Einstein引力理论在激光—等离子体相互作用中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遵循Einstein相互作用几何化的思想,在广义相对论理论框架研究了光场—等离子体相互作用各种过程。论文分为三个部分。
     第一部分应用光与运动介质相互作用的有效度规理论研究了三个不同的光与等离子体相互作用的系统:首先研究了激光脉冲尾随由强激光激发的电子等离子体波时所获得的加速;其次研究多光子电离过程中,激光—等离子体相互作用如何影响多光子电离率;最后研究了脉冲星表面磁层中的磁化等离子体与在其间产生并传播的射电辐射的相互作用修正了射电辐射谱的引力红移。
     第二部分首次建立了光在运动的色散介质中有效度规模型,将类Einstein引力理论(即有效度规理论)从非色散介质推广至色散介质领域。其中包括三个内容:首先建立了光与运动的色散介质相互作用的有效度规模型,研究了光与色散介质相互作用中形成的电磁视界、电磁黑洞和Hawking辐射;其次研究了激光—等离子体相互作用过程中等离子体电子如何将电磁场经验为有效几何,将电磁场—荷电粒子系统之间的相互作用等效为等离子体电子所经验的有效度规场,并研究了电子的动力学方程;最后研究了荷电粒子处在引力和电磁场共同作用下的统一的有效度规描述,并研究了相应的荷电粒子动力学方程。
     第三部分研究了强激光超短脉冲产生的定域、瞬时引力而诱导的时空弯曲效应。通过探针脉冲与强激光脉冲同步传输,来测量引力效应。研究了探针光极化面Faraday旋转、探针光散射和光子的Berry相等弯曲时空的效应。
     本文的主要创新性研究结果归结为以下几点:
     1.首次研究并建立了光与运动的色散介质相互作用的类引力模型。得出了光在色散介质中的传播等效于光在有效时空中同时经验度规场及有效势作用的结论。并发现由于色散效应光子获得了有效质量和有效电荷。
     2.发现了类似于引力时空中的黑洞结构—电磁黑洞,并导出了相应的视界产生条件。研究了电磁黑洞的Hawking辐射,导出了相应的表面引力和Hawking温度。
Following Einstein's thought: interaction to be geometrizing, light interactions with plasmas are studied under the framework of general relativity theory.
    The dissertation is divided into three parts.
    Light propagating in moving media in which three different light interactions with plasmas are included is studied by using the effective metric theory in the first part: firstly photon acceleration by the electronic plasma wave induced by strong laser pulses is examined; next studies in the multi- photons ionization process, how does the laser - plasma interaction affect the multi- photons ionization rate; finally studied in how does the magnetization plasma in the magnetosphere of pulsars cause the spectrum of the radio radiation shifting and the gravitational redshift of the pulsar radiation is corrected.
    In the second part the effective metric model for light interacting with moving dispersive media has been established for the first time and the analogous model of Einstein gravity theory is generalized from non-dispersive medium to dispersive medium cases. Including three contents: first has established the effective metric model of light traveling in the moving dispersive media, and the electromagnetic horizon , electromagnetic black hole and the Hawking radiation generated via light interaction with moving dispersive media have been studied; next we investigate how electrons in plasmas experience the electromagnetic field interaction with charged particles in plasmas as an effective metric field and the dynamic equation for the electrons in plasmas is examined; finally we have studied how the unified effective metric is derived to describe the kinetics for a charged particle under the both action of gravity and electromagnetic force and the corresponding equation for a charged particle is investigated.
    The third part has studied the effects of the curved space-times induced by the local instantaneous ultra-intense energy originated from high-power and ultra-short laser
引文
[1] Artificial Black Holes, edited by M. Novello, M. Visser, and G. Volovik, World Scientific, Singapore, 2002.
    [2] C. Barcelo, S. Liberati, and M. Visser, Analogue gravity from field theory normal modes? Class. Quantum Grav. 2001; 18: 3595-3610.
    [3] W. G. Unruh, Phys. Rev. Lett. Experimental Black Hole Evaporation? 1981; 46: 1351-1353.
    [4] M. Visser, Acoustic black holes: horizons, ergosphere and Hawking radiation, Class. Quantum Grav. 1998; 15: 1767-1791.
    [5] Neven Bilic, Relativistic acoustic geometry, Class. Quantum Grav. 1999; 16: 3953- 3964.
    [6] G. E. Volovik, Universe in a Helium Droplet, Oxford University Press, Oxford, 2003.
    [7] G. E. Volovik, Superfluid analogies of cosmological phenomena, Phys. Reports, 2001; 351: 195-348.
    [8] T. A. Jacobson and G. E. Volovik, Event horizons and ergoregions in 3He, Phys. Rev. D; 1998; 58: 064021.
    [9] Ralf Schutzhold, Gunter Plunien, and Gerhard Soff, Dielectric Black Hole Analogs, Phys. Rev. Lett. 2002; 88: 061101.
    [10] I. Brevik and G. Halnes, Light rays at optical black holes in moving media, Phys. Rev. D, 2001; 65: 024005.
    [11] U. Leonhardt and P. Piwnicki, Optics of nonuniformly moving media, Phys. Rev. A, 1999; 60: 4301-4312.
    [12] U. Leonhardt and P. Piwnicki, Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity, Phys. Rev. Lett. 2000; 84: 822-825.
    [13] W. G. Unruh and R. Schiitzhold, On slow light as a black hole analogue, Phys. Rev. D, 2003; 68: 024008.
    [14] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates, Phys Rev. Lett. 2000; 85: 4643-4847.
    [15] L. J. Garay, J. R. Anglin. J. I. Cirac, and P. Zoller, Sonic black holes in dilute Bose-Einstein condensates, Phys Rev. A, 2001; 63: 023611.
    [16] C. Barcelo, S. Liberati, and M. Visser, Analogue gravity from Bose-Einstein condensates, Class. Quantum Grav. 2001; 18: 1137-1156.
    [17] S. Liberati, M. Visser and S. Weinfurtner, Analogue quantum gravity phenomenology from a two-component Bose-Einstein condensate, Class. Quantum Grav. 2006; 23: 3129-3154.
    [18] Petr O. Fedichev and Uwe R. Fischer, Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose-Einstein condensate Phys. Rev. D, 2004; 69: 064021.
    [19] Petr O. Fedichev and Uwe R. Fischer, Gibbons-Hawking Effect in the Sonic deSitter Space-Time of an Expanding Bose-Einstein-Condensed Gas, Phys. Rev. Lett. 2003; 91: 240407.
    [20] V. A. De Lorenci, R. Klippert, and Yu. N. Obukhov, Optical black holes in moving dielectrics, Phys. Rev. D, 2003; 68: 061502(R).
    [21] M. Novello, V. A. de Lorenci, J. M. Salim and R. Klippert, Geometrical aspects of light propagation in nonlinear electrodynamics, Phys. Rev. D, Volume 61, 2000; 15: 045001.
    [22] M. Novello, S. Perez Bergliaffa, J. Salim, V. A. DeLorenci and R. Klippert, Analogue black holes in flowing dielectric, Class. Quantum Grav. 2003; 20: 859-871.
    [23] V. A. De Lorenci, R. Klippert, M. Novello and J. M. Salim, Light propagation in non-linear electrodynamics, Phys. Lett. B, 2000; 482: 134-140.
    [24] V. A. de Lorenci and R. Klippert, Analogue gravity from electrodynamics in nonlinear media, Phys. Rev. D, 2002; 65: 064027.
    [25] V. A. De Lorenci, Effective geometry for light traveling in material media, Phys. Rev. E, 2002; 65: 026612.
    [26] Yuri N. Obukhov and Guillermo F. Rubilar, Fresnel analysis of wave propagation in nonlinear electrodynamics, Phys. Rev. D, 2002; 66: 024042.
    [27] J. Meyer-ter-Vehn, A. Pukhov and Z.-M. Sheng, Relativistic laser plasma interaction. In: D. Batani, Editor, Atoms, Solids and Plasmas in Super-Intense Laser Fields. Kluwer Academic, Plenum, New York (2001), p. 167.
    [28] Donald Umstadter, Einstein's impact on optics at the frontier. Phys. Lett. A, 2005; 347(1-3): 121-132.
    [29] W. Gordon, Zur lichtfortpflanzung nach der relativitats-theorie. Annalen der Physik, 1923; 72(22): 421- 456.
    [30] G. E. Volovik, Simulation of quantum field theory and gravity in superfluid 3He, Low Temp. Phys. 1998;24(2): 127-129.
    [31] Yuri N. Obukhov and Friedrich W. Hehl, Spacetime metric from linear electrodynamics, Phys. Lett. B, 1999; 458(4): 466-470.
    [32] Yuri N. Obukhov, Tetsuo Fukui, Guillermo F. Rubilar, Wave propagation in linear electrodynamics, Phys. Rev. D, 2000; 62: 044050.
    [33] Holger Gies, Light cone condition for a thermalized QED vacuum, Phys. Rev. D, 1999; 60: 105033.
    [34] Stefano Liberati, Sebastiano Sonego and Matt Visser, Scharnhorst effect at oblique incidence, Phys. Rev. D, 2001; 63: 085003.
    [35] B. Reznik, Origin of the thermal radiation in a solid-state analogue of a black hole, Phys. Rev. D, 2000; 62: 0440441.
    [1] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton and K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature, 2004; 431: 535-538.
    [2] Gerard A. Mourou, Toshiki Tajima, and Sergei V. Bulanov, Optics in the relativistic regime. Rev. Mod. Phys. 2006; 78: 309-371.
    [3] Donald Umstadter, Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas, 2001; 8(5): 1774-1785.
    [4] T. Tajima and J. M. Dawson, Laser electron accelerator. Phys Rev Lett, 1979; 43(4): 267- 270.
    [5] J. van Tilborg, C. B. Schroeder, C. V. Filip, Cs. T 6 th, C. G. Geddes, G. Fubiani, R. Huber, R. A. Kaindl, E. Esarey, and W. P. Leemans, Temporal Characterization of Femtosecond Laser-Plasma-Accelerated Electron Bunches Using Terahertz Radiation. Phys. Rev. Lett. 2006; 96: 014801.
    [6] C. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature, 2004; 431: 538-541.
    [7] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy and V. Malka, A laser-plasma accelerator producing monoenergetic electron beams. Nature, 2004; 431: 541-544.
    [8] V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton and A. E. Dangor, Electron Acceleration by a Wake Field Forced by an Intense Ultrashort Laser Pulse. Science, 2002; 298(5598): 1596 - 1600.
    [9] P. Muggli, B. E. Blue, C. E. Clayton. S. Deng, F.-J. Decker, M. J. Hogan, C. Huang, R. Iverson. C. Joshi, T. C. Katsouleas. S. Lee, W. Lu, K. A. Marsh, W. B. Mori, C. L. O'Connell, P. Raimondi, R. Siemann, and D. Walz, Meter-Scale Plasma-Wakefield Accelerator Driven by a Matched Electron Beam. Phys. Rev. Lett. 2004; 93: 014802.
    [10] D. Umstadter, S.-Y. Chen, A. Maksimchuk, G. Mourou, and R. Wagner, Nonlinear Optics in Relativistic Plasmas and Laser Wake Field Acceleration of Electrons. Science 1996; 273: 472-475.
    [11] A. Modena, Z Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, V. Malka, C. B. Darrow, C. Danson, D. Neely, and F. N. Walsh, Electron acceleration from the breaking of relativistic plasma waves. Nature, 1995; 377(19): 606- 608.
    [12] F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, F. Jacquet, V. Malka, J. R. Marques, G. Matthieussent, P. Mine, A. Modena, P. Mora, J. Morillo, and Z. Najmudin, Observation of laser wakefield acceleration of electrons. Phys Rev Lett, 1998; 81(5): 995- 998.
    [13] C. B. Schroeder, D. H. Whittum, and J. S. Wurtele, Multimode analysis of the hollow plasma channel wakefield accelerator. Phys Rev Lett, 1999; 82(6): 1177- 1180.
    [14] A. J. Reitsma, R. A. Cairns, R. Bingham, and D. A. Jaroszynski, Efficiency and Energy Spread in Laser-Wakefield Acceleration. Phys. Rev. Lett. 2005; 94: 085004.
    [15] E. Esarey, P. Sprangle, J. Krall, and A. Ting, Overview of Plasma-Based Accelerator Concepts. IEEE Trans. Plasma Sci. 1996; 24(2): 252-288.
    [16] S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, Photon accelerator. Phys Rev Lett, 1989; 62(22): 2600- 2603.
    [17] T. Esirkepov, S. V. Bulanov, M. Yamagiwa, and T. Tajima, Electron, Positron, and Photon Wakefield Acceleration: Trapping, Wake Overtaking, and Ponderomotive Acceleration. Phys. Rev. Lett. 2006; 96: 014803.
    [18] J. M. Dias, N. C. Lopes, L. O. Silva, G. Figueira, and J. T. Mendonca C. Stenz, F. Blasco, A. Dos Santos, and A. Mysyrowicz, Photon acceleration of ultrashort laser pulses by relativistic ionization fronts. Phys. Rev. E, 2002; 66(5): 056406.
    [19] A. A. Solodov, P. Mora, and P. Chessa, Simulation of photon acceleration in a plasma wake. Phys. Plasmas, 1999; 6(2): 503-512.
    [20] J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonca, Experimental Evidence of Photon Acceleration of Ultrashort Laser Pulses in Relativistic Ionization Fronts. Phys. Rev. Lett. 1997; 78: 4773-4776.
    [21] J. M. Dias, N. C. Lopes, L. O. Silva, G. Figueira, and J. T. Mendonca, Twodimensional collision of probe photons with relativistic ionization fronts. Phys. Rev. E, 2002; 65(3): 036404.
    [22] J.T. Mendonca and L. Oliveira e Silva, Regular and stochastic acceleration of photons. Phys Rev E, 1994; 49(4): 3520~3523.
    [23] J. M. Dias, L. Oliveira e Silva, and J. T. Mendonca, Photon acceleration versus frequency-domain interferometry for laser wakefield diagnostics. Phys. Rev. ST Accel. Beams, 1998; 1: 0311301.
    [24] L. Oliveira e Silva and J. T. Mendonca, Photon acceleration in superluminous and accelerated ionization fronts. IEEE Trans. Plasma Sci., 1996; 24(2): 316-322.
    [25] N. L. Tsintsadze and J. T. Mendonca, Kinetic theory of photons in a plasma. Phys. Plasmas, 1998, 5(10): 3609-3614.
    [26] R. Bingham, J. T. Mendonca, and J. M. Dawson, Photon Landau damping. Phys Rev Lett, 1997; 78(2): 247~249.
    [27] L. Oliveira e Silva and J. T. Mendonca, Kinetic theory of photon acceleration: Time-dependent spectral evolution of ultrashort laser pulses. Phys. Rev. E, 1998; 57(3): 3423-3431.
    [28] E. Esarey, A. Ting, and P. Sprangle, Frequency shifts induced in laser pulses by plasma waves. Phys. Rev. A, 1990; 42, 3526-3531.
    [29] E. Esarey, G. Joyce, and P. Sprangle, Frequency up-shifting of laser pulses by copropagating ionization fronts. Phys. Rev. A, 1991; 44, 3908-3911.
    [30] W. Gordon, Zur lichtfortpflanzung nach der relativitats-theorie. Annalen der Physik, 1923; 72(22): 421~456.
    [31] 朱莳通,沈文达.几何光学和度规光学中的光线径迹.中国科学,A辑,1997;27(6):566~570.
    [32] U. Leonhardt and P. Piwnicki, Optics of nonuniformly moving media. Phys. Rev. A, 1999; 60(6): 4301-4312.
    [33] S. Weinberg, Gravitation and Cosmology. Wiley, New York, 1972.
    [34] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, San Francisco: W. H. Freeman and Company, 1973, pp 582.
    [35] 朱莳通,邓锡铭,季沛勇,沈文达.度规光学中的聚焦定理及其应用.光学学报,1997;17(12):1677~1680.
    [36] K. Krushelnick, A. Ting, C. I. Moore, and H. R. Burris, Large-amplitude radialplasma-wave generation during high-intensity laser interactions with underdense plasmas. Phys. Rev. E, 1998; 57: 2475-2478.
    [37] P. Sprangle, E. Esarey, A. Ting, and G. Joyce, Laser wakefield acceleration and relativistic optical guiding. Appl Phys Lett, 1988; 53(22): 2146~2148.
    [38] Peiyong Ji, Photon acceleration based on plasma, Phys. Rev. E, 2001; 64: 036501.
    [39] Ji Pei-yong and Bao Jia-shan, Photon acceleration driven by an intense laser pulse, Chinese Phys. 2001; 10(4): 314-319.
    [40] 赖国俊,季沛勇,基于激光等离子体的光子加速,物理学报,2000;49(12):2399-2403.
    [41] Ji Peiyon and Bao Jiashan, Frequency shifting of laser pulses in plasmas, 2nd International Laser, Lightwave and Microwave Conference Proceedings, pp.116-123, Nov. 6-9, 2001, Shanghai, China.
    [1] J. Meyer-ter-Vehn, A. Pukhov and Z.-M. Sheng, Relativistic laser plasma interaction. In: D. Batani, Editor, Atoms, Solids and Plasmas in Super-Intense Laser Fields. Kluwer Academic, Plenum, New York (2001), p. 167.
    [2] Donald Umstadter, Einstein's impact on optics at the frontier. Phys. Lett. A, 2005; 347(1-3): 121-132.
    [3] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton and K. Krushelnick, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature, 2004; 431: 535-538.
    [4] D. Umstadter, Relativistic nonlinear optics. In: B.D. Guenther, D.G. Steel and L. Bayvel, Editors, Encyclopedia of Modern Optics, Elsevier, Oxford (2004), p. 289.
    [5] Th. Weber, H. Giessen, M. Weckenbrock, G. Urbasch, A. Staudte, L. Spielberger, O. Jagutzki, V. Mergel, M. Vollmer, R. Dorner, Correlated electron emission in multi-photon double ionization. Nature, 2000; 405(6787): 658-661.
    [6] I. A. Ivanov, A. S. Kheifets, Lippmann-Schwinger description of multiphoton ionization. Phys. Rev. A, 2005; 71(4): 043405.
    [7] Yasuo Nabekawa, Hirokazu Hasegawa, Eiji J. Takahashi, Katsumi Midorikawa, Production of Doubly Charged Helium Ions by Two-Photon Absorption of an Intense Sub-10-fs Soft X-Ray Pulse at 42eV Photon Energy. Phys. Rev. Lett. 2005; 94(4): 043001.
    [8] I. A. Ivanov, A. S. Kheifets, On the use of the Kramers Henneberger Hamiltonian in multi-photon ionization calculations. J. Phys. B 2005; 38(13): 2245-2255.
    [9] Imre F. Barna, Jianyi Wang, Joachim Burgdorfer, Angular distribution in two-photon double ionization of helium by intense attosecond soft-x-ray pulses. Phys. Rev. A, 2006; 73(2): 023402.
    [10] J. Rudati, J. L. Chaloupka, P. Agostini, K. C. Kulander, L. F. Dimauro, Multiphoton Double Ionization via Field-Independent Resonant Excitation. Phy. Rev. Lett. 2004; 92(20): 203001.
    [11] Jingtao Zhang, Shaohui Li, Zhizhan Xu, Above-threshold ionization of xenon atoms in a bichromatic phase-controlled laser field of linear and circular polarizations. Phys. Rev. A, 2004; 69(5): 053410.
    [12] L. V. Keldysh, Sov. Phys. JETP, 1965; 20: 1307.
    [13] F H M Faisal, Multiple absorption of laser photons by atoms. J. Phys. B 1973; 6: L89-L92.
    [14] Howard R. Reiss, Effect of an intense electromagnetic field on a weakly bound system. Phys. Rev. A 1980; 22(5): 1786-1813.
    [15] Dong-Sheng Guo, G. W. F. Drake, Multiphoton ionization in circularly polarized standing waves. Phys. Rev. A 1992; 45(9): 6622-6635.
    [16] Dong-Sheng Guo, R. R. Freeman, Yong-Shi Wu, Quantum electrodynamic approach to the Volkov-Coulomb problem. J. Phys. A 2000; 33(44): 7955-7971.
    [17] Dong-Sheng Guo, Teijo Aberg, Bernd Crasemann, Scattering theory of multiphoton ionization in strong fields. Phys. Rev. A 1989; 40(9): 4997-5005.
    [18] Dong-Sheng Guo, G. W. F. Drake, Stationary Solutions for an Electron in an Intense laser Field: I. Single-mode Case. J. Phys. A 1988; 25: 3383-3397.
    [19] W. Gordon, Zur lichtfortpflanzung nach der relativitats-theorie. Annalen der Physik, 1923; 72(22): 421-456.
    [20] Peiyong Ji, Photon acceleration based on plasma. Phys. Rev. E, 2001; 64: 036501(2001)
    [21] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982).
    [22] Greiner Reinhardt, Quantum Electrodynamics. Springer, Berlin (1996).
    [23] 顾震宇,季沛勇,等离子体密度对多光子电离的影响.物理学报,2002;51(5)1022-1024.
    [24] Gu Zhen-yu and Ji Pei-yong," Effects of Plasma Background on Multi-photon Ionization ", 2nd International Laser, Lightwave and Microwave Conference Proceedings, pp.136-140, Nov. 6-9, 2001, Shanghai China.
    [1] R. C. Duncan and C. Thompson, Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts, Astrophys. J. 1992; 392: L9-L13.
    [2] Andrew J. Levan, Graham A. Wynn, Robert Chapman, Melvyn B. Davies, Andrew R. King, Robert S. Priddey, Nial R. Tanvir, Short gamma-ray bursts in old populations: magnetars from white dwarf-white dwarf mergers, Monthly Notices of the Royal Astronomical Society: Letters, 2006; 368(1): L1-L5.
    [3] D. Marsden, R. E. Lingenfelter, R. E. Rothschild, J. C. Higdon, Nature versus Nurture: The Origin of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars, Astrophys. J. 2001; 550: 397-409.
    [4] B. Zhang, R. X. Xu and G. J. Qiao, Nature and Nurture: a Model for Soft Gamma-Ray Repeaters, Astrophys. J. 2000; 545: L127-L130.
    [5] R. X. Xu and F. Busse, The birth of strange stars and their dynamo-originated magnetic fields, Astron. Astrophys. 2001; 371: 963-972.
    [6] V. V. Usov, Strange Star Heating Events as a Model for Giant Flares of Soft-Gamma-Ray Repeaters, Physical Review Letters, 2001; 87(2): 021101.
    [7] R. X. Xu, A Thermal Featureless Spectrum: Evidence for Bare Strange Stars? Astrophys. J. 2000; 570: L65-L68.
    [8] R. X. Xu, 1E 1207.4-5209: a low-mass bare strange star? Monthly Notices of the Royal Astronomical Society, 2005; 356(1): 359-370.
    [9] Yu. B. Ivanov, A. S. Khvorostukhin, E. E. Kolomeitsev, V. V. Skokov, V. D. Toneev, D. N. Voskresensky, Lattice QCD constraints on hybrid and quark stars, Phys. Rev. C, 2005; 72(2): 025804.
    [10] H. J. Mosquera Cuesta and J. M. Salim, Nonlinear Electrodynamics and the Surface Redshift of Pulsars, Astrophys. J. 2004; 608: 925-929.
    [11] C. W. Misner. K. S. Thome, and J. A. Wheeler, Gravitation, San Francisco: W. H. Freeman and Company, 1973, pp 657.
    [12] H. J. Mosquera Cuesta and J. M. Salim, Mon. Not. R. Astron. Soc. 354, L55 (2004).
    [13] W. Gordon, Zur lichtfortpflanzung nach der relativitats-theorie, Annalen der Physik, 1923; 72: 421-456.
    [14] Ralf Schutzhold, Gunter Plunien, and Gerhard Soff, Dielectric Black Hole Analogs, Phys. Rev. Lett. 2002; 88: 061101.
    [15] Peiyong Ji, Photon acceleration based on plasma, Phys. Rev. E 2001; 64: 036501.
    [16] P. Goldreich and W. Julian, Pulsar Electrodynamics, Astrophys. J. 1969; 157: 869-880.
    [17] J. M. Cordes, in The Magnetospheric Structure and Emission Mechanisms of Radio Pulsars, edited by T. H. Hankins, J. M. Rankin, and J. A. Gill (Pedagogical University Press, Zielona Gora, Poland,1992), p. 253.
    [18] P. A. Sturrock, A Model of Pulsars, Astrophys. J. 1971; 164: 529-556.
    [19] M. A. Ruderman and P. G. Sutherland, Theory of pulsars - Polar caps, sparks, and coherent microwave radiation, Astrophys. J. 1975; 196, 51-72.
    [20] D. B. Melrose and M. E. Gedalin, Relativistic Plasma Emission and Pulsar Radio Emission: A Critique, Astrophys. J. 1999; 521: 351-361.
    [21]V. V. Usov and D. B. Melrose, Bound Pair Creation in Polar Gaps and Gamma-Ray Emission from Radio Pulsars, Astrophys. J. 1996; 464: 306-315.
    [22] D. B. Melrose, The Models for Radio Emission from Pulsars - the Outstanding Issues, J. Astrophys. Astro. 1995; 16: 137-164.
    [23] M. Gedalin and D. B. Melrose, Long waves in a relativistic pair plasma in a strong magnetic field, Phys. Rev. E 1998; 57: 3399-3410.
    [24] R. N. Manchester and J. H. Taylor, Pulsars, W. H. Freeman, SanFrancisco, 1977).
    [25] A. Broderick and R. Blandford, Covariant magnetoionic theory I: Ray propagation, Mon. Not. R. Astron. Soc. 2003; 342: 1280-1290.
    [26] M. Lyutikov, Waves in a one-dimensional magnetized relativistic pair plasma, Mon. Not. R. Astron. Soc. 1998; 293, 447-468.
    [27] A. G. Lyne and D. R. Lorimer, High Birth Velocities of Radio Pulsars, Nature, 1994; 369: 127-129.
    [28] Shiwei Qu, Peiyong Ji and Ying Bai, Modified Surface redshift of pulsars produced by magnetoplasma. submitted to Physics Letters A.
    [1] Artificial Black Holes, edited by M. Novello, M. Visser, and G. Volovik, World Scientific, Singapore, 2002.
    [2] C. Barcelo, S. Liberati, and M. Visser, Analogue gravity from field theory normal modes? Class. Quantum Gray. 2001; 18: 3595-3610.
    [3] S. W. Hawking, Black hole explosions? Nature (London) 1974; 248: 30. (1974).
    [4] S. W. Hawking, Particle Creation by Black Holes. Commun. Math. Phys. 1975; 43: 199-220.
    [5] William G. Unruh and Ralf Schiitzhold, Universality of the Hawking effect, Phys. Rev. D, 2005; 71: 024028.
    [6] Peiyong Ji, Photon acceleration based on plasma, Phys. Rev. E 2001; 64: 036501.
    [7] Ji Pei-yong and Bao Jia-shan, Photon acceleration driven by an intense laser pulse, Chinese Phys. 2001; 10: 314-319.
    [8] 顾震宇,季沛勇,等离子体密度对多光子电离的影响,物理学报,2002;51:1022-1025.
    [9] 赖国俊,季沛勇,基于激光等离子体的光子加速,物理学报,2000;49:2399-2403.
    [10] W. G. Unruh, Phys. Rev. Lett. Experimental Black Hole Evaporation? 1981; 46:1351-1353.
    [11] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates, Phys Rev. Lett. 2000; 85: 4643-4847.
    [12] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Sonic black holes in dilute Bose-Einstein condensates, Phys Rev. A, 2001; 63: 023611.
    [13] C. Barcelo, S. Liberati, and M. Visser, Analogue gravity from Bose-Einstein condensates, Class. Quantum Grav. 2001; 18: 1137-1156.
    [14] S. Liberati, M. Visser and S. Weinfurtner, Analogue quantum gravity phenomenology from a two-component Bose-Einstein condensate, Class. Quantum Gray. 2006;23: 3129-3154.
    [15] Petr O. Fedichev and Uwe R. Fischer, Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose-Einstein condensate Phys. Rev. D, 2004; 69: 064021.
    [16] Petr 0. Fedichev and Uwe R. Fischer, Gibbons-Hawking Effect in the Sonic deSitter Space-Time of an Expanding Bose-Einstein-Condensed Gas, Phys. Rev. Lett. 2003; 91: 240407.
    [17] G. E. Volovik, Universe in a Helium Droplet, Oxford University Press, Oxford, 2003.
    [18] G. E. Volovik, Superfluid analogies of cosmological phenomena, Phys. Reports, 2001; 351: 195-348.
    [19] T. A.Jacobson and G. E. Volovik, Event horizons and ergoregions in 3He, Phys. Rev. D; 1998; 58: 064021.
    [20] Ralf Schutzhold, Gunter Plunien, and Gerhard Soff, Dielectric Black Hole Analogs, Phys. Rev. Lett. 2002; 88: 061101.
    [21] I. Brevik and G. Halnes, Light rays at optical black holes in moving media, Phys. Rev. D, 2001; 65: 024005.
    [22] U. Leonhardt and P. Piwnicki, Optics of nonuniformly moving media, Phys. Rev. A, 1999; 60: 4301-4312.
    [23] U. Leonhardt and P. Piwnicki, Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity, Phys. Rev. Lett. 2000; 84: 822-825.
    [24] W. G. Unruh and R. Schutzhold, On slow light as a black hole analogue, Phys. Rev. D, 2003; 68: 024008.
    [25] V. A. De Lorenci, R. Klippert, and Yu. N. Obukhov, Optical black holes in moving dielectrics, Phys. Rev. D, 2003; 68: 061502(R).
    [26] M. Novello, V. A. de Lorenci, J. M. Salim and R. Klippert, Geometrical aspects of light propagation in nonlinear electrodynamics, Phys. Rev. D, Volume 61, 2000; 15: 045001.
    [27] M. Novello, S. Perez Bergliaffa, J. Salim, V. A. DeLorenci and R. Klippert, Analogue black holes in flowing dielectric, Class. Quantum Grav. 2003; 20: 859-871.
    [28] V. A. De Lorenci, R. Klippert, M. Novello and J. M. Salim, Light propagation in non-linear electrodynamics, Phys. Lett. B, 2000; 482: 134-140.
    [29] V. A. de Lorenci and R. Klippert, Analogue gravity from electrodynamics in nonlinear media, Phys. Rev. D, 2002; 65: 064027.
    [30] V. A. De Lorenci, Effective geometry for light traveling in material media, Phys. Rev. E, 2002; 65: 026612.
    [31] Yuri N. Obukhov and Guillermo F. Rubilar, Fresnel analysis of wave propagation in nonlinear electrodynamics, Phys. Rev. D, 2002; 66: 024042.
    [32] Ralf Schutzhold and William G. Unruh, Hawking Radiation in an Electromagnetic Waveguide? Phys. Rev. Lett. 2005; 95: 031301.
    [33] J. Ehlers, Zum Ubergang von der Wellenoptik zur geometrischen Optik in der allgemeinen Relativitatstheorie, Z. Naturforsch 1967; 22a: 1328-1332.
    [34] J. Bicak and P. Hadrava, General relativistic radiative transfer theory in refractive and dispersive media, Astron. Astrophys. 1975; 44: 389-399.
    [35] J. L. Synge, Relativity: the general theory, chap. XI, North-Holland Publ. Co., Amsterdam 1960.
    [36] A. Broderick and R. Blandford, Covariant magnetoionic theory I: Ray propagation, Mon. Not. R. Astron. Soc. 2003; 342: 1280-1290.
    [37] A. Broderick and R. Blandford, Covariant magnetoionic theory II: Radiative Transfer Theory, Mon. Not. R. Astron. Soc. 2004; 349: 994-1008.
    [38] V. Perlick, Ray optics, Fermat's principle and applications to General relativity, chap. 3, Springer-Verlag Berlin Heidelberg 2000.
    [39] W. Gordon, Zur lichtfortpflanzung nach der relativitats-theorie. Annalen der Physik, 1923; 72: 421-456.
    [40] M. Visser, Acoustic black holes: horizons, ergosphere and Hawking radiation, Class. Quantum Grav. 1998; 15: 1767-1791.
    [41] R. M. Wald, Quantum Gravity 2; A Second Oxford Symposium, Edited by C. J. Isham, R. Penrose and D. W. Sciama (Clarendon Press, Oxford, England, 1981), pp. 234.
    [42] V. P. Frolov and I. D. Novikov, Black Hole Physics, Kluwer Academic Publishers, Dordrecht, 1998, pp. 220-221.
    [43] Peiyong Ji and Xi-jun Qiu, Optical black holes in moving dispersive media, sub- mitted to Physical Review D.
    [44] Peiyong Ji and Xi-jun Qiu, Effective geometries for light travelling in moving dispersive media, submitted to Classical and Quantum Gravity.
    [1] Ralf Schutzhold, Gunter Plunien, and Gerhard Soff, Dielectric Black Hole Analogs, Phys. Rev. Lett. 2002; 88: 061101.
    [2] I. Brevik and G. Halnes, Light rays at optical black holes in moving media, Phys. Rev. D, 2001; 65: 024005.
    [3] U. Leonhardt and P. Piwnicki, Optics of nonuniformly moving media, Phys. Rev. A, 1999; 60: 4301-4312.
    [4] U. Leonhardt and P. Piwnicki, Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity, Phys. Rev. Lett. 2000; 84: 822-825.
    [5] W. G. Unruh and R. Schiitzhold, On slow light as a black hole analogue, Phys. Rev. D, 2003; 68: 024008.
    [6] V. A. De Lorenci, R. Klippert, and Yu. N. Obukhov, Optical black holes in moving dielectrics, Phys. Rev. D, 2003; 68: 061502(R).
    [7] M. Novello, V. A. de Lorenci, J. M. Salim and R. Klippert, Geometrical aspects of light propagation in nonlinear electrodynamics, Phys. Rev. D, Volume 61, 2000; 15: 045001.
    [8] M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, England, 1999.
    [9] Atom Interferometry, edited by P. Berman, Academic, San Diego, 1997.
    [10] Ulf Leonhardt, Space-time geometry of quantum dielectrics, Phys. Rev. A, 2000; 62(1): 012111.
    [11] Ulf Leonhardt, Energy-momentum balance in quantum dielectrics, Phys. Rev. A 2006; 73 032108.
    [12] M. Novello and J. M. Salim, Effective electromagnetic geometry, Phys. Rev. D 2001; 63: 083511.
    [13] M. Novello, V. A. De Lorenci, J. M. Salim, and R. Klippert, Geometrical aspects of light propagation in nonlinear electrodynamics, Phys. Rev. D 2000; 61: 045001.
    [14] M. Novello, J. M. Salim, V. A. De Lorenci, and E. Elbaz, Nonlinear electrodynamics can generate a closed spacelike path for photons, Phys. Rev. D 2001; 63 103516.
    [15] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1975)
    [16] S. Weiberg Gravitation and Cosmology (Wiley, New York, 1972)
    [17] Ji Pei-yong and Bao Jia-shan, Photon acceleration driven by an intense laser pulse, Chinese Phys. 2001; 10(4): 314-319.
    [1] A. Einstein, Unified Field Theory Based on Riemannian Metrics and Distant Parallelism, Math. Annal. 1930; 102: 685-697.
    [2] E. Schrodinger, Space-Time Structure, Cambridge University Press, 1960.
    [3] W. Pauli, Theory of Relativity, Pergamon Press, Oxford, 1958.
    [4] Gunnar Randers, On an Asymmetrical Metric in the Four-Space of General Relativity, Phys. Rev. 1941; 59: 195-199.
    [5] V. C. de Andrade and J. G. Pereira, Torsion and the Electromagnetic Field, Inter. J. Mod. Phys. D, 8(2): 141-151.
    [6] R. G. Beil, Electrodynamics from a Metric, Inter. J. Theor. Phys. 1987; 26(2): 189-197.
    [7] V Aldaya and E Sanchez-Sastre, A new attempt towards the unification of space-time and internal gauge symmetries, J. Phys. A, 2006; 39:1726-1742.
    [8] Yuri N. Obukhov and Friedrich W. Hehl, Spacetime metric from linear electrodynamics, Phys. Lett. B, 458(4): 466-470.
    [9] Yuri N. Obukhov, Tetsuo Fukui, and Guillermo F. Rubilar, Wave propagation in linear electrodynamics, Phys. Rev. D, 2000; 62: 044050.
    [10] Guillermo F. Rubilar, Yuri N. Obukhov and Friedrich W. Hehl, Generally Co-variant Fresnel Equation and the Emergence of the Light Cone Structure in Linear Pre-Metric Electrodynamics, Inter. J. Mod. Phys. D, 11(8): 1227-1242.
    [11] M. Novello and J. M. Salim, Effective electromagnetic geometry, Phys. Rev. D 2001; 63: 083511.
    [12] M. Novello, V. A. De Lorenci, J. M. Salim, and R. Klippert, Geometrical aspects of light propagation in nonlinear electrodynamics, Phys. Rev. D 2000; 61: 045001.
    [13] Jacob D. Bekenstein, Relation between physical and gravitational geometry, Phys. Rev. D, 1993; 48(8): 3641-3647.
    [14] H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin 1959.
    [15] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry, Springer, Berlin 1999.
    [16] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press Ltd, Oxford 1979.
    [1] G. V. Skrotskii, On the influence of gravity on the light propagation, Akademia Nauk SSR, Doklady, 1957; 114(1): 73-76.
    [2] Mauro Sereno, Gravitational Faraday rotation in a weak gravitational field, Phys. Rev. D 2004; 69: 087501.
    [3] M. Sereno, Detecting gravitomagnetism with rotation of polarization by a gravitational lens, Mon. Not. R. Astron. Soc. 2004; 356(1): 381-385.
    [4] Sergei Kopeikin and Bahram Mashhoon, Gravitomagnetic effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies, Phys. Rev. D, 2002; 65: 064025.
    [5] Jairzinho Ramos and Bahram Mashhoon, Helicity-rotation-gravity coupling for gravitational waves, Phys. Rev. D, 2006; 73: 084003.
    [6] Hideki Asada, Masumi Kasai, and Tatsuya Yamamoto, Separability of rotational effects on a gravitational lens, Phys. Rev. D, 2003; 67: 043006.
    [7] Alexander B. Balakin and Jos 6 P. S. Lemos, Optical activity induced by curvature in a gravitational pp-wave background, Class. Quantum Grav. 2002; 19(19): 4897-4908.
    [8] Mohammad Nouri-Zonoz, Gravitoelectromagnetic approach to the gravitational Faraday rotation in stationary spacetimes, Phys. Rev. D, 1999; 60: 024013.
    [9] V. Perlick and W. Hasse, Gravitational Faraday effect in conformally stationary spacetimes, Class. Quantum Grav. 1993; 10(1): 147-161.
    [10] P. Carini, Long Long Feng, Miao Li and R. Ruffini, Phase evolution of the photon in Kerr spacetime, Phys. Rev. D, 1992; 46(12): 5407-5413.
    [11] M. O. Scully, General-relativistic treatment of the gravitational coupling between laser beams, Phys. Rev. D, 1979; 19(12): 3582-3591.
    [12] Peiyong Ji, Shi-tong Zhu and Wen-da Shen, Gravitational perturbation induced by intense laser pulses , Int. J. Theor. Phys.1998; 37(6): 1779-1791.
    [13] S. Weinberg, Gravitation and Cosmology, John Wiley, New York, 1972.
    [14] N. Kapany and J. Burke, Optical Waveguides, Academic, New York, 1972.
    [15] R.S. Hanni, Wave fronts near a black hole, Phys. Rev. D, 1977; 16: 933-936.
    [16] Peiyong Ji, Hun Zhou and H. Q. Lu, Gravitational Faraday Effect Induced by High-Power Lasers, Mod. Phys. Lett. A, 2005; 20(8): 597-603.
    [17] Peiyong Ji and Ying Bai, Gravitational Effects Induced By High-Power Lasers, Eur. Phys. J. C, 2006; 46: 02531.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.