根癌农杆菌介导的PEAMT基因转化菊花的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊花(Chrysanthemum morifolium Ramat.)是中国的传统名花,也是世界上最重要的观赏花卉之一。地被菊是菊花适于陆地栽培的一个品种群,其花色丰富,观赏性好,覆盖能力强,具有广阔的应用前景。但由于城市水资源的缺乏和盐渍化的日益严重,限制了地被菊的推广。通过根癌农杆菌介导的方法,将甜菜碱合成相关酶的基因PEAMT转入地被菊基因组中,培育出抗逆性更强的新品种,对地被菊在全国大面积推广,更好的为园林绿化服务具有重要意义。
     本研究获得的主要结果如下:
     1、建立了地被菊品种‘玉人面’、‘铺地金’的转化受体系统。以MS为基本培养基,采用6-BA和NAA两种激素9种不同配比的组合,从10个地被菊品种中筛选出‘玉人面’、‘铺地金’和‘北林红’3个高频再生品种,再生率分别为98%、96%和96%;‘玉人面’的再生培养基为:MS+6-BA1mg/L+NAA0.1mg/L;‘铺地金’的再生培养基为:MS+6-BA2mg/L+NAA1mg/L;‘北林红’的再生培养基为:MS+6-BA1mg/L+NAA0.5mg/L。同时还研究了不同的外植体类型,继代次数对再生的影响,叶片再生能力最高,但随着继代次数的增加,部分品种叶片再生能力有下降的趋势。研究了‘玉人面’和‘铺地金’对抗生素Kan的敏感性,结果表明7.5mg/L的Kan是菊花品种‘玉人面’叶片外植体筛选培养的临界耐受浓度,10mg/L的Kan是‘铺地金’叶片筛选培养的临界浓度;培养基中浓度为250mg/L的头孢霉素能够很好的抑制农杆菌的生长,且没有影响叶片外植体的再生率和不定芽数,可作为‘玉人面’和‘铺地金’的抑菌性抗生素。
     2、建立了地被菊‘玉人面’的遗传转化体系:以预培养12h的叶片为转化材料,用浓度OD600为0.4的携带有PEAMT基因的农杆菌菌液侵染10min,24℃共培养2d,延迟培养4d,用选择压为7.5mg/L的Kan连续筛选直至有不定芽生成。待不定芽长至1cm左右时转入附加20mg/L Kan的1/2MS生根培养基中,继续筛选,并对生根抗性植株进行了PCR和Southern blotting检测,103株生根抗性苗中,有9株呈PCR阳性反应,获得特异性扩增条带,其中4个被检植株产生Southern杂交信号,证明PEAMT基因已整合到地被菊基因组中,外源基因主要是单拷贝插入。
     3、从转入PEAMT基因的‘玉人面’株系中,选取生长正常的4个株系及非转
Chrysanthemum morifolium is one of the most famous flowers in China and ornamental species in the world. Ground-cover Chrysanthemum is a superior breeding group of Chrysanthemum morifolium, which applies to land growth in gardens with plenty of colors, wide coverage and excellent ornamental value. However, the application of Ground-cover Chrysanthemum is restricted by the booming problem of lacking water resources and salification in urban areas. Agrobacterium tumefaciens taken as the transformation vector, the spinach's PEAMT gene, which catalyzes the synthesis of glycine betaine, is transferred into the genome of Ground-cover Chrysanthemum. Therefore, this transfer will result in the accumulation of compatible solute--glycine betaine and the enhancement of tolerance in transgenic plants under the stress conditions of drought, salt and low temperature. Furthermore, the transgenic Ground-cover Chrysanthemum can be widely applied into use around the country and serve the gardens.
     The main research work and results were as follows:
     1. The genetic transformation receptor systems for‘Yurenmian’and‘Pudijin’were established. Using 9 different concentration proportion of 6-BA and NAA which were based on MS culture medium, 3 high efficiently shoot regenerating cultivars, that was‘Yurenmian’,‘Pudijin’and‘Beilinhong’were selected from 10 cultivars of Ground-cover Chrysanthemum, with the regenerating rate being 98%, 96% and 96%. The optimal regeneration medium for‘Yurenmian’was MS+6-BA1mg/L +NAA0.1mg/L, for‘Pudijin’was MS+6-BA2mg/L +NAA1mg/L and for‘Beilinhong’was MS+6-BA1mg/L +NAA0.5mg/L. At the same time, the factors which would influence shoot regeneration such as the different explant types, timing culture in vitro were studied. The results showed that: the leaves’regeneration ability was best, timing culture in vitro influenced the leaves’regeneration ability and the time of keeping high
引文
1. 陈传芳,李义文,陈豫等.通过农杆菌介导法获得耐盐转甜菜碱醛脱氢酶基因白三叶草.遗传学报,2004,31(1):97~101
    2. 陈俊愉.改革名花走新路-关于地被菊育种的反思和展望(上篇)-历史的回顾与启示.北京园林,1990,(4):2~5
    3. 陈俊愉.中国花卉品种分类学.北京:中国林业出版社.2001,224~225
    4. 陈俊愉.中国农业百科全书观赏园艺卷.北京:农业出版社.1996,238~239
    5. 陈少良,毕望富,李金克等.反相 HPLC 离子对色谱法测定植物组织中的甜菜碱.植物学报,2000,42(10):1014~1018
    6. 戴思兰.中国菊花与世界园艺(综述).河北科技师范学院学报,2004,18(2):1~5
    7. 傅荣昭,刘敏,梁红健等.通过根瘤农杆菌介导法获得菊花转基因植株.植物生理学报,1998,24(1):72~76
    8. 傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册.北京:中国科学技术出版社,1994
    9. 高 亦 珂 , 赵 勃 , 丁 国 勋 等 . 菊 花 茎 叶 外 植 体 再 生 体 系 的 研 究 . 北 京 林 业 大 学 学报,2001,23(1):32~33
    10. 高志民,彭镇华.甜菜碱合成调控基因共表达载体的构建与抗盐初步研究.林业科学研究,2005,18(3):231~235
    11. 高志民.PEAMT基因全长的克隆与转化研究[博士学位论文].中国科学院遗传与发育研究所, 2002.08
    12. 龚学臣,季静,王罡等.应用农杆菌介导法进行菊花的遗传转化.北方园艺,2005,(2):66~67
    13. 郭北海,张艳敏,李洪杰等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报,2000,42(3):279~283
    14. 郭岩,张莉,肖岗等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学(C辑),1997,27(2):151~155
    15. 郝贵霞,朱祯,朱之悌.毛由杨遗传转化系统优化的研究.植物学报,1999,4(6);936~940
    16. 洪波,张常青,李邱华等.根癌农杆菌介导的转录因子DREB1A基因在地被菊花中的遗传转化.农业生物技术学报,2005,13(3):304~309
    17. 侯 彩 霞, 徐春 和, 汤 章城等. 甜 菜碱 对 PSⅡ放氧中心结构的选择性保护.科学通报,1997,42:1857~1859
    18. 惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善.西北植物学报,2003,23(12):2137~2422
    19. 蒋细旺,包满珠.菊花转基因研究进展.华中农业大学学报,2003,22(6):618~623
    20. 蒋细旺,包满珠,吴家和等. 农杆菌介导Cry1Ac基因转化菊花. 园艺学报 2005, 32 (1) : 65~69
    21. 蒋细旺,刘国锋,包满珠.菊花9个品种叶片和茎段快速高效再生体系的建立.华中农业大学学报,2003,22(2):162~166
    22. 蒋细旺,薛建平.菊花生物技术.武汉:武汉出版社,2005.6
    23. 李 名 扬 , 陈 薇 . 菊 花 花 瓣 愈 伤 组 织 原 生 质 体 培 养 再 生 植 株 . 农 业 生 物 技 术 学报,1996,4(3):243~248
    24. 李秋莉,杨华,高晓蓉等.植物甜菜碱合成酶的分子生物学和基因工程.生物工程进展,2002,22(1):84~86
    25. 李辛雷,陈发棣,王红等.菊花外植体再生体系的研究.上海农业学报,2004,20(2):13~16
    26. 李 银 心 , 常 凤 启 , 杜 立 群 等 . 转 甜 菜 碱 醛 脱 氢 酶 基 因 豆 瓣 菜 的 耐 盐 性 . 植 物 学报,2000,42(5):480~484
    27. 李永华,王玮,杨兴洪等.干旱胁迫下不同抗旱性小麦 BADH 表达及甜菜碱含量的变化.作物学报.2005,31(4):425~430
    28. 李 永 华 , 邹 琦 . 植 物 体 内 甜 菜 碱 合 成 相 关 酶 的 基 因 工 程 . 植 物 生 理 学 通讯,2002,38(5):500~504
    29. 李玉芬.几种菊花花器培养及愈伤组织分化频率研究.生物技术,1997,7(2):24~26
    30. 梁慧敏,夏阳,王太明.植物抗寒冻、抗旱、耐盐基因工程研究进展.草业学报,2003,12(3): 1~7.
    31. 梁 峥 , 马 德 钦 , 汤 岚 等 , 菠 菜 甜 菜 碱 醛 脱 氢 酶 基 因 在 烟 草 中 的 表 达 . 生 物 工 程 学报,1997,13(3):236~240.
    32. 粱峥,骆爱玲.甜菜碱和甜菜碱合成酶.植物生理学通讯,1995,31(1):1~8
    33. 刘风华,郭岩,谷冬梅等.转甜菜碱醛脱氢酶基因植物的耐盐性研究.遗传学报,1997,24 (3):54~58
    34. 刘桂丰.小黑杨转betA基因及耐盐性研究[博士学位论文].北京林业大学,2004.12
    35. 刘晶,周树峰,陈华等.农杆菌介导的双价抗盐基因转化番茄的研究.中国农业科学,2005,38(8):1636~1644
    36. 刘晶,周树峰,陈华等.农杆菌介导的双价抗盐基因转化番茄的研究.中国农业科学.2005,38(8):1636~1644
    37. 刘 军 , 赵 兰 勇 , 丰 震 等 . 菊 花 叶 片 离 体 高 效 再 生 体 系 的 建 立 . 山 东 农 业 大 学 学报,2004,35(2):177~182
    38. 刘先勇,袁长迎,段宝福等.SPSS 10.0 统计分析软件与应用.北京:国防工业出版社,2002.1
    39. 刘振林,戴思兰.植物甜菜碱醛脱氢酶基因研究进展.西北农林科技大学学报(自然科学版),2004,32(3):104~112
    40. 鲁涤非主编.花卉学.北京:中国农业出版社,1997.1
    41. 卢圣栋.现代分子生物学实验技术(第二版).北京,中国协和医科大学出版社,1999,69-231
    42. 吕晋慧.根癌农杆菌介导的AP1基因转化菊花的研究[博士学位论文].北京林业大学,2005.12
    43. 骆爱玲,刘家尧,马德钦等.转甜菜碱醛脱氢酶基因烟草叶片中抗氧化酶活性增高.科学通报,2000,(18):1953~1956
    44. 戚贤军.利用菊花花蕾诱发胚状体发生的快繁体系研究.浙江林业科技,2003,23(4):12~13
    45. 钱秀苇.菊花快速繁殖初探.上海农学院学报,1996,14(3):201~205
    46. 任永霞,季静,王萍等.农杆菌介导类胡萝卜素合成酶基因LycB转化菊花的研究.吉林农业大学学报,2005,27(3):255~258
    47. 邵寒霜,李继红,郑学勤等.拟南芥LFYcDNA的克隆及转化菊花的研究.植物学报,1999,41(3):268~271
    48. 申晓辉,陆海,王沙生等.菠菜胆碱单氧化酶(CMO)基因的克隆及在大肠杆菌中的诱导表达. 北京林业大学学报,2003,25(1):6~9
    49. 沈义国,杜保兴,张劲松等.山菠菜胆碱单氧化酶基因(CMO)的克隆与分析.生物工程学报,2001,17(1):1~5
    50. 苏军,段榕琦,胡昌泉等.小白菜再生和农杆菌介导转化体系的建立.福建农业学报,2002,17(4):241~243
    51. 王彩云,陈俊愉.让菊花的命名重新统一到 Chrysanthemum morifolium Ramat.上来.中国观赏园艺研究进展,2005
    52. 王关林,方宏筠主编.植物基因工程.北京:科学出版社,2002.8
    53. 王彭伟,陈俊愉.地被菊新品种选育研究.园艺学报,1990,3:223~228
    54. 武维华.植物生理学.北京:科学出版社,2003
    55. 熊济华.菊花.上海:上海科学技术出版社,1998
    56. 许大全.光合作用效率.上海:上海科学技术出版社,2002
    57. 尹昆,安利国,袁金铎等.反相HPLC色谱法测定盐芥和菠菜中的甜菜碱含量.山东师范大学学报(自然科学版).2005,20(1):82~85
    58. 曾华宗,罗利军.植物抗旱、耐盐基因概述.植物遗传资源学报,2003,4(3):270~273
    59. 张常青.地被月季、菊花再生和抗旱遗传转化体系建立及其抗旱性快速评价方法研究[博士学位论文].中国农业大学,2004.6
    60. 张立新,李生秀.甜菜碱与植物抗旱/盐性研究进展.西北植物学报,2004,24(9):1765~1771
    61. 张启翔主编.中国观赏园艺研究进展 2005.北京:中国林业出版社,2005.8
    62. 张瑞麟,范敏.地被菊的组织培养及快速繁殖.植物生理学通讯,2001,37(6):531
    63. 张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444~448
    64. 张晓英.转基因改良国槐抗虫性研究[博士学位论文].北京林业大学,2005.6
    65. 张艳敏,丁占生,温之雨等.逆境下转BADH基因小麦甜菜碱醛脱氢酶活性表达与甜菜碱积累.华北农学报,2003,18(院庆专辑):36~39.
    66. 郑国琦,马宏伟,许兴.盐胁迫下宁夏枸杞盐分与甜菜碱累积及其与光合作用的关系.中国生态农业学报,2003,11(3):51~54
    67. 郑丽.根癌农杆菌介导 SAG12-ipt 和 3DN-iaaL 基因转化切花菊及抗早衰研究[博士学位论文].西南农业大学,2003
    68. Aida R, Shibata M. Transformation of kalanchoe blossfeldiana mediated by Agrobacterium tumefaciens and transgene silencing. Plant Science, 1996, 121: 175~185
    69. Alia, KondoY, Sakamoto A et al. Enhanced tolerance to light stree of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol, 1999 ,40: 279~288
    70. Annadana S, Mlynarova L, Udayakumar M, et al. The potato Lhca3.st.1 promoter confers high and stable transgene expression in Chrysanthemum, in constrast to CaMV based promoters. Mol Breed, 2001, 8: 335~344
    71. Annadana S, Rademaker W, Ramanna M, et al. Response of stem explants to screening and explant source as a basis for methodical advancing of regeneration proyocols for Chrysanthemum. Plant Cell, Tissue and Organ Culture, 2000, 62: 47~55
    72. Annadana S,Beekwilder MJ, Kuipers G, et al. Cloning of the Chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema grandiflora. Transgenic Research, 2002, 11: 437~445
    73. Arakawa K, Takabe T, Sugiyama T, et al. Purification of betaine-aldehyde dehydrogenase from spinach leaves and preparation of its antibody. Bacteriol, 1987, 101 :1485~1488
    74. Aswath CR, Mo SY, Kim S H, et al. IbMADS4 regulates the vegetative shoot development in transgenic Chrysanthemum(Dendranthema grandiflorum(Ramat)Kitamura). Plant Science, 2004, 166: 847~854
    75. Birch R G. Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Mol Biol. 1997, 48: 297~326
    76. Boase MR, Bradley JM, Borst NK, et al. Genetic transformation mediated by Agrobacterium tumefaciens of florists’ Chrysanthemum (Dendranthema ×grandiflorum)cultivar ‘Peach Margaret’ In Vitro Cell. Dev Biol Plant, 1998a, 34: 46~51
    77. Boase MR, Butler RC, Borst NK. Chrysanthemum cultivar-Agrobacterium interactions revealed by GUS expression time course experiments. Scientia Horticulture, 1998b, 77: 89~107
    78. Brouquisse R, Weigel P, Rhodes D, et al. Evidence for a ferredoxin-dependent choline monooxygenase from Spinach chloroplast stroma. Plant Physiol, 1989, 90: 322~329
    79. Burnet M, Lafontaine P J , Hanson A D. purification and partial characterization of choline monooygenase from spinach. Plant Physiol, 1995. 108 : 581~588
    80. Bush A L, Pueppke S G. Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Report, 1991, 10 (4): 195~199.
    81. Courtney-Gutterson N, Napoli C, Lemieux C, et al. Modification of flower color in florist,sChrysanthemum: production of a white flowering variety through molecular genetic. BioTechnology, 1994, 12: 268~271
    82. Courtney-Gutterson N, Otten A, Frioozabady E, et al. Production of genetically engineered colormodified Chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. Acta Horticulture, 1993, 336: 57~62
    83. De Block M. Genotype-independent leaf disc transformation of potato(Solanum tuberosum)using Agrobacterium tumefaciens. Theor Appl Genet, 1988, 76: 767~774
    84. de Jong J, Mertens MJ, Rademaker W.Stable. expression of the GUS reporter gene in Chrysanthemum depends on binary plasmid T-DNA. Plant Cell Rep, 1994, 14: 59~64
    85. de Jong J, Van Wordragen MF, Rademaker W. Early transformation events in Dendranthema grandiflora.In:Proceedings of EUCARPIA:Integration of In Vitro Techniques in Ornamental. Plant Breeding, 1990: 156~161
    86. de Jong J,Rademaker W, van wordragen MF, et al. Restoring adventitious shoot formation on Chrysanthemum leaf explants following cocultivation with Agrobacterium tumefaciens.Plant Cell, Tissue and Oragan Culture , 1993, 32: 263~270
    87. Dolgov SV, Mityshkina TU, Rukavtsova EB, et al. Production of transgenic plants of Chrysanthemum moriforlium Ramat with the gene of Bac.thuingiensis δ-endotoxin. Acta Horticulture, 1995, 432: 114~118
    88. Dolgov SV, Mityshkina TU, Skryabin KG. Agrobacterium transformation of Chrysanthemum. Acta Horticulture, 1997, 447: 329~333
    89. Fukai S, De Jong J, Rademaker W. Agrobacterimum-mediated genetic transformation of Chrysanthemum.Acta Horticulture, 1995, 392: 147~152
    90. Fukai S, De Jong J, Rademaker W. Efficient genetic transformation of Chrysanthemum(Dendranthema grandiflorum(Ramat)Kitamura)using stem segments. Breeding Science, 1995, 45: 179~184
    91. Fukai S, Goi M, Tanaka M. The chimeric structure of the apical dome of Chrysanthemum (Dendranthema grandiflorum (Ramat.Kitam) is affected by cryopreseration.Sci Hort, 1994, 57: 347~351
    92. Furuta H, Shinoyama H, Nomura Y, et al. Production on intergeneric somatic hybrids of Chrysanthemum and wormwood (Artemisia sieversiana J.F.Ehrh.ex.Willd)with rust (Puccinia horiana Henning)resistance by electrofusion of protoplasts. Plant Science, 2004, 166: 695~702
    93. Harue,S, Komano, Masayasu, K, et al. Introduction of delta-endotoxin gene of Bacillus thuringiensis to chrysanthemum (DendranthemaXgrandiflorum (Ramat.) Kitamura) for insect resistance. Breeding Science. 2002, 52 (1): 43~50
    94. Higgins CF, Cairney J, Doughlas A, et al. Osmotic regulation of gene expression: Ionic strength asan intracellular signal?.TIBS. 1987, 12: 339
    95. Hill GP. Shoot formation in tissue cultures of Chrysanthemum ‘Bronze Pride’. Physiol Plant, 1968, 2: 386~389
    96. Holmstrom KO, Somersalo S, Mandal A, et al. Improved tolerance to salimity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot, 2000, 51: 177~185
    97. Huang J, Hirji R, AdamL, et al. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol, 2000, 122: 747~756
    98. Ikuta S, Mamura S, Misaki H, et al. Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem, 1977, 82, 1741~1749
    99. Ilkka Tamminen, Tuula Puhakainen, Pirjo Makela, et al. Engineering trehalose biosynthesis improves stress tolerance in arabidopsis. Plant Cold Hardiness, 2002, 18: 249~257
    100. Irish VF, Sussex IM. Function of the APETALA1 gene during Arabidopsis floral development. Plant Cell, 1990, 2: 741~754
    101. Ishida I, Tukahara M, Yoshioka M, et al. Production of anti-virus, viroid plants by genetic manipulations. Pest Manage Sci, 2002, 58: 1132~1136
    102. Ishida Y, Saito H, Ohta S, et al. High efficiency of transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol, 1996, 14: 745~750
    103. Jaime A Teixeira da Silva. Ornamental chrysanthemums: improvement by biotechnology. Plant Cell, Tissue and Organ Culture. 2004, 79: 1~18
    104. Jaime A, Teixeira da S, Duong TN, et al. The effect of antibiotics on the in vitro growth response of Chrysanthemum and tobacco stem transverse thin cell layers (tTCLs). Scientia Horticulturae, 2003, 97: 397~410
    105. JeJong JH, Chakrabarty D, Kim SJ, et al. Transformation of Chrysanthemum (Dendranthema grandiflorum Kitamura cv.Cheonsu) by constitutive expression of rice OsMADS1 gene. Kor Soc Hort Sci, 2002, 43: 382~386
    106. Kanaka K, Kanno Y. Somatic embryogenesis and plant regeneration in chrysanthemum. Plant Cell. Rep, 2000, 19: 946-953
    107. Karle R, Meldrajs J, Druka A, Linde S. Transient expression of a foreign gene in chrysanthemum protoplasts. Latvijas Zinatnu Akademijas Vestis. B~Dala, Dabaszinatnes.1993, 1: 62~64
    108. Kaul V,Miller RM, Hutchinson JF, et al. Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev.Plant Cell, Tissue and Organ culture, 1990, 21: 21~30
    109. Kim J, Park Y, Jung S, et al. Transformation of Chrysanthemum by Agrobacterium tumefaciens with three vectors. Kor Soc Hort Sci, 1998, 39: 360~366
    110. Kudo S, Shibata N, Kanno Y, et al. Transformation of chrysanthmum (Dendranthema ×grandiflorum (Ramat.)Kitamura)via Agrobacterium tumefaciens. Acta Horticulture, 2002,572:139~147
    111. Landfald B, Strom AR. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichin coli. J Bacteriol, 1986, 165: 849~855
    112. Lawrence V. Gusta, Nicole T. Nesbitt, Guohai Wu, et al. Genetic engineering of cultivated plants for enhanced abiotic stress tolerance. Plant Cold Hardiness, 2002, 17: 237~248
    113. Ledger SE, Deroles SC, Given NK. Regeneration and Agrobacterium-mediated transfor mation of Chrysanthemum. Plant Cell Report, 1991, 10: 195~199
    114. Lee L, Wolfe DS, Nilsson O, et al. A LEAFY coregulator encoded by unusual floral organs. Curr Biol, 1997, 7: 95~104
    115. Lemieux CS, Firoozabady E, Robinson KEP. Agrobacterium-mediated Transfor mation of Chrysanthemum.Intergration on In Vitro Techniques in Ornamental Plant Breeding. Wagningen, CPO Press, 1990, 150~155
    116. Li XQ, Liu CN, Ritchie SW, et al. Factors influencing Agrobacterium-mediated transient expression of GUSA in rice. Plant Mol Biol, 1992, 20: 1032~1048
    117. Lowe JM, Davey MR, Power JB, et al. A study of some factors affecting Agrobacterium -transformation and plant regeneration of Dendranthema grandiflora Tzvelev(syn. Chrysanthemum morifoulium Ramat.). Plant Cell, Tissue and Organ Culture, 1993, 33: 171~180
    118. Lu CY, Nugent G, Wardley-Richardson T. Efficient, direct plant regeneration from stem segments of Chrysanthemum (Chrysanthemum morifolium Ramat.cv.Royal Purple). Plant Cell Rep, 1990, 8: 733~736
    119. Mandel MA, Gustafson-Brown C, Savidge B, et al. Molecular characterization of the Arabidopsis floral homeoticgene, APETALA1.Nature, 1992, 360: 273~277
    120. May RA, Triginano RN. Somatic Embryogenesis and Plant Regeneration from Leaves of Dendran thema grandiflora. America Socity Horticulture Science, 1991, 116 (2): 366~371
    121. McNeil SD, Nuccio ML, Hanson AD. Betaine and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol , 1999, 120: 945~949
    122. McNeil SD, Nuccio ML, Ziemak M.J., and Hanson,A.D.(2001). Enhanced synthesis of choline and glycine Betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc. Natl. Acad. Sci. USA 98, 10001~10005.
    123. McNeil SD, Rhodes D, Russell BL et al. Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol, 2000, 124: 153~162
    124. Mitiouchkina T Yu, Dolgov S V. Modification of chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes introduction. Acta-Horticulturae. 2000a, 508: 163~169
    125. Mitiouchkina T Yu. Chalcone synthase gene from Antirrhinum majus in antisense orientation successfully suppressed the petals pigmentation of Chrysanthemum. Acta Horticulture. 2000b, 508:215~217
    126. Morgan JM. A gene controlling differences in osmoregulation in wheat. Plant Physiol. 1991, 18: 249
    127. Zhonglin Mou, Xiaoqun Wang, Zhiming Fu, et al. Silencing of Phosphoethanolamine N-Methyltransferase Results in Temperature-Sensitive Male Sterility and Salt Hypersensitivity in Arabidopsis. The Plant Cell. 2002,14: 2031~2043
    128. Mudd S.H, Datko A H.. Synthesis of Methylated Ethanolamine Moieties. Plant Physiol. 1989, 90: 296~305
    129. Nomura M, Hibino T, Takabe T, et al . Transgenically produced glycine-betaine protects ribulose 1, 5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp. PCC 7942 under salt stress. Plant Cell Physiol, 1998, 39: 425~432
    130. Nuccio ML, McNeil SD, Ziemak MJ, et al. Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a chloroplastic or a cytosolic pathway. Metabolism Engineering, 2000, 2(4): 300~311
    131. Nuccio ML, Russell BL, Nolte KD, et al . The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J, 1998, 16(4): 487~496
    132. Nuccio ML, Ziemak MJ, Henry SA., et al. cDNA Cloning of Phosphoethanolamine N-Methyltransferase from Spinach by complementation in Schizosaccharomyces prombe and characterization of the recombinant enzyme. The Journal of Biological chemistry. 2000, 275(19): 14095~14101
    133. Pan SM, Mo reau R A, Yu C, et al. Betaine accumulation and betaine aldehyde dehydrogenase in spinach leaves. Plant Physiol, 1981, 67: 1105~1108.
    134. Papageorgiou G C, Murata N. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving Photosystem Ⅱcomplex. Photosyn Res, 1995, 44: 243~252.
    135. Pavingerová D, Dostál J, Bískováa R, et al. Somatic embryogenesis and Agrobacterium mediated transformation of Chrysanthemum. Plant Science, 1994, 97: 95~101
    136. Petty LM, Harberd NP, Carré IA. Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in Chrysanthemum by attenuation of the gibberellin response. Plant Science, 2003, 164: 175~182
    137. Rathinasabapathi B, Burnet M, Russell B L, et al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA, 1997, 94: 3454~3458.
    138. Rathinasabapathi B, McCue KF, Gage DA et al. Metabolic engineering of glycine betaine synthesis : plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted totobacco chloroplasts where they confer betaine aldehyde resistance. Planta, 1994, 193(2): 155~162
    139. Renou P, Brochard P, Jalouzot R. Recovery of transgenic Chrysanthemum (Dendranthema grandiflora Tzvelev)after hygromycin resistance selection. Plant Science, 1993, 89: 185~197
    140. Roest S, Bokelmann GS. Vegetative propagation of Chrysanthemum morifolium Ramat in vitro. Scientia Hort, 1975, 3:317~330
    141. Rout GR, Das P. Resent trends in the biotechnology of Chrysanthemum:a critical review. Scientia Horticulturae, 1997, 69: 239~257
    142. Russell B L, Rathinasabapathi B and Hanson A D. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol, 1998, 116: 859~865.
    143. Sakamoto A ,Murata N. The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol, 2001, 125 :180~188
    144. Sakamoto A, Murata N. Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance J Exp Bot, 2000, 51 (342): 81~88
    145. Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant. Cell and Environment, 2002, 25: 163~171.
    146. Sauvadet MA, Brochard P, Boccon-Gibod J. A protoplast to plant system in Chrysanthemum: differential responses among several commercial clones. Plant Cell Report, 1990, 8: 692~695
    147. Schreiber U, Bilger W, Klughammer C. Applications of Chlorphyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing. Kluwer Academic Publishers. 1988, 51~55
    148. Schreiber U, Bilger W, Neubauer G. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin: eds Schulze, E-D and Caldwell, MM, 1994.
    149. Sherman JM, Moyer JW, Daub ME. A regeneration and Agrobacterium-mediated Transformation System for Genetically Diverse Chrysanthemum Cultivars.Journal America Socity Horticulture. Science,1998a,123(2): 189~194
    150. Sherman JM, Moyer JW, Daub ME.Tomato Spotted Wilt Virus Resistance in Chrysanthemum Expression the Viral Nucleocapsid Gene.Plant Disease, 1998b, 82(4): 407~414
    151. Shinoyama H, Kazuma T, Komano M. An Efficient transformation System in Chrysanthemum [Dendranthema×grandiflorum (Ramat.) Kitamura]for Stable and Non-chimeric Expression of Foreign Genes. Plant Biotechnology, 2002, 19(5): 335~343
    152. Shinoyama H, Komano M, Nomura Y, et al. Introduction of delta-endotoxin gene of Bacillus thuringiensis to Chrysanthemum (Dendranthema×grandiflorum (Ramat.) Kitamura) for insect resistance. Breed Sci, 2002, 52: 43~50
    153. Shirasawa N, Iwai T, Nakamura S, et al. Transformation and transgene expression of Chrysanthemum (Dendranthema grandiflorum (Ramat.)Kitamura). Bull Miyagi Prefect Agric Res,Centre, 2000, 67: 15~20
    154. Smith DD, Summers PS, Weretilnyk EA. Phosphocholine synthesis in spinach: characterization of phosphoethanolamine N-methyltransferase. Physiol Plant, 2000, 108 (3): 286~294
    155. Summers P S, Weretilnyk E A. Choline synthesis in Spinach in relation to salt stress. Plant Physiol. 1993, 103: 1269~1276
    156. Takatsu Y, Hayashi M, Sakuma F. Transgene inactivation in Agrobacterium-mediated Chrysanthemum (Dendranthema grandiflorum (Ramat.)Kitamura) transformants. Plant Biotechnology, 2000, 17(3): 241~245
    157. Takatsu Y, Nishizawa Y, Hibi T, et al. Transgenic Chrysanthemum(Dendranthema grandiflorum (Ramat)Kitamura)expressing a rice chitinase gene shows enhanced resistance to gray mold. Scientia Horticulture, 1999, 82(1-2): 113~123
    158. Takeshi Matsumuraa, Noriko Tabayashib, Yasuyo Kamagata, et al. Wheat catalase expressed in transgenic rice plants can improve tolerance against low temperature injury. Plant Cold Hardiness, 2002, 20: 277~287
    159. Tanaka K, Kanno Y, Kudo S, et al. Somatic embryogenesis and plant regeneration in Chrysanthemum (Dendranthema×grandiflorum (Ramat.) Kitamura). Plant Cell Reports, 2000, 19: 946~953
    160. Teixeira, Fukai. Change in transgene expression following transformation of Chrysanthemum by four gene introduction methods. Prop Ornamental Plants, 2002b, 2: 28~37
    161. Teixeira, Fukai. Increasing transient and subsequent stable transgene expression in Chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) following optimization of particle bombardment and Agroinfection parame ters. Plant Biotechnol, 2002a, 19: 229~240
    162. Toguri T, Ogawa T, Kakitani M, et al. Agrobacterium mediated transformation of Chrysanthemum (Dendranthema grandiflorum)plants with a disease resistant gene(pac1). Plant Biotechnol, 1993, 20:121~127
    163. Tosca A, Delledonne M, Furini A, et al. Transformation of Korean Chrysanthemum (Dendranthema zawadskii×D.X grandiflorum )and insertion of the maize autonomous element using Agrobacterium tumefaciens. Genet Breed, 2000, 54: 19~24
    164. Urban LA, Sherman JM, Moyer JW, et al. High frequency shoot regeneration and Agrobac terium-mediated transformation of Chrysanthemum (Dendranthema grandiflora). Plant Science, 1994, 98: 69~79
    165. Van Kooten O, Snel J F H, Photosynthesis Research, 1990. 25:147~150
    166. Van Wordragen MF, de Jong J, Schornagel MJ, et al. Rapid screening for host-bacterium interactions in Agrobacterium mediated gene transfer to Chrysanthemum, by using the GUS-intron gene.Plant Science, 1992, 81: 207~214
    167. Van wordragon MF, de Jong J, Huitema HBM. Genetic transformation of Chrysanthemum using wild type Agrobacterium strains; strain and cultivar specificity. Pant Cell Rep, 1991, 9: 505~508
    168. Weigel P, Weretilnyk E.A. Betaine aldehyde oxidation by spinach chlorop lasts. Plant Physiol. 1986, 82: 753~759.
    169. Weretilnyk E A, Hanson A D. Betaine aldehyde dehydrogease polymorphism in spinach genetic and biochemical characterization. Biochem Genet, 1988, 26: 143~151
    170. Weretilnyk E A, Hanson A D. Molecular cloning of a plant betaine-aldehyde dehydrogenase , an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci USA, 1990, 87: 2745~2749.
    171. Weretilnyk E A, Bednarek S, McCue K F et al. Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons. Planta, 1989, 178: 342~352
    172. Wyn jones R G, Storey R. Physiology and biochemistry of drought resistance in plants. New York: Academic Press, 1981: 171~204.
    173. Yepes LM, Veronica M, Pang SZ, et al. Biolistic transformation of Chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell Reports, 1995,14: 694~698
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.