山羊应激性心律失常发生的自主神经机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的应激可导致包括VT、Vf在内的SIA,同时伴有SCD增多。研究表明ANS、心肌缺血等因素导致CES降低是SIA发生的重要原因。同时HRV、TWA、HRT、细胞内钙浓度变化、CNS、遗传等因素对SIA的发生均产生重要影响。我们认为在上述机制中,有些可能是应激时ANS功能改变后的下游反应,而另一些则可能存在于ANS功能调控之外,这些机制之间的关系尚待进一步澄清。另外,尽管有证据提示ANS在SIA的发生中处于关键地位,但其中仍有许多具体的环节未明。本研究通过①分析应激状态下ANS功能变化及其与SIA的相关性,②分析应激状态下,交感神经信号的细胞传导的途径,以期阐明SIA发生的自主神经机制。
     方法健康雄性山羊15只,体重18-26kg。分为对照组、应激组和应激+倍他乐克干预组,每组5只山羊。采用声、光复合刺激方法建立急性应激模型。通过24小时Holter记录,分析心律失常的发生情况、HRV、TWA等指标。随后进行开胸实验,首先分离双侧颈交感神经,同步记录20分钟的电活动,并进行频谱和功率谱分析。之后于左侧第4肋间开胸,暴露心脏。应用自制的心外膜电极于心脏表面不同区域进行ERP检测,并观察此过程中心律失常和AD的出现情况。上述指标测量完毕后,主动脉放血除死动物,快速留取LA、LV全层肌组织,制备心肌细胞膜样本。应用放射性配基结合实验检测心肌β-AR密度,间接法检测AC活性,放射免疫分析法检测心肌cAMP水平。
     结果
     1.ST段分析Holter记录中ST分析显示,山羊应激过程中ST段均在正常范围之内。2.Holter记录时心律失常分析应激组和干预组的SVPB、SVT和VPB数量增多,且应激组多于干预组。SVPB(28.5±5.1个/h vs 102.6±10.9个/h vs 59.4±8.7个/h,P均<0.01);SVT(10.6±3.1阵/24h Vs 32.4±6.1阵/24h vs 18.8±4.2阵/24h,P<0.01或0.05);VPB(0.7±0.2个/hvs 10.5±1.8个/h vs 4.6±1.2个/h,P均<0.01);三组动物均未出现Af、vT、vF和Vf。3.HRV分析应激组和干预组SDANN和rMSSD均显著下降,但干预组高于应激组(SDANN:181.4±20.1ms vs 113.6±17.3ms vs 142.4±15.7ms,P<0.01或0.05,rMSSD:45.8±5.7ms vs 24.6±5.5ms vs 37.2±4.2ms,P<0.01或0.05)。无论白天还是夜间,应激组LFn及LF/HF均显著高于对照组和干预组(P<0.0l或0.05),干预组高于对照组(P<0.01或P<0.05);应激组HFn与对照组和干预组相比显著降低(P<0.01或0.05),且干预组低于对照组(P<0.01);对照组白天与夜间的LFn、LF/HF和HFn有显著差异,前两者呈现出昼高夜低、而后者则为昼低夜高的变化模式(P<0.05),应激组和干预组均无此特点。4.心律失常发生与HRV的相关分析三组动物SVPB和VPB与LF/HF比值间存在正相关直线关系。复相关系数分别为0.924、0.877、0.886和0.774、0.91 3、0.885。回归方程分别为:Y=-100.3+349.7X、Y=-1225.0+805.2X、Y=-99.0+419.4X和Y=-10.6+14.7X、Y=-211.6+110.7x、Y=-33.4+51.6x。5.TWA分析应激组和干预组TWA显著增加,但干预组TWA小于应激组(P<0.01或0.05)。6.ERP及离散度分析应激组和干预组LA、LV的ERP较对照组显著缩短,干预组ERP较应激组有所延长。应激组和干预组ERP离散度显著增大,干预组离散度小于应激组(LA-ERP:134.3±5.2 vs 108.5±6.8 vs 119.1±5.9ms,D-LA—ERP:4.39±0.41 vs 5.77±0.48 vs 5.07±0.4 3ms,LV-ERP:208.5±6.1 vs 185.9±7.0 vs 197.9±6.7ms,D-LV-ERP:5.23±0.35 vs 6.45±0.40 vs 5.88±0.44ms,P<0.01或0.05)。7.ERP测量过程中EAD的分析应激组EAD显著多于对照和干预组(P均<0.01),后两组间无显著差别(2.2±1.1次vs 5.2±1.3次Vs 2.8±0.8次)。8.ERP测量时心律失常分析应激组有3只山羊、干预组有1只山羊诱发出了短阵Af,对照组未能诱发出Af,三组山羊Af诱发率无差别。应激组VPB(2.8±0.8个)较对照组(0.6±0.5个)和干预组(1.0±0.7个)显著增多(P<0.01),但对照组和干预组间无差别。9.颈部交感神经放电活动分析双侧交感神经放电波形呈阵发簇状,在每一簇中,波峰数不同,持续时间不同,幅值在-50至+50μV,两侧神经放电活动并不完全同步。频谱和功率谱分析显示,与对照组相比,应激和干预组颈交感神经在51Hz、54Hz、148Hz处的放电峰值,以及在51-250Hz、51-140Hz,140-160Hz,160-250Hz频带内放电功率均显著增高(P<0.05或0.01),但应激和干预组间无显著差别。对照组双侧颈交感神经放电活动无显著差异,而应激组和干预组双侧颈交感神经放电峰值和功率均不同(P<0.05或0.01)。10.心肌β-AR密度与对照组心房肌和心室肌β-AR密度(80.4±12.1和50.2±11.3fmol/mg·protein)相比,应激组(110.5±17.4和78.2±16.5fmol/mg·protein)和干预组(103.8±15.8和72.4±15.2 fmol/mg·protein)显著增高(P<0.01或0.05),但应激组和干预组间无显著性差异;三组动物K_D比较亦无差别。11.AC活性应激组心房肌和心室肌AC水平(67.2±12.6和58.7±10.2 pmol/g·s)高于对照组(34.7±7.1和23.3±4.3 pmol/g·s)和干预组(53.4±9.3和38.6±8.9 pmol/g·s)(P<0.01或0.05),且干预组高于对照纽(P<0.05)。12.cAMP含量与对照纽心房、心室肌cAMP含量(511.4±72.4和400.2±80.5pmol/g)相比,应激组(787.9±112.6和686.8±108.8pmol/g)和干预组(645.8±86.6和548.9±78.9pmol/g)显著增高(P<0.01或0.05),干预组低于应激组(P<0.05)。
     结论ANS在SIA的发生中起到了重要作用。应激山羊存在交感神经兴奋、迷走神经抑制,以及自主神经活动生理节律的丧失,从而诱发心肌ERP缩短、ERP离散度和TWA明显增大,最终导致SIA的显著增多。而两侧交感神经对心脏驱动状态的不同,可能是造成心肌ERP和复极离散度增加的重要原因。干预组心律失常较应激组减少,而且HRV、TWA、ERP离散度等指标部分改善,提示倍他乐克可能通过改善应激时ANS功能异常,提高心肌电稳态,从而减少SIA的发生。但倍他乐克未能改变应激源对机体的整体刺激,未能减少整体交感神经的激活和逆转两侧交感神经驱动状态的失衡,未能恢复HRV的生理节律,这些机制可能是干预组山羊SIA仍显著多于对照组的原因所在。β-AR—G蛋白—AC—cAMP途径是急性应激信号由胞外向胞内传递的重要通路,但仍需寻找其他可能的细胞信号传导机制。
Objective:Stress can leads to SIA including VT、Vf,and increased SCD. Some studies indicated that myocardial electrical unstability indued by changed ANS function or myocardial ischemia are impotant inciting factors of the genesis of SIA.Meanwhile,the change of HRV、TWA、HRT、intracellular calcium concentration、CNS and hereditary factors play important roles in inducing SIA. But some of these factors are downstream reactions of ANS function changes, and some of them may be beyond the mechanism of ANS regulation,the relationship of them needs to be clarified.On the other hand,although there are some evidence showed that ANS is critical for inducing SIA,but many details are still unknown.This Study established a goat stress model and analyzed the changes of ANS and its relation to SIA,and the pathway of sympathetic signals transmiting across the myocardial cell membrane,in order to elucidate the autonomic mechanism of SIA.
     Methods:15 adult male goats(body weight 18-26 kg)were divided into control,stress and metoprolol groups.Noise and flash light were used for 24 hours to establish the acute stress model.By 24 hours electrocardiogram monitoring,arrhythmia、HRV、TWA were recorded and analyzed.Subsequently, the animals were anesthetized and cervical sympathetic nerves were dissociated bilaterally,after recording the electrical activities of nerves for 20 minutes, open-thoracic surgery were performed,epicardial leads were used to measure ERP in different zone of left atrium and ventricle,in the same time,the induced arrhythmias and AD were recorded.Subsequently,the animals were killed by bloodletting through aorta,the myocardial tissue were kept for preparing the myocardial membrane sample.Myocardialβ-AR density、AC activity and cAMP level were measured by radioligand binding assay and radioimmunoassay.
     Results:1.ST segment analysis ST segment were within normal range during the sress state.2.Arrhythmias during Holter recording stress and metoprolol groups have more SVPB、SVT and VPB(P<0.01 or 0.05),and there is no Af、VT、VF and Vf occurring.3.HRV analysis Both SDANN and rMSSD decreased significantly in stress and metoprolol groups,but these indices are higher in metoprolol group than stress group(P<0.01 or 0.05).Stress group have higher LFn and LF/HF ratio and lower HFn than control and metoprolol groups, and metoprolol guoup have increased LFn、LF/HF ratio and decreased HFn than control group(P<0.01 or 0.05).LFn、LF/HF value of control group has high-in-daytime and low-in-night model,HFn is on the contrary,but nerther stress nor metoprolol group have similar features.4.The relation between arrhythmias and HRV There is linear relationship between arrhythmia(SVPB、VPB)and LH/HF ratio,correlation coefficient are 0.924、0.877、0.886 and 0.774、0.913、0.885 respectively,regression equation are Y=-100.3+349.7X、Y=-1225.0+805.2X、Y=-99.0+419.4X and Y=-10.6+14.7X、Y=-211.6+110.7X、Y=-33.4+51.6X respectively.5.TWA analysis TWA increased in stress and metoprolol group,but the latter is lower than the former(P<0.01 or 0.05).6.ERP and its dispersion stress and metoprolol group have shortened ERP and increased ERP dispersion,and stress group have more significant change (P<0.01).7.EAD analysis stress group have more EAD than the control and metoprolol groups(P<0.01),but there is no difference between the control and metoprolol group,8.Arrhythmias during ERP measurement Af was only induced in 3 goats of the stress group and 1 goat of metoprolol group,and the incidence of Af are not different.Stress group have more VPB than control and metoprolol group(P<0.01),there is no difference between the control and metoprolol group. 9.Cervical sympathetic electrical activity analysis the peak value in 51Hz、54Hz、148Hz and the power of 51-250Hz、51-140Hz,140-160Hz,160-250Hz are similarly and significantly increased in stress and metoprolol group(P<0.05 or 0.01).In control group,there is no remarkable differences of peak value and power between the sympathetic nerves on the two sides of neck,but in stress and metoprolol groups,the right sympathetic nerve has higher peak value and power (P<0.05 or 0.01).10.Myocardialβ-AR density stress and metoprolol groups have increased receptor density than control group,but there is no significant difference between the control and the metoporolol group,and K_D value is not different either.11.AC activity and myocardial cAMP level stress group has higher AC activity and cAMP level than the control and metoprolol groups (P<0.01 or 0.05),and these indices of metoprolol group also higher than that of control group(P<0.05).
     Conclusion:ANS play an important role in the genesis of SIA.Stressed goats have increased sympathetic activity and decreased vagal tone,and lost the normal circadian rhythm,which may induced shortened ERP and increased ERP dispersion and TWA amplitude,and ultimately induced SIA.The different drive of sympathetic nerves bilaterally may be the most important cause leading to increased dispersion of ERP and repolarization.Metoprolol improve the abnomal autonomic function of heart in stressed goats,and subsequently improve the abnormality of HRV,TWA,ERP dispersion,and enhance the myocardial electrical stability,and decrease the genesis of SIA,But metoprolol cannot inhibit the whole stress reaction of the body,and cannot inhibit sympathetic activity and imbalance of bilateral sympathetic drive,and cannot recover the normal circadian rhythm of HRV,so,the goats of metoprolol group still have relatively high incidence of SIA.β-AR—G protein—AC—cAMP chain is the important but not the only pathway by which the stress signals are transmitted across the myocardial cell membrane.
引文
1. Savitz DA, Liao D, Sastre A et al. Magnetic field exposure and cardiovascular disease mortality among electric utility workers. Am J Epidemiol. 1999, 149(2): 135-142
    2. Critchley HD, Taggart P, Sutton PM et al. Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism. Brain. 2005, 128 (Pt 1): 75-85
    3. Matsuoka N, Arakawa H, Kodama H et al. Characterization of Stress-Induced Sudden Death in Cardiomyopathic Hamsters. J Pharmacol Exp Ther. 1998, 284(1): 125-35
    4. Hanada R, Hisada T, Tsujimoto T et al. Arrhythmias observed during high-G training: proposed training safety criterion. Aviat Space Environ Med. 2004, 75 (8): 688-691
    5. Hansson A, Madsen-Hardig B, Olsson SB. Arrhythmia-provoking factors and symptoms at the onset of paroxysmal atrial fibrillation: A study based on interviews with 100 patients seeking hospital assistance. BMC Cardiovasc Disord. 2004, 3 (4): 13
    6. Stilli D, Berni R, Sgoifo A et al. Social stress, myocardial damage and arrhythmias in rats with cardiac hypertrophy. Physiol Behav. 2001, 73 (3) : 351-358
    7. VerrierRL. Mechanisms of behaviorally induced arrhythmias. Circulation. 1987, 76 (1 Pt 2): 148-156
    8. Ando M, Katare RG, Kakinuma Y, et al. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation. 2005, 112 (2) : 164-170
    9. Sgoifo A, de Boer SF, Westenbroek C, et al. Incidence of arrhythmias and heart rate variability in wild-type rats exposed to social stress. Am J Physiol. 1997, 273 (4 Pt 2): H1754-1760
    10. Lampert R, Shusterman V, Burg MM, et al. Effects of psychologic stress on repolarization and relationship to autonomic and hemodynamic factors. J Cardiovasc Electrophysiol. 2005, 16 (4) : 372-377
    11. Verrier RL, Antzelevitch C. Autonomic aspects of arrhythmogenesis: the enduring and the new. Curr Opin Cardiol. 2004, 19 (1): 2-11
    12. Habra ME, Linden W, Anderson JC, et al. Type D personality is related to cardiovascular and neuroendocrine reactivity to acute stress.J Psychosom Res.2003,55(3):235-245
    13.Steptoe A.Psychological coping,individual differences and physiological stress responses.In:Cooper CL,Payne R(editors):Personality and stress:Individual differences in the stress process.West Sussex,UK:John Wiley & Sons;1991,pp.205-233.
    14.Cogliati T,Good DJ,Haigney M,et al.Predisposition to arrhythmia and autonomic dysfunction in Nhlhl-deficient mice.Mol Cell Biol.2002,22(14):4977-4983
    15.Liu XK,Yamada S,Kane GC,et al.Genetic disruption of Kir6.2,the pore-forming subunit of ATP-sensitive K+ channel,predisposes to catecholamine-induced ventriculardysrhythmia.Diabetes.2004,53Supp13:S165-168
    16.Zingman LV,Hodgson DM,Bast PH,et al.Kit6.2 is required for adaptation to stress.Proc Natl Acad Sci USA.2002,99(20):13278-13283
    17.钱令嘉.关于应激与军事应激医学研究的思考.J Prev Med Chin PLA.2001,19(4):32-35
    18.Wiffels MC,Kirchhof CJ,Dorland R,et al.Atrial fibrillation begets atrial fibrillation.A study in awake chronically instrumented goats.Circulation.1995,92(7):1954-1968
    19.曹征涛,秦明新,陈健康等.星状神经节后心下交感神经同步电活动的记录及预处理方法.第四军医大学学报.2005,5:461-474
    20.Cohen H,Benjamin J.Power spectrum analysis and cardiovascular morbidity in anxiety disorders.Auton Neurosci.2006,128(1-2):1-8
    21.Esler M.Hearts and Minds.Heart Lung Circ.2003,12(1):1-2
    22.Lane RD,Laukes C,Marcus FI.Psychological Stress Preceding Idiopathic Ventricular Fibrillation.PsychosomMed.2005,67(3):359-365
    23.Culic V,Eterovic D,Miric D,et al.Triggering of Ventricular Tachycardia by Meteorologic and Emotional Stress:Protective Effect of β-Blockers and Anxiolytics in Men and Elderly.Am J Epidemiol.2004,160(11):1047-1058
    24.Kashtanov SI,Mezentseva LV,Zvyagintseva MA,et al.Effect of Stress Induced by Electrical Stimulation of the Hypothalamus on the Electrical Stability of the Heart in Rabbits. Inter J Bio Stres. 2004, 7 (3) 189-194
    25. Kudaiberdieva G, Gorenek B, Timuralp B. Heart rate variability as a predictor of sudden cardiac death. Anadolu Kardiyol Derg. 2007, 7 Suppl 1: 68-70
    26. Stein PK, Reddy A. Non-linear heart rate variability and risk stratification in cardiovascular disease. Indian Pacing Electrophysiol J. 2005, 5(3): 210-220
    27. Tacoy G, Balcioglu AS, Arslan U, et al. Effect of metoprolol on heart rate variability in symptomatic patients with mitral valve prolapse. Am j Cardiol 2007, 99(11): 1568-1570
    28. Bjorkander l,ForslundL, Kahan T, et al. Differential Index: A Simple Time Domain Heart Rate Variability Analysis with Prognostic Implications in Stable Angina Pectoris. Cardiology. 2008, 111 (2): 126-133
    29. Melenovsky V, Simek j, Sperl M, et al. Relation between actual heart rate and autonomic effects of beta blockade in healthy men. Am J Cardiol. 2005, 95 (8): 999-1002
    30. Ebbehoj E, Poulsen PL, Hansen KW, et al. Effects on heart rate variability of metoprolol supplementary to ongoing ACE-inhibitor treatment in Type I diabetic patients with abnormal albuminuria. Diabetologia. 2002, 45 (7): 965-975
    31. Rosenbaum DS, Jackson LE, Smith JM, et al. Electrical alternans and vulnerability to ventricular arrhythmias. N EngJMed. 1994, 330 (4) : 235-241
    32. Burattini L, Zareba W, Rashba EJ, et al. ECG features of microvolt T-wave alternans in coronary artery disease and long QT syndrome patients. J Electrocardiol. 1998, 31 Suppl: 114-120
    33. Hohnloser SH, Klingenheben T, Li YG, et al. T wave alternans as a predictor of recurrent ventricular tachyarrhythmias in ICD recipients: Prospective compare- on with conventional risk markers. J Cardiovasc Electrophysiol. 1998, 9 (12) : 1258 -1268
    34. Ikeda T, Satio H, Tanno K, et al. T-wave alternans as a predictor for sudden cardiac death after myocardial infarction. Am J Cardiol. 2002, 89 (1): 79-82
    35. Pastore JM, Gironard SD, Laurita KR, et al. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation. 1999, 99 (10) : 1385-1394
    36. Hohnloser SH, Klingenheben T, Bloomfield D, et al. Usefulness of microvolt T-wave alternans for prediction of ventricular tachyarrhythmic events in patients with dilated cardiomyopathy: results from a prospective observational study. J Am Coll Cardiol, 2003, 41 (12) : 2220-2224
    37.郭继鸿,张海澄.动态心电图最新进展.北京大学医学出版社,2005:48-55
    38. Lampert R, Jain D, Burg MM, et al. Destabilizing effects of mental stress on ventricular arrhythmias in patients with implantable cardioverter-defibrillat-ors. Circulation. 2000, 101 (2) : 158-164
    39. Kashtanov SI, Mezentseva LV, Zvyagintseva MA, et al. Effect of stress induced by electrical stimulation of the hypothalamus on the electrical stability of the heart in rabbits. Stress. 2004, 7 (3) : 189-194.
    40. Ito M, Zipes DP. Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation. 1994, 90 (3) : 1459-1468
    41. Lekakis J, Antoniou A, Prassopoulos V, et al. Regional adrenergic denervation in ventricular fibrillation without apparent heart disease. Am Heart J. 1994, 127 (4 Pt 1) : 951-953
    42. Dae MW, Lee RJ, Ursell PC, et al. Heterogeneous sympathetic innervation in German shepherd dogs with inherited ventricular arrhythmia and sudden cardiac death. Circulation. 1997 (4) , 96: 1337-1342.
    43. Randall WC, Ardell JL, Wurster RD, et al. Vagal postganglionic innervation of the canine sinoatrial node. J Auton Nerv Syst. 1987, 20 (1) : 13-23
    44. Schuessler RB, Boineau JP, Wylds AC, et al. Effect of canine cardiac nerves on heart rate, rhythm, and pacemaker location. Am J Physiol. 1986, 250(4 Pt 2): H630-H644.
    45. Allessi R, Nusynowitz M, Abildskov J, et al. Nonuniform distribution of vagal effects on the atrial refractory period. Am J Physiol. 1958, 194 (2) : 406-412
    46. Zipes DP, Mihalick MJ, Robbins GT. Effects of selective vagal and stellate ganglion stimulation of atrial refractoriness. Cardiovasc Res. 1974, 8 (5) : 647-655
    47. Critchley HD, Taggart P, Sutton PM, et al. Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism. Brain. 2005, 128 (Pt1) : 75-85
    48. Schwartz PJ, Priori SG, Cerrone M, et al. Left Cardiac Sympathetic Denervation in the Management of High-Risk Patients Affected by the Long-QT syndrome. Circulation. 2004, 109 (15) : 1826-1833
    49. Wang LX. Role of left cardiac sympathetic denervation in the management of congenital long QT syndrome. J Postgrad Med. 2003, 49 (2) : 179-181
    50. Schauerte P, Scherlag BJ, Pitha J, et al. Catheter ablation of cardiac autonomic nervous for prevention of vagal atrial fibrillation. Circulation. 2000, 102(22) : 2774-2780
    51. HalushkaMK, Fan JB, BentleyK, et al. Pattern of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet. 1999, 22(3) : 239-247.
    52. Green SA, Turki J, InnisM, etal. Amino-terminal polymorphisms of the human |32-adrenergic receptor impart distinct agonist promoted regulatory properties. Biochemistry. 1994, 33 (32) .. 9414-9419.
    53. Byrd GD, Prasad SM, Ripplinger CM, et al. Importance of geometry and refractory period in sustaining atrial fibrillation : testing the critical mass hypothesis. Circulation. 2005, 112(9 Suppl): 17-13
    54. Inoue H, Zipes DP. Changes in atrial and ventricular refractoriness and in atrioventricular nodal conducion produced by combinations of vagal and sympathetic stimulation that result in a constant sinus cycle length. Circ Res. 1987, 60 (6) : 942-951
    55. Tsuji H, Fujiki A, Tani M, et al. Quantitative relationship between atrial refractoriness and the dispersion of refractoriness in atrial vulnerability . Pacing Clin Electrophysiol. 1992, 15 (4 Pt 1) : 403-410
    56. Wehrens XH, Marks AR. Novel therapeutic approcches for heart failure by normalizing calcium cycling. Nat Rev Drug Discov. 2004, 3 (7) : 565-573
    57. Yano M, Yamaomto T, Ikeda Y, et al. Mechanisms of Disease: ryanodine receptor defects in heart failure and fatal arrhythmia.Nat Clin Pract Cardiovasc Med.2006,3(1):43-52
    58.Liu L,Nattel S.Differing sympathetic and vagal effects on atrial fibrillation in dogs:role of refractoriness heterogeneity.Am J Physiol.1997,273(2 Pt 2):H805-16
    59.Antzelevitch C.Ionic,molecular,and cellular bases of QT-interval prolongation and torsade de pointes.Europace.2007,9 Suppl 4..iv4-15
    60.WU YJ,Mark EA.Transient inward current,delayed after depolarization,and calmodulinkinase.Chi J Pharmac Toxi.2001,15(2):88-94
    61.Priori SG,Corr PB.Mechanisms underlying early and delayed after depolarizations induced by catecholamines.Am J Physio I.1990,258(6 Pt 2):H1796-1805
    62.余更生,孙尧,李万镇.美托洛尔对家兔在体心脏早期后除极的电生理作用.临床心血管病杂志.2001,17(4):173-174
    63.陈进,黄德嘉.抑郁对大鼠心室肌电生理学特性的影响.中国心脏起搏与心电生理杂志.2007,21(2):162-165
    64.施渭彬,徐胡秋,陈希洛.α受体激动对浦肯野纤维延迟后除极的双相反应.上海第二医科大学学报.1994,14(3):185-189
    1. Savitz DA, Liao D, Sastre A, et al. Magnetic field exposure and cardiovascular disease mortality among electric utility workers. Am J Epidemiol. 1999, 149 (2): 135-142
    2. Critchley HD, Taggart P, Sutton PM, et al. Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism. Brain. 2005, 128 (Pt 1): 75-85
    3. Matsuoka N, Arakawa H, Kodama H, et al. Characterization of Stress-Induced Sudden Death in Cardiomyopathic Hamsters. J Pharmacol Exp Ther. 1998, 284 (1): 125-35
    4. Hanada R, Hisada T, Tsujimoto T, et al. Arrhythmias observed during high-G training: proposed training safety criterion. Aviat Space Environ Med. 2004, 75 (8) : 688-691
    5. Sgoifo A, de Boer SF, Westenbroek C, et al. Incidence of arrhythmias and heart rate variability in wild-type rats exposed to social stress. Am J Physiol, 1997, 273 (4 Pt 2) : H1754-1760
    6. Lampert R, Shusterman V, Burg MM, et al. Effects of psychologic stress on repolarization and relationship to autonomic and hemodynamic factors. J Cardiovasc Electrophysiol, 2005, 16 (4) : 372-377
    7. Verrier RL, Antzelevitch C. Autonomic aspects of arrhythmogenesis: the enduring and the new. Curr Opin Cardiol, 2004, 19 (1) : 2-11
    8. Habra ME, Linden W, Anderson JC, et al. Type D personality is related to cardiovascular and neuroendocrine reactivity to acute stress. J Psychosom Res, 2003,55 (3) : 235-245
    9. Zingman LV, Hodgson DM, Bast PH, et al. Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA, 2002, 99(20) : 13278-13283
    10. Cervoni P, Herzlinger H, Lai FM, Tanikella T, et al. A comparison of cardiac reactivity and beta-adrenoceptor number and affinity between aorta-coarcted hypertensive and normotensive rats. Br J Pharmacol. 1981, 74(3) : 517-23
    11.单精瑞,付国辉,吕宝璋.外周血淋巴细胞肾上腺素能受体的放射性配基结合分析法.军事医学科学院院刊,1988,1:73-77
    12.张书岭,尹桂山。组织匀浆腺苷酸环化酶的简易测定法。河北医学院学报,1991,12(2);18
    13.何华美,宋裕南,孙继武等。大鼠严重体表烫伤后心脏β-肾上腺素能受体.腺苷酸环化酶系统的变化。中国病理生理杂志,1996,12(4):355-359
    14.张坦,陈风英,张幼怡。肾上腺素受体的生物进化。生理学进展,2002,33(4):349-351
    15.McNeel R.L,Mersmann HJ.Distribution and quantification of beta1-,beta2-,and beta3-adrenergic receptor subtype transcripts in porcine tissues.J Anim Sci,1999,77(3):611-621
    16.董尔丹,徐琪,韩启德。心脏β肾上腺素受体的研究现状。中国科学基金,2000,14(6):321-327
    17.Dzimiri D.Regulation of β-adrenoceptor signaling in cardiac function and disease.Pharmacol Rev,1999,51(3):465-501
    18.Raymond JR,Hnatowich M,Lefkowitz RJ,et al.Adrenergic receptors:Models for regulation of signal transduction processes.Hyertension,1990,15(2):119-131
    19.Xiao RP,Avdonin P,Zhou YY,et al.Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes.Circ Res,1999,84(1),43-52
    20.Kaumann A J,Bartel S,Molenaar P,et al.Activation of beta2-adrenergic receptors hastens relaxation and mediates phosphorylation of phospholamban,troponin I,and C-protein in ventricular myocardium from patients with terminal heart failure.Circulation,1999,99(1):65-72
    21.Zhu WZ,Wang SQ,Chskir K,et al.Linkage of betal-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca~(2+)/calmodulin kinase Ⅱ.J Clin Invest,2003,111(5):617-625
    22.Minami K,Komer MM,Vyska K,et al.Effects of pulsatile perfusion on plasma catecholamine levels and hemodynamics during and after cardiac operations with cardiopulmonary bypass.J Thorac Cardiovasc Surg,1990,99(1):82.
    23.叶世铎,张友荣,张丕利。低温缺血对心脏β肾上腺素能受体系统的影响。中国病理生理杂志,1998,14(3):293-295
    24.潘敏鸿,彭瑞云,高亚兵等。高功率微波辐射后大鼠心脏β1肾上腺素能受体表达及其意义。中华放射医学与防护杂志,2006,26(3):298-300
    25.Chandry A,Granneman JG.Influence of cell type upon the desensitization of the β3-adrenergic receptor.J Pharmacol Exp Ther,1994,271(3):1253-1258
    26.侯嵘,韩启德。肾上腺素受体与心力衰竭。基础医学与临床,2000,20(3):10-14
    1. Savitz DA, Liao D, Sastre A, et al. Magnetic field exposure and cardiovascular disease mortality among electric utility workers. Am J Epidemiol, 1999, 149 (2) : 135-142.
    2. Cogliati T, Good DJ, Haigney M, et al. Predisposition to Arrhythmia and Autonomic Dysfunction in Nhlh1-Deficient Mice. Mol Cell Biol, 2002, 22 (14) : 4977-4983
    3. Critchley HD, Taggart P, Sutton PM, et al. Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism. Brain, 2005, 128 (Pt 1): 75-85
    4. Hanada R, Hisada T, Tsujimoto T, et al. Arrhythmias observed during high-G training: proposed training safety criterion. Aviat Space Environ Med, 2004, 75 (8): 688-691
    5. Hansson A, Madsen-Hardig B, Olsson SB. Arrhythmia-provoking factors and symptoms at the onset of paroxysmal atrial fibrillation: A study based on interviews with 100 patients seeking hospital assistance. BMC Cardiovasc Disord, 2004, 3 (4): 13
    6. Stilli D, Berni R, Sgoifo A, et al. Social stress, myocardial damage and arrhythmias in rats with cardiac hypertrophy. Physiol Behav, 2001, 73 (3): 351-358
    7. Matsuoka N, Arakawa H, Kodama H, et al. Characterization of Stress-Induced Sudden Death in Cardiomyopathic Hamsters. J Pharmacol Exp Ther, 1998, 284 (1): 125-35
    8. Sgoifo A, de Boer SF, Westenbroek C, et al. Incidence of arrhythmias and heart rate variability in wild-type rats exposed to social stress. Am J Physiol, 1997, 273 (4 Pt 2): H1754-1760
    9. Lampert R, Shusterman V, Burg MM, et al. Effects of psychologic stress on repolarization and relationship to autonomic and hemodynamic factors. J Cardiovasc Electrophysiol, 2005, 16 (4): 372-377
    10. Verrier RL, Antzelevitch C. Autonomic aspects of arrhythmogenesis: the enduring and the new. Curr Opin Cardiol, 2004, 19 (1): 2-11
    11. Mihm MJ, YuF, Carnes CA, et al. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation, 2001, 104(2): 174-180
    12. ter Keurs HE, Zhang YM, Davidoff AW, et al. Damage induced arrhythmias: mechanisms and implications. Can J Physiol Pharmacol, 2001, 79 (1): 73-81
    13. Nobrega AC, Carvalho AC, Santos KB, et al. Cholinergic stimulation with pyridostigmine blunts the cardiac responses to mental stress. Clin Auton Res, 1999, 9 (1): 11-16
    14. Sahar T, Shalev AY, Porges SW, et al. Vagal modulation of responses to mental challenge in posttraumatic stress disorder. Biol Psychiatry, 2001, 49 (7): 637-643
    15. Cohen H, Benjamin J. Power spectrum analysis and cardiovascular morbidity in anxiety disorders. Auton Neurosci, 2006, 128 (1-2): 1-8
    16.郭继鸿,张海澄。动态心电图最新进展。北京大学医学出版社,2005:48-55
    17. Lampert R, Jain D, Burg MM, et al. Destabilizing effects of mental stress on ventricular arrhythmias in patients with implantable cardioverter defibrillators . Circulation, 2000, 101 (2): 158-164
    18. Kashtanov SI, Mezentseva LV, Zvyagintseva MA, et al. Effect of stress induced by electrical stimulation of the hypothalamus on the electrical stability of the heart in rabbits[J]. Stress, 2004, 7 (3): 189-194
    19. Gray MA, Taggart P, Sutton PM, et al. A cortical potential reflecting cardiac function. Proc Natl Acad Sci USA, 2007, 104 (16): 6818-6823
    20. Cogliati T, Good DJ, Haigney M, et al. Predisposition to arrhythmia and autonomic dysfunction in Nhlh1-deficient mice.Mol Cell Biol,2002,22(14): 4977-4983
    21. Liu XK, Yamada S, Kane GC, et al. Genetic disruption of Kir6.2, the pore-forming subunit of ATP-sensitive K+ channel, predisposes to catecholamine-induced ventricular dysrhythmia. Diabetes, 2004, 53 Suppl 3: S165-168
    22.Zingman LV, Hodgson DM, Bast PH, et al. Kir6.2 is required for adaptation to stress. ProcNatl Acad Sci USA, 2002, 99 (20): 13278-13283
    23. Mattioli AV, Bonatti S, Zennaro M, et al. The relationship between personality, socio-economic factors, acute life stress and the development, spontaneous conversion and recurrences of acute lone atrial fibrillation. Europace, 2005, 7 (3): 211-220
    24. Taylor CB, Conrad A, Wilhelm FH, et al. Psychophysiological and cortisol responses to psychological stress in depressed and nondepressed older men and women with elevated cardiovascular disease risk. Psychosom Med, 2006, 68 (4): 538-546
    25. Bleil ME, McCaffery JM, Muldoon MF, et al. Anger-Related Personality Traits and Carotid Artery Atherosclerosis in Untreated Hypertensive Men. Psychosomatic Medicine, 2004, 66 (5): 633-639
    26. Lampert R, Joska T, Burg MM, et al. Emotional and physical precipitants of ventricular arrhythmia. Circulation, 2002, 106 (14): 1800-1805
    27. Keltikangas-Jarvinen L, Heponiemi T. Vital exhaustion, temperament, and cardiac reactivity in task-induced stress. Biol Psychol, 2004, 65 (2): 121-135
    28. Ruiz JM, Uchino BN, Smith TW, et al. Hostility and sex differences in the magnitude, duration, and determinants of heart rate response to forehead cold pressor: parasympathetic aspects of risk. Int JPsychophysiol, 2006, 60(3): 274-283
    29. Sato N, Kamada T, Miyake S, et al. Power spectral analysis of heart rate variability in type A females during a psychomotor task. J Psychosom Res, 1998, 45 (2): 159-169
    30. Hughes JW, Stoney CM. Depressed mood is related to high-frequency heart rate variability during stressors. Psychosom Med, 2000, 62 (6): 796-803
    31. Robert C. Biology of personality dimensions. Curr Opin Psychiatry, 2000, 13 (6): 611-616
    1. Denollet J, Vaes J, Brutsaert DL, et al. Inadequate response to treatment in coronary heart disease: adverse effects of Type D personality and younger age on five-year prognosis and quality of life. Circulation, 2000,102: 630-635.
    2. Hemingway H, Malik M, Marmot M. Social and psychosocial influences on sudden cardiac death, ventricular arrhythmia and cardiac autonomic function. Eur Heart J, 2001,22:1082-1101.
    3. Mattioli AV, Bonatti S, Zennaro M, et al. The relationship between personality, socio-economic factors, acute life stress and the development, spontaneous conversion and recurrences of acute lone atrial fibrillation. Europace, 2005, 7:211-220
    4. Pedersen SS, van Domburg RT, Theuns DA, et al. Type D Personality Is Associated With Increased Anxiety and Depressive Symptoms in Patients With an Implantable Cardioverter Defibrillator and Their Partners. Psychosom Med. 2004,66:714-719
    5. Dunbar SB, Kimble LP, Jenkins LS, et al. Association of mood disturbance and arrhythmia events in patients after cardioverter defibrillator implantation. Depress Anxiety, 1999,9:163-168.
    6. Lampert R, Joska T, Burg MM, et al. Emotional and physical precipitants of ventricular arrhythmia. Circulation, 2002,106:1800-1805.
    7. Robert C. Biology of personality dimensions. Curr Opin Psychiatry, 2000, 13:611-616
    8. Katz C, Martin RD, Landa B, et al. Relationship of psychologic factors to frequent symptomatic ventricular arrhythmia. Am J Med, 1985, 78:589-594
    9. Appels A, Golombeck B, Gorgels A, et al. Behavioral risk factors of sudden cardiac arrest. J Psychosom Res, 2000,48:463-469.
    10. Andre-Petersson L, Engstrom G, Hedblad B, et al. Prognostic significance of ventricular arrhythmia modifiedby ability to adapt to stressful situations. Eur J Cardiovasc Prev Rehabil, 2004, 11:25-32
    11. Compton WM, Conway KP, Stinson FS, et al. Prevalence, correlates, and comorbidity of DSM-IV antisocial personality syndromes and alcohol and specific drug use disorders in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry, 2005, 66:677-685.
    12. Pittman, H. Joseph RN. Recognizing "holiday heart" syndrome. Nursing, 2004, 34:32cc6-32cc7
    13. Coccaro ER Association of C-reactive protein elevation with trait aggression and hostility in personality disordered subjects: a pilot study. J Psychiatr Res, 2006,40:460-465
    14. Black PH, Garbutt LD. Stress, inflammation and cardiovascular disease. J Psychosom Res, 2002, 52: 1-23
    15. Frankenburg FR, Zanarini MC. Personality disorders and medical comorbidity. Curr Opin Psychiatry, 2006,19:428-431
    16. Kamarck TW, Debski TT, Manuck SB. Enhancing the laboratory-to-life generalizability of cardiovascular reactivity using multiple occasions of measurement. Psychophysiology, 2000, 37:533-542.
    17. Pollock-BarZiv SM, Davis C. Personality factors and disordered eating in young women with type 1 diabetes mellitus. Psychosomatics, 2005, 46: 11-18.
    18. Pulkki L, Kivimaki M, Keltikangas-Jarvinen L, et al. Contribution of adolescent and early adult personality to the inverse association between education and cardiovascular risk behaviours: prospective population-based cohort study. Int J Epidemiol, 2003, 32:968-975
    19. Habra ME, Linden W, Anderson JC, et al. Type D personality is related to cardiovascular and neuroendocrine reactivity to acute stress. J Psychosom Res, 2003, 55:235-245.
    20. Steptoe A. Psychological coping, individual differences and physiological stress responses. In: Cooper CL, Payne R (editors): Personality and stress: Individual differences in the stress process. West Sussex, UK: John Wiley & Sons; 1991. pp. 205-233.
    21. Ruiz JM, Uchino BN, Smith TW, et al. Hostility and sex differences in the magnitude, duration, and determinants of heart rate response to forehead cold pressor: parasympathetic aspects of risk. Int J Psychophysiol, 2006, 60:274-83
    22. Sato N, Kamada T, Mivake S, et al. Power spectral analysis of heart rate variability in type A females during a psychomotor task. J Psychosom Res, 1998; 45:159-169
    23. Behling A, Moraes RS, Rohde LE, et al. Cholinergic stimulation with pyridostigmine reduces ventricular arrhythmia and enhances heart rate variability in heart failure. Am Heart J, 2003,146: 494-500
    24. Drolet B, Vincent F, Rail J, et al. Thioridazine lengthens repolarization of cardiac ventricular myocytes by blocking the delayed rectifier potassium current. J Pharmacol Exp Ther, 1999;288:1261-1268
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.