基于数值模拟的煤浆混合槽结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高煤炭利用率,解决环境污染问题,我国充分重视煤炭直接液化技术的应用。作为煤炭直接液化技术中煤浆制备单元的关键装备—媒浆混合槽的作用也显得越来越重要。目前,国内外对卧式混合槽内部流动情况的研究不多,本课题组曾对卧式混合槽进行过研究,但受时间和条件限制,仅研究了一种结构的几组参数。
     本文采用Computational Fluid Dynamics(CFD)方法,个别模型配合物理实验,对三种煤浆混合槽进行结构优化研究,得到了一系列结论。
     首先就课题组曾研究的涡轮式煤浆混合槽结构展开后续研究,更多地改变模型参数,寻找更合理结构,为工程应用提供技术依据。研究结果表明:在其他参数不变的情况下,选择倾斜角度为60°的直涡轮桨,并且将桨叶圆盘定为188mm,挡板与槽体之间留有2mm间隙的混合槽会获得最佳搅拌混合效果。
     随后,提出螺旋式煤浆混合槽结构。该混合槽的桨叶整体上倾斜布置,构成螺旋走向,使得桨叶不仅具有传统的搅拌与混合功能,而且可以引导物料沿螺旋轨迹运动,同时也给物料一定的反混机会,让搅拌更充分。数值模拟结果显示,该装置基本能够满足设计要求。
     最后,在总结前两种结构的基础上,提出了犁刀式煤浆混合槽结构。该混合槽用犁刀式桨叶代替涡轮式桨叶,使得桨叶对流体的剪切力更大。尤其在槽体内部混合物出口管前设置挡板之后,搅拌效果得到明显改善,并在相应的实验装置上进行试验运行,试验结果验证了数值模拟结果,两者吻合较好。
In order to increase the energy utilization ratio of coal and solve the problem of environment pollution, our country attaches much importance to coal direct liquefaction technology. As the key equipment of coal slurry preparation unit coal slurry mixing tank plays a significant role in coal direct liquefaction. However, few researches focused on horizontal mixing tank both domestically and abroad at present. Our research team had researched horizontal mixing tank, but only several groups of parameters in a structure were concerned due to the limitation of time and conditions.
     Optimization of three coal slurry mixing tanks using computational fluid dynamics (CFD) method and physical experiment was studied in this paper, some conclusions were obtained.
     The further researches were initially done in turbine coal mixing tank with various model parameters to find more suitable structures for engineering application. It was found that the best mixing result was achieved using 60°inclination straight turbine oar with 188mm disc diameter and 2mm interval between baffle and tank body, while other parameters were constant.
     Spiral coal slurry mixing tank was also evaluated. In this tank oars were sloping arranged forming spiral trend, which not only has the traditional agitating and mixing function, but also leads the material flow along spiral orbit. At the same time, back-mixing enhanced the mixing more plenitude. Numerical simulation results showed that this equipment basically meets design demands.
     Based on preceding structures, colter coal slurry mixing tank was finally raised, instead of using turbine oar. This tank used colter oar to achieve higher shearing force. Especially, agitating effect was obviously improved after setting a baffle before mixture outlet. The physical experiment was carried out and validated the numerical simulation results.
引文
[1]程香.煤粉捏合器内部流动数值模拟与优化[D].杭州:浙江大学.2007
    [2]Aubin J,Sauze N L,et al.Hydrodynamics in an aerated tank stirred by a down-and an up-pumping axial impeller[A].6th World Congress of Chemical Engineering[C].Melbourne:Australia,2001,9,23-27
    [3]Vasconcelos J M T,Orvalho S C P,et al.Effect of blade shape on the performance of six-bladed disk turbine impellers[J].Ind Eng Chem Res,2000,39(1):203-213.
    [4]何亮,吴建明.大型双槽高强度搅拌磨机的开发与应用[J],中国非金属矿工业导刊,2009,1
    [5]赵魁阁.卧式搅拌槽[J],中国有色金属,1975,5
    [6]Wang Jia-jun,Feng Lian-fang,Gu Xue-ping,et al.Optimizing impeller combination forgasliquid mixing in stirred vessel[J].China Synthetic Rubber Industry,2002,25(5):320-320.
    [7]Hou Zhi-zhong,Feng Lian-fang,et al.Gas-liquid dispersion and mixing properties for different impellers[J].China Synthetic Rubber Industry,1995,18(3):147-150.
    [8]Ajunwadkar S J,Sarananan K,et al.Optimizing the impeller combination for maximum hold-up with minimum power consumption[J].Biochemical Engineering Journal,1998,1:25-30.
    [9]Gao Z,Smith JM.Gas dispersion in sparged and boiling reactors[J].Trans Chem E,Part A,2001(79):973-978.
    [10]Hou Zhi-zhong,Li Yun-ming,et al.Properties of gas- liquid dispersion in a baffle-gassed multistage agitated vessel[J].China Synthetic Rubber Industry,1995,18(4):218-220.
    [11]Nocentini M,Fajner D,et al.Gas- liquid mass transfer and holdup in vessels stirred with multiple rushton turbines:Water and water-glycerol solutions[J].Ind Eng Chem Res,1993,32(1):19-26.
    [12]Smith J M,Gao Z.Power demand of gas dispersing impellers under high load conditions[J].Chem Eng Res Des,2001,79:575-580.
    [13]郝志刚,包雨云,高正明.多层组合桨搅拌槽内气-液分散特性的研究[J],高校化学工程学报,2004(5):547-552
    [14]陈志平.章序文.林兴华等.搅拌与混合设备设计选用手册[M],化学工业出版 社,2004
    [15]Zwietering,T N.Suspension of solids particles in liquid by agitators.AIChE[J],1958,8:244-253
    [16]Buurman C.,Resoort G.,and Plaschkes A..Scaling-up rules for solids suspension in stirred vessels[J].Chem.Eng.Sci.,1986,44(11):2865-2871
    [17]Wichterle K.Conditions for suspension of solids in agitated vessels[J].Chem.,Eng.Sci.,1988,43:467-471
    [18]Chudacek M W.Relationships between solids suspension criteria,mechanism of suspension tank,geometry and scale up parameters in stirred tanks[J].Ind.Eng.Chem.Fundam,1986,25(3):391-401
    [19]Geisler R K,Mersmann A B.Local velocity distribution and power dissipation rate of suspensions in stirred vessels[A],Proceedings of the 6th European Conference on Mixing,England,BHRA,1988,267-272.
    [20]Carpstein Robert R,Fascino Jullan B,Myers Kevin J.High-efficiency road to liquid-solid agitation[J],Chem Eng,1994,101(10)
    [21]Ranade V V.,Joshi B.Flow generated by a disc turbine:Ⅱ.Mathematical modeling and comparison with experimental data[J].Chemical Engineering Research and Design,1990,68(A):34-50
    [22]侯拴弟,王英深,张政,施力田,阎旭.稀疏固液搅拌体系流动特性,化工学报,2000,6:836-839
    [23]黄雄斌,问宪斌,施力田,祝铃饪.固液搅拌槽内液相速度的分布,化工学报,2002,7:717-722
    [24]Shin-ichi K.,Nobuhiro Y.,Koji Takahashi.,Distribution of solid particles lighter than liquid in an agitated vessel stirred by dual impellers,Journal of Chemical Engineering of Japan,2008,41(3):155-160
    [25]Tezura S.,Kimura A.,Yoshida M.,Yamagiwa K.,Ohkawa A.,Solid-liquid mass transfer characteristics of an unbaffled agitated vessel with an unsteadily forward-reverse rotating impeller Journal of Chemical Technology & Biotechnology 83(5) 2008 763-767
    [26]Chapman M.,Nienow A W.,Cooke M.,Particle-gas-liquid mixing in stirred vessels,PartⅢ:three phase mixing[J].Chem Eng Res Des,1983,61:167-181
    [27]Bujalski M.,Nienow A W..The use of upward pumping 45°pitched blade turbine impellers in three-phase reactors[J].Chem Eng Sci,1990,45(2):415-421
    [28]徐世艾,韩晓丽,冯连芳,顾雪萍,王凯.气液固三相体系搅拌混合研究进展[J],化学工业与工程,2000,17(5)
    [29]Dohia N.,Takahashib T.,Minekawab K.,Kawase Y..Power consumption and solid suspension performance of large-scale impellers in gas-liquid-solid three-phase stirred tank reactors[J].Chem.Eng.Journal.2004,97:103-114.
    [30]Yuyun Bao,Zhengming Gao,Zhipeng Li,Ding Bai,John M.,Smith,Rex B.,Thorpe.Solid suspension in a boiling stirred tank with radial flow turbines.Ind.Eng.Chem.Res.2008,47,2420-2427.
    [31]Pantula R.R.K.,Ahmed N.,Solid suspension and gas hold-up in three phase mechanically agitated contactor[A],In Proceedings of the 26th Australian Chemical Engineering Conference 1998.
    [32]Chapman,C.M.,Nienow,A.W.,Cooke,M.and Middleton,J.C..Particle-gas-liquid mixing in stirred vessels.Part Ⅲ.Three phase mixing[J].Chem Eng Res Des,1983,60:167-181.
    [33]Aubin,J.,Sauze,N.L.,Bertrand,J.,Fletcher,D.F.,Xuereb,C..PIV measurements of flow in an aerated tank stirred by a down- and an up pumping axial flow impeller[J].Exp Therm Fluid Sci,2004,28:447-456.
    [34]Guha D.,Ramachandran P.A.,Dudukovic,M.P..Flow filed of suspended solids in a stirred tank reactor by Lagrangian tracking.Chem Eng Sci,2007,62:6143-6154.
    [35]王福军.计算流体动力学分析——CFD软件原理与应用[M],清华大学出版社,2004
    [36]Brucato A.,Ciofalo M.,Grisafi F.,et al.Numerical prediction of flow fields in baffled stirred vessels:A comparision of alternative modeling approaches[J],Chemical Engineering Science,1998,53(21):3653-3384
    [37]Montate G.,Lee K C.,Brucato A.,et al.Numerical simulation of the dependency of flow pattern on impeller clearance in stirred vessels[J].Chemical Engineering Science,2001,56:3751-3770
    [38]Harvey P.S.,Greaves M..Turbulent flow in an agitated vessel(Part Ⅰ):A predictive model [J],Trans Ins Chem Eng,1982,60(a):195-200
    [39]永田进治(马继顺等).混合原理与应用[M],化学工业出版社,1984
    [40]Brucato A.,Ciofalo M.,Grisafi E,et al.Complete numerical simulation of flow fields in baffled stirred vessels:The inner-outer approach[J].Institution of Chemical Engineering Symposium Series 136[C].Rugby,U K:Institution of Chemical Engineers,1994,155-162
    [41]Luo J Y.,Issa R I.,Gosman A D.,Prediction of impeller induced flows in mixing vessels using multiple frames of reference[A].Institution of Chemical Engineering Symposium Series 136[C].Rugby,U K:Institution of Chemical Engineers,1994,549-556
    [42]Jaworski Z.,Wyszynski M L.,Moore I P T.,et al.Sliding mesh computational fluid dynamics:A predictive tool in stitted tank design[J].Process Institution of Mechanical Engineers,1997,211(E):149-156
    [43]Ng K F.,Entimen N J.,Lee K C.,et al.Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a rushton impeller[J].Transactions of the Institution of Chemical Engineers Research and Design,1998,76:737-747
    [44]Luo J V.,Gosman A D.,Issa R I.,et al.Full flow field computation of mixing in baffled stirred reactors[J].Trans IChemE,1993,71(A):342-344
    [45]Hulburt H M.,Katz S.,Some Problems in Particle Technology:A Statistical Mechanical Formulation,Chem.Eng.Sci.;1964,19(8),555-574
    [46]Spalding D B.Numerical computation of multi-phase flow and heat transfer recent advances in numerical methods[M],Britain:Edited by Taylor and Morgan,1980:139-167
    [47]Gosman A D.,Lekakou C.,Politis S,Issa R I.,Looney M K.,Multidimensional modeling of turbulent two-phase flow in stirred vessels,AIChE J.,1992,38(12 ):1946-1956
    [48]Bakker A.,Vanden,Akker H E A.,A computational model for the gas-liquid flow in a stirred vessel,Trans.IChemE,1994,72(A4):594-606
    [49]Martiez-Bazan C.,Montanes J L.,Lasheras J C..On the break-up of an air bubble injected into a fully developed turbulent flow,Part Ⅰ:Break-up frequency[J],Fluid Mech.,1999a,401:157-182
    [50]Martiez-Bazan C.,Montanes J L.,Lasheras J C..On the break-up of an air bubble injected into a fully developed turbulent flow,Part Ⅱ:Size PDF of the resulting daughter bubbles[J],Fluid Mech.,1999b,401:183-207
    [51]孙海燕.搅拌槽内流场数值模拟和表面曝气的研究[D],北京,中国科学院过程工程研究所,2003
    [52]Joannis Markopoulos,Chrystalla Christofi,Ioannis Katsinaris,Mass transfer coefficients in mechanically agitated gas-liquid contactors,Chem.Eng.Tech.,2007,30(7):829-834
    [53]Jahoda M.,Tomaskova L.,Mostek M.,CFD prediction of liquid homogenization in a gas-liquid stirred tank,Chemical Engineering Research and Design,2009,87(4):460-467
    [54]高忠信,邓杰,葛新峰.圆形弯管气液两相流数值模拟[J],水力学报,2009,40(6):696-702
    [55]Anil S.A.,Bhruv A.S.,Canad,J.Chem.Eng.,1977,5,5:414
    [56]Bakker,A.,Fadano B J.,8th Europ,Conf.On Mixing,1994
    [57]Brucato A.,Ciofalo M.,Godfrey J.,Grisafi F.,Micale G.,Experimental determination and CFD simulation of solids distribution in stirred vessels[A],Proc 5th Int Comfron Multiphase Flow in Industrial Plants[C],1996,Amalfi,26-27 Sept:323-334
    [58]Brucato A.,Ciofalo M.,Godfrey J.,Grisafi F.,Micale G.,On the simulation of solid particle distribution in multiple impeller agitated tanks via computational fluid dynamics,AIDIC Conf Ser,1997,2:287-294
    [59]Decker S,Sommerfled M.,I.Chem.E.Symp.Ser.1996,140:71
    [60]Ronald J.,Weetman,Ind 9th European Conference on Mixing,1997
    [61]徐姚,张政等.旋转圆盘上液固两相流冲刷磨损数值模拟研究[J],北京化工大学学报,2002,29(3)
    [62]Murthy B.N.,Ghadge R.S.,Joshi J.B.,CFD simulations of gas-liquid-solid stirred reactor:Prediction of critical impeller speed for solid suspension,Chemical Engineering Science,2007,62:7184-7195
    [63]Ranganathan Panneerselvam,Sivaraman Savithri,Gerald Devasagayam Surender,CFD modeling of gas-liquid-solid mechanically agitated contactor,Chemical Engineering Research and Design,2008,86:1331-1344
    [64]Paul E L.,Kresta S M.,Atiem-obeng V A.,et al.Handbook of industrial mixing:Science and practice[M],New York:John Wiley &Sons Inc,2004,470-505
    [65]Calabrese R V.,Francis M K.,Mishra V P.,et al.Measurement and analysis of drop size in batch rotor-stator mixer[C],Proceedings of 10th European Conference on Mixing,Delft,Elsevier Science B V,2000:149-156
    [66]张红梅,李志鹏,高正明.连续高速分散混合器流体流动的数值模拟[J],北京化工大学 学报,2005,32(6):5-8.
    [67]Aubin J.,Fletcher D F.,Xuereb C..Modeling turbulent flow in stirred tanks with CFD:The influence modeling approach turbulence model and numerical scheme[J],Experimental Thermal and Fluid Science,2004,28(5):431-445
    [68]张国娟.搅拌槽内混合过程的数值模拟[D],北京:北京化工大学,2004
    [69]傅德薰,马延文.计算流体力学[M],北京:高等教育出版社,2002:54-5
    [70]梁在潮.工程湍流[M],武汉:华中理工大学出版社,1999
    [71]Marzio Piller,Enrico Nobile,Thomas J..DNS study of turbulent transport at low Prandtl numbers in a channel flow[J].Journal of Fluid Mechanics,2002(458):419-441
    [72]Wissink J G..DNS of separating low Reynolds number flow in a turbin cascade with incoming wakes[J].International Journal of Heat and Fluid Flow,2003,24(4):626-635
    [73]Stephane V.,Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible muitiphase flows[A],Proceedings of the ASME/JSME Joint Fluids Engineering Conference[C],2003:1299-1305
    [74]Michelassi V.,Wissink J.G.,Rodi W.,Direct numerical simulation:large eddy simulation and unsteady reynolds-averaged navier-stokes simulations of periodic unsteady flow in a low-pressure turbine cascade:A comparison[J],Journal of Power and Energy,2003,217(4):403-412
    [75]Li J.C..Large eddy simulation of complex turbulent flows:Physical aspects and research trends,Acta Mechanicas Sinica,2001,17(4):289-301
    [76]Shen L.,Yue D.K.P..Large-eddy simulation of free-surface turbulence[J].Journal of Fluid Mechanics,2001,440:75-116
    [77]Mary Ivan,Sagaut Pierre.Large eddy simulation of flow around an airfoil near stall[J],AIAA Journal,2002,40(6):1139-1145
    [78]Julian R.E.,Smolarkiewicz K..Eddy resolving simulations of turbulent solar convection[J],International Journal for Numerical Methods in Fluids,2002,39(9):855-864
    [79]Feiz A.A.,Ould-Rouis M.,Lauriat G.,Large eddy simulation of turbulent flow in a rotating pipe[J].International Journal of Heat and Fluid Flow,2003,24(3):412-420
    [80]Grigoriadis D.G.E.,Bartzis J.G.,Goulas A..Efficient treatment of complex geometries for large eddy simulations of turbulent flows[J].Computers and Fluids,2004,33(2):201-222
    [81]Rollet-Miet P.,Laurence D.,Ferziger J..LES and RANS of turbulent flow in tube bundles[J], International Journal of Heat and Fluid Flow,1999,20(3):241-254
    [82]魏新利,张海红,王定标.旋风分离器流场的数值计算方法研究[J],郑州大学学报(工学版)2005,26(1):57-60
    [83]魏新利,任杰,王定标等.搅拌反应器流场的数值模拟[J],郑州大学学报(工学版),2006,27(2):52-55
    [84]Versteeg H.K.,Malalasekera W..An introduction to computational fluid dynamics:The finite volume merhod,Wiley New York,1995
    [85]章梓雄,董曾南.粘性流体力学[M],清华大学出版社,1998
    [86]张健,方杰,范波芹.VOF方法理论与应用综述[J],水利水电科技进展,2005,02
    [87]周养群.中国油品及石油精细化学品手册[M],北京:化学工业出版社,1997
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.