 72:153103.
    [103] C. H. Kuan, D. C. Tsui, and K. K. Choi. Superlattice band structure probed by tunneling hot-electron injection[J]. Appl. Phys. Letter., 1992, 61:456.
    [104] Xue-Wen Liu and A. P. Stamp. Resonance splitting effect in multibarrier tunneling[J]. Phy. Rev. B, 1993, 47:16605.
    [105] M.O. Vassell, J. Lee, H.F. Lockwood. Multibarrier tunneling in Ga1–xAlxAs/GaAs heterostructures[J]. J. Appl. Phys., 1983, 54:5206.
    [106] F. M. Peeters and A. Matulis. Quantum structures created by nonhomogeneous magnetic fields[J]. Phys. Rev. B., 1993, 48:15166.
    [107] Z. Y. Zeng, L. D. Zhang, X. H. Yan and J. Q. You. Resonant peak splitting for ballistic conductance in magnetic superlattices[J]. Phy. Rev. B, 1999, 60, 1515.
    [108] K. Nikolic, R. Sordan. Electronic transport in quantum waveguide systems with attached stubs[J]. Phy. Rev. B, 1998, 58:9631.
    [109] J. A. Brum. Electronic properties of quantum-dot superlattices[J]. Phy. Rev. B, 1991, 43:12082.
    [110] P. Singha Deo and A. M. Jayannavar. Quantum waveguide transport in serial stub and loop structures[J]. Phy. Rev. B, 1994, 50:11629.
    [111] Yuan Ping Chen, Yue E Xie, and Xiao Hong Yan. Resonant tunneling via quantum bound states in confined arrays of anti-dots[J]. Eur. Phys. J. B, 2006, 49:333.
    [112] J. DURKAN, R. J. ELLIOTT, and N. H. MARCH. Localization of Electrons in Impure Semiconductors by a Magnetic Field[J]. Rev. Mod. Phys.,1968, 40, 812-815.
    [113] 顾本源,史继荣。低维介观系统中磁边缘态输运特性[J]。物理学进展,1998,18(2):117-138。
    [114] K. Shizuya, Edge Current in the Quantum Hall Effect. Edge Current in the Quantum Hall Effect[J]. Phys. Rev. Lett., 1994,73:2907-2910.
    [115] Ben-Yuan Gu, Wei-Dong Sheng, Xue-Hua Wang, Jian Wang. Electronic states and magnetotransport in quantum waveguides with nonuniform magnetic fields[J]. Phys. Rev. B, 1997, 56:13434.
    [116] Y. Takagaki and D. K. Ferry. Aharonov-Bohm effect in a single quantum barrier[J]. Phy. Rev. B,1993, 47:9913.
    [117] S. Ihnatsenka and I. V. Zozoulenko. Quenching of compressible edge states around antidotes[J]. Phys. Rev. B,2006, 74:201303.
    [118] G. Murthy and R. Shankar. Hamiltonian theories of the fractional quantum Hall effect[J]. Rev. Mod. Phys., 2003, 75:1101-1158.
    [119] K. Nomura and A. H. MacDonald. Quantum Hall Ferromagnetism in Graphene[J]. Phys. Rev. Lett., 2006, 96:256602.
    [120] E. M. Hankiewicz, G. Vignale, and M. E. Flatté. Spin-Hall Effect in a [110] GaAs Quantum Well[J]. Phys. Rev. Lett., 2006, 97:266601.
    [121] C. W. J. Beenakker. Edge channels for the fractional quantum Hall effect[J]. Phys. Rev. Lett., 1990, 64:216-219.
    [122] Wei-Dong Sheng, Ben-Yuan Gu, Jian Wang, Jian-Bai Xia. Tunneling transmission in two quantum wires coupled by a magnetically defined barrier[J]. J. Appl. Phys., 1997, 82:6083.
    [123] Ji-Rong Shi, Ben-Yuan Gu. Magnetoconductance oscillations of twoparallel quantum wires coupledthrough a potential barrier[J]. Phy. Rev. B, 1997, 55, 9941.
    [124] A. M. Kadigrobov, M. V. Fistul, and K. B. Efetov. Magnetotransport along a barrier: Multiple quantum interference of edge states[J]. Phys. Rev. B, 2006, 73:235313.
    [125] Yuan Ping Chen, Yue E Xie, and Xiao Hong Yan. (n-2)-fold resonant splitting in open periodic quantum structures[J]. Phys. Rev. B, 2006, 74:035310.
    [126] J. Scott Bunch, Arend M. van der Zande, Scott S. Verbridge, Ian W. Frank, David M. Tanenbaum, Jeevak M. Parpia, Harold G. Craighead, and Paul L. McEuen. Electromechanical Resonators from Graphene Sheets[J]. Science,2007, 315(5811): 490-493
    [127] K. S. Novoselov , D. Jiang , F. Schedin , T. J. Booth , V. V. Khotkevich , S. V. Morozov , and A. K. Geim. Two-dimensional atomic crystals[J]. Science,2005, 102(30):10451-10453.
    [128] Laurence Eaves. Semiconductors: An empire of many dimensions[J]. Nature Materials, 2006, 5:775-776.
    [129] V. Lukose, R. Shankar, and G. Baskaran. Novel Electric Field Effects on Landau Levels in Graphene[J]. Phys. Rev. Lett., 2007, 98:116802.
    [130] P. G. Silvestrov and K. B. Efetov. Quantum Dots in Graphene[J]. Phys. Rev. Lett., 2007, 98:016802.
    [131] D. Gunlycke, H. M. Lawler, and C. T. White. Room-temperature ballistic transport in narrow graphene strips[J]. Phys. Rev. B, 2007, 75:085418.
    [132] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison. Electronic structure and magnetic properties of graphitic ribbons[J]. Phys. Rev. B,2007, 75:064418.
    [133] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation[J]. Phys. Rev. B, 2006, 73:235411.
    [134] A. G. Moghaddam and M. Zareyan. Josephson effect in mesoscopic graphene strips with finite width[J]. Phys. Rev. B,2006, 74:241403.
    [135] Yuan Ping Chen, Yue E Xie, and Xiao Hong Yan. The evolution of bound states in quantum wires under potential modulation[J]. Physica B, 2006, 373(2):253.
    [136] Yuan Ping Chen, Yue E Xie, and Xiao Hong Yan, Transmission resonant via magnetically bound states in periodic quantum structure,Submitted to Phys. Rev. B
    [137] Yuan Ping Chen, Yue E Xie, Xiao Hong Yan, Jian Wen Ding, Ling Xu, Electron transport in L graphene nanoribbon, Submitted to Phys. Rev. B
    [138] J. Wang and K. S. Chan. Numerical study of the spin Hall current in a quantum wire[J]. Phys. Rev. B, 2005, 72:045331.
    [139] R. Danneau, O. Klochan, W. R. Clarke, L. H. Ho, A. P. Micolich, M.Y. Simmons, A. R. Hamilton, M. Pepper, D. A. Ritchie, and U. Zulicke. ZeemanSplitting in Ballistic Hole Quantum Wires[J]. Phys. Rev. Lett., 2006, 97:026403.
    [140] John Schliemann, J. Carlos Egues, and Daniel Loss. Nonballistic Spin-Field-Effect Transistor[J]. Phys. Rev. Lett., 2003, 90:146801.
    [141] R. C. Haddon, A. F. Hebard, M. J. Rosseinsky, D. W. Murphy, S. J. Duclos. Conducting Films of C60 and C70 by Alkali-metal Doping[J]. Nature, 1991, 350:320.
    [142] A. Zheludev, E. Ressouche, S. Maslov, T. Yokoo, S. Raymond, and J. Akimitsu. Collective Pinning of a Frozen Vortex Liquid in Ultrathin Superconducting YBa2Cu3O7 Films[J]. Phys. Rev. Lett., 1998, 80:3630.
    [143] P. Millet, F. Mila, F. C. Zhang, M. Mambrini, A. B. Van Oosten, V. A. Pashchenko, A. Sulpice, and A. Stepanov. Biquadratic Interactions and Spin-Peierls Transition in the Spin-1 Chain LiVGe2O6[J]. Phys. Rev. Lett., 1999, 83:4176.
    [144] 卫崇德,章立源,刘福绥. 固体物理中的格林函数方法[M]. 北京:高等教育出版社. 1992.
    [145] Payne M C. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys., 1992, 64:1045.
    [146] S. R. White. Density matrix formulation for quantum renormalization groups[J]. Phys. Rev. Lett., 1992, 69:2863.
    [147] S. R. White. Density-matrix algorithms for quantum renormalization groups[J]. Phys. Rev. B, 1992, 48:10345.
    [148] Igor Zutic, Jaroslav Fabian, and S. Das Sarma. Spintronics: Fundamentals and applications[J]. Rev. Mod. Phys., 2004, 76:323.
    [149] E. Dagotto. Correlated electrons in high-temperature superconductors[J]. Rev. Mod. Phys., 1994, 66:763.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.