培养大鼠星形胶质细胞对拟脑缺血再灌注损伤神经元的作用和抗呆Ⅰ号的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究脑缺血再灌注损伤的特点、规律和发生机制,对缺血性脑血管病的防治具有十分重
    要的意义。以往的研究大多数是单纯地从神经元或神经胶质细胞的角度来研究脑的缺血再灌
    注损伤,但神经元和胶质细胞是一个功能整体,应把二者有机地联系在一起进行研究。尤其
    是近年来缺血预适应已受到人们的关注,认为它是机体的一种内源性的保护机制。在这种脑
    缺血预适应中神经元发生缺血耐受现象,其中星形胶质细胞发挥了至关重要的作用。基于这
    样的认识,我们将从实验的角度来研究脑缺血再灌注损伤条件下星形胶质细胞与神经元的关
    系和中药的干预作用。由于神经元和星形胶质细胞的分离纯化培养技术为研究两者间的关系
    提供了强有力的手段,所以本实验研究了培养大鼠星形胶质细胞条件培养液对体外模拟脑缺
    血再灌注损伤神经元的作用和中药抗呆I号的影响,旨在探讨脑缺血再灌注损伤和脑缺血预
    适应的发生机理及其变化规律,并为中药防治缺血性脑血管病和新药研发提供更为科学和实
    用的实验依据。
     本实验以离体培养的大鼠大脑皮层神经元和星形胶质细胞为研究对象,以体外模拟脑缺
    血再灌注损伤为实验条件,主要采用生化检测手段和免疫细胞化学技术,研究了体外模拟脑
    缺血再灌注损伤对培养神经元活性、星形胶质细胞分泌功能的影响以及星形胶质细胞条件培
    养液对受损神经元的作用和抗呆I号的影响,主要结果和结论如下:
    1.体外模拟脑缺血再灌注造成了培养神经元的损伤:
     表现为:(1)受损神经元的活性降低,细胞存活率下降;(2)细胞培养液 LDH 的漏出
    率明显提高;(3)细胞死亡率显著上升;(4)NOS染色强阳性细胞数在缺血期和再灌注早期
    明显增多。
     提示:体外模拟脑缺血再灌注造成了培养神经元的损伤,其损伤的原因可能是:(1)神
    经元线粒体受损,导致能量代谢障碍;(2)细胞膜结构的完整性遭到破坏,导致膜通透性改
    变引发破坏性的生化级联反应;(3)NO 及其衍生的毒性自由基产生增多,造成对神经元的
    毒性损伤。
    2.体外模拟脑缺血再灌注造成了培养星形胶质细胞的损伤:
     表现为:(1)受损星形胶质细胞的活性降低,存活率下降;(2)受损星形胶质细胞分泌
    总体蛋白质的能力减弱。
     提示:体外模拟脑缺血再灌注造成了培养星形胶质细胞的损伤。
    3.体外模拟脑缺血再灌注使受损神经元和星形胶质细胞的变化具有一定的规律性,可分:
    (1)细胞损伤期:从缺血开始至再灌注3h末;(2)功能代偿期:从再灌注3h末至再灌
    注18h末;(3)功能低下期:从再灌注18h末至再灌注36h末;(4)功能恢复期:从再灌注
    36h 末至再灌注72h 末。
    4.体外模拟脑缺血再灌注使星形胶质细胞分泌下列因子的能力增强,表达高峰分别为:
    (1)BDNF:再灌注36h末;(2)GDNF:再灌注3h末至再灌注18h末;(3)bFGF:再
    灌注3h末;(4)HSP70:再灌注48h末;(5)IL-6:从再灌注18h末至再灌注24h末。
    
    
    -2- 培养大鼠星形胶质细胞对拟脑缺血再灌注损伤神经元的作用和抗呆Ⅰ号的影响
    5.星形胶质细胞条件培养液(ACM)具有很强的营养活性:
     表现为:(1)ACM 对受损神经元发挥其最大生物学效应的浓度为1:5;(2)再灌注18h
    后收集的ACM具有最高的营养活性;(3)ACM能使受损神经元的活性和存活率明显提高,
    使死亡率、细胞培养液LDH 的漏出率和NOS 强阳性细胞的表达量显著降低;(4)ACM 可
    明显增强受损神经元 NSE、bFGF 的受体(bFGF-R)和 bcl-2 的表达,降低受损神经元 bax
    和caspase-3的表达。
     提示:(1)星形胶质细胞条件培养液对受损神经元具有很强的营养活性,从而推测星形
    胶质细胞在脑缺血预适应中发挥重要的作用;(2)bFGF-R的表达和bFGF的表达呈同步化,
    推测在脑缺血再灌注损伤中,神经营养因子和其受体的表达呈同步化,从而发挥其最大的生
    物学效应。
    6.抗呆Ⅰ号对受损的神经元和星形胶质细胞均具有保护作用:
     主要表现为:(1)对受损神经元具有直接的保护作用,可提高受损神经元的活性和存活
    率,降低细胞培养液LDH的漏出率、细胞死亡率和NOS染色强阳性细胞的表达量;(2)对
    受损的星形胶质细胞也有直接的保护作用,可提高其活性、存活率以及培养液蛋白质的含量;
    (3)能增强受损星形胶质细胞分泌BDNF、GDNF、bFGF、HSP和IL-6的能力;(4)可明
    显增强受损神经元对NSE、bFGF的受体(bFGF-R)和bcl-2的表达,降低受损神经元对bax
    和caspase-3的表达;(5)抗呆I号可通过星形胶质细胞间接地保护和修复受损的神经元,因
    为在多数实验组中经抗呆I号作用的ACM(ACMK)的作用远大于ACM与抗呆I号联合应
    用(ACM+K)的作用,统计学上具有显著性差异。
     提示:(1)中药抗呆Ⅰ号可能通过防止神经元的氧化磷酸化脱偶联而保护线粒体,防止
    脂质过氧化及通透性增加而保护细胞膜,抑制 NOS 活性的反应性增强而防止 NO 及其衍生
    的毒性自由基的损伤等途径而发挥对神经元的直接保护作用;(2)对受损的星形胶质细胞具
    有保护作用,且能增强其分泌神经营养因子、炎性细胞因子及应激反应蛋白的能力,从而间
    接地保护和修复受损的神经元;(3)对受损的神经元具有抗凋亡作用。
     综上所述,体外模拟脑缺血再灌注使培养的神经元和星形胶质细胞造成损伤,在这种损
    伤条件下,机体会启动内源性的神经保护机制,使星形胶质细胞分泌具?
It has very important meaning to the prevention and cure of cerebrovascular disease to study
    the characteristic, disciplinarian and mechanism of the damage induced by cerebral ischemia
    reperfusion. The damage induced by cerebral ischemia reperfusion was investigated solely from
    neuron or neuroglia in the past, however they are the functional whole and should be studied
    together. In recent years particularly ischemia preconditioning(IPC) has beening concerned as a
    inherent sheltered mechanism by the people. During brain ischemia preconditioning(BIP) neurons
    show cerebral ischemia tolerance and astrocytes play a significant protective role. Based on this
    views ,we investigated the relation between astrocytes and neurons after ischemia and
    reperfusion ,and then studied the effect of Kangdai I through experiments.We researched the effect
    of cultured astrocyte conditioned medium on the damaged neurons induced by simulated cerebral
    ischemia and reperfusion in Vitro and influence of Chinese herbal Kangdai I with the technique of
    separation and purification to cultured neurons and astrocytes. The aim is to probe into the
    mechanism and regulation of cerebral ischemia and reperfusion injury and BIP ,so as to provide
    more scientific and reliable experimental evidences to the treatment of Chinese herbs for
    cerebrovascular diseases and the research & development of new medicine.
     In the experiment ,the neurons and astrocytes cultured cerebral cortex of rats were
    researched, based on simulated cerebral ischemia and reperfusion in vitro. We investigated the
    avtivity of cultured neurons and the secretory function of cultured astrocyte in the damage induced
    by simulated cerebral ischemia and reperfusion in vitro, then studied the effect of astrocyte
    conditioned medium(ACM) on injured neurons and the influence of Kangdai I with biochemical
    method and immunocytochemical technique .The main results and conclusions are as follows:
    1. Cultured neurons were damaged by simulated cerebral ischemia and reperfusion in vitro:
     Results: (1)The activity of the damaged neurons was decreased, the survival rate was descent.
     (2)The transudation rate of LDH in cultured medium increased obviously.
     (3)The mortality was increased significantly.
     (4) The strong positive cell count of NOS expression significantly was increased 4h after
    ischemia (Is-4h)and 3h after reperfusion (Rp-3h).
     Conclusion:The reason of neurons injury may be :
     (1) The injury of mitochondria results in disturbance of energetic metabolism.
     (2) The damage of cell membrane structure induces membrane infiltrative change to cause
     devastating continuous biochemical reaction.
    
    
    -4- 培养大鼠星形胶质细胞对拟脑缺血再灌注损伤神经元的作用和抗呆Ⅰ号的影响
     (3) The increase of NO and its derived toxic free radicals cause the toxic harm on neurons.
    2. Cultured astrocytes were damaged by simulated cerebral ischemia and reperfusion in vitro:
     Results: (1)The activity of the damaged astrocyte was decreased, the survival rate was descent.
     (2)The ability of secreting total protein decreased.
     Conclusion: Cultured astrocytes was damaged in the model simulated cerebral ischemia and
    reperfusion in vitro.
    3. There were certain regularities in the change of damaged neurons and astrocytes induced by
    simulated cerebral ischemia and reperfusion in vitro, it could be divided into:
     (1) Cell injury period: from the begin of ischemia to Rp-3h.
     (2) Functional compensation period: from the end of Rp-3h to Rp-18h.
     (3) Lower functional period: from the end of Rp-18h to Rp-36h.
     (4) Functional restoration period: from the end of Rp-36h to Rp-72h.
    4. The ability of astrocytes secretory was increased in the damage induced by simulated cerebral
    ischemia and reperfusion in vitro, its high peak of expression was respectively as follows:
     (1) BDNF:The end of Rp-36h.
     (2) GDNF: from the end of Rp-3h to Rp-18.
     (3) bFGF:The end of Rp-3h.
     (4) HSP70:The end of Rp-48h.
     (5) IL-6: from the end of Rp-18h
引文
1 AmesA ,et al: cerebral ischemia Ⅱthe no-reflow phenomenon.Am J Pathol 1968,52:437~447
    2 Kirino T. Delayed neuronal in the gerbil hippocampus following ischemia. Brain Res.1982,
     239:57~69
    3 Back T. Pathophysiology of the ischemic penumbra—revision of a concept .Cell Mol
     Neurobiol,1998, 18:621~638
    4 Hou ST, MacManus JP. Molecular mechanisms of cerebral ischemia-induced neuronal death. Int
     Rev Cytol. 2002, 221:93~148
    5 Chan PH. Role of oxidants in ischemic brain damage. Stroke 1996, 27:1124~1129
    6 Facob RA, Burri BJ. Oxidative damage and defence.Am J Clin Nutr,1996, 63(6):980~985
    7 Beckman JS, Beckman TW,Chen J, et al. Apparent hydroxyl radical production by peroxynitrite:
     implications for endothelial injury form nitric oxide and supeoxide. Proc Natl Acad Sci
     USA.1990, 87:1620~1624
    8 Beckman JS,Carson M,Smith CD,et al.ALS SOD and peroxynitrite.Nature.1993, 364:584
     (letter)
    9 DawsonTM ,DawsonVL,Snyder SH.Anovel neuronal messenger molecule in brain: the free
     radical, nitric oxide.Ann Neurol.1992, 32:297~311
    10 Chan PH.Oxygen radicals in focal cerebral ischemia. Brain pathol .1994, 4:59~65
    11 Juurlink BH, Paterson PG. Review of oxidative stress in brain and spinal cord injury:suggestions
     for pharmacological and nutritional management strategies. J Spinal Cord Med,1998,
     21:309~334
    12 Forstermann U, Closs EI, Pollock JS, et al. Nitric oxide synthase isoxymes. Characterization,
     purification, molecularcloning,andfunctions.Hypertension,1994, 23:1121~1131
    13 Ashwal S,Tone B,Tian HR,et al. Core and penumbral nitric oxide synthase activity during
     cerebral ischemia and reperfusion. Stroke , 1998, 29:1037~1046
    14 Gahm C, Holmin S, Mathiesen T. Temporal profiles and cellular soutces of three nitric oxide
     synthase isoforms in the brain after experimental contusion. Neurosurgery , 2000, 46:169~177
    15 Kader A, Vincent I, Robert A, et al. Nitric oxide production during focal cerebral ischemia in rats.
     Stroke 1993, 24:1709-1716
    
    
    -28- 培养大鼠星形胶质细胞对拟脑缺血再灌注损伤神经元的作用和抗呆Ⅰ号的影响
    16 Iadecola c. Bright and dark siodes of nitric oxide in ischemia brain injury. Trends Neurosci,1997,
     20:132~139
    17 Forstermann u,Boissel JP,Kleinert H. Expressional control ofthe ‘constitutive’isoforms nitric
     oxide synthase(NOS Ⅰ and NOS Ⅲ).FASEB J,1998, 12:773~790
    18 Zoppo G, Ginis I, Hallenbeck JM, et al. Inflammation and stroke: putative role for cytokines,
     adhesion molecules and iNOS in brain response to ischemia. Brain Pathol,2000, 10:95~112
    19 Facchinetti F, Dawson VL, Dowson TM. Free radicals as mediators of neuronal injury. Cell Mol
     Neurobiol,1998, 18(6):667-681
    20 Siesjo BK, Zhao Q, Pahlmark K, et al. Glutamate, calcium, and free redicals as mediatorsof
     ischemia brain damage.AnnThorac Surg,1995, 59(5):1316~1320
    21 Liu PK.DNAdamage and repair in the brain after cerebral ischemia. Curr Top Med Chem. 2001,
     1(6):483-95
    22 DeGracia DJ, Kumar R, Owen CR, et al. Molecular pathways of protein synthesis inhibition
     during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab.
     2002, 22(2):127-41
    23 Park TS, Gonzaks ER, Gidday JM. Platelet-activating factor mediates ischemia induced
     leukocyte-endothelial adherence in newborn pig brain. J Cereb Blood Flow Metab,1999,
     19(14):417~442
    24 Nicotera P, Bellomo G, Orrenius S. Calcium misdialed mechanisms in chemically induced cell
     death.Ann Rev PharmacolToxicol,1992, 32:449~470
    25 Mahura IS. Cerebral ischemia-hypoxia and biophysical mechanisms of neurodegeneration and
     neuroprotection effects. Fiziol Zh. 2003, 49(2):7-12
    26 Trout JJ, Koenjg H, Goldstone AD, et al. N-Methyl-D-aspartate receptor excitotoxicity involves
     activation of polyamine synthesis: protection by α-difluoromethylornithine. J Neurochem,1993,
     60(1):352~355
    27 Stoll G, Jander S, Schroeter M. Detrimental and beneficial effects of injury-induced inflammation
     and cytokine expression in the nervous system.Adv Exp Med Biol, 2002, 513:87-113
    28 Anwaar I, Gottsater A, Lindgarde F, et al. Increasing plasma neopterin and persistent plasma
     endothelin during follow-up after acute cerebral ischemia.Angiology,1999, 50:1~8
    29 Olney JW. Brain lesions, obesity and other disturbances in mice treated with monosodium
     glutamate. Science,1969, 164:719~721
    30 Rothman SM. Synaptic activity mediates death of hypoxic neurons. Science, 1983, 220:536~577
    31 Benveniste H, Drejer J, Schoushoe A, et al. Elevation of the extracellular concentration of
     glutamate and asparate in rat hippocampus during transient cerebral ischimia monitored by
     intracerebral microdialysis. J Neurochem , 1984, 43:1369~1374
    32 Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view.
     Trends Neurosci,1999, 22:391~397
    33 Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms.
    
    
    综述一 脑缺血再灌注损伤 -29-
     Nature , 1999, 399:A7~14
    34 Favit A,Nicoletti F,Scapagnini U,et al. Ubiquinone protects cultured neurons against
     spontaneous and excitotoxin-induced degeneration. J Cereb Blood Flow Metab 1992,
     12:638~645
    35 NishizawaY.Glutamate release and neuronal damage in ischemia. Life Sci. 2001, 69(4):369~81
    36 Martin LJ, Abdulla NA, Brambrink AM, et al. Neurodegeneration in excitotoxicity ,global
     cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and
     necrosis. Brain Res Bull,1998, 46:281~309
    37 Leker RR, Shohami E. Cerebral ischemia and trauma——different etiologes yet similar
     mechanisms: neuroprotective opportunities. Brain Research Reviews,2002, 39(1):55~73
    38 Zivin JA, Choi DW. Stroke therapy. Sci Am 1991;265:36-43. Peruche B,Krieglstein.
     Mechanisms of drug actions against neuronal damage caused by ischemia. Prog
     Neuropsychoparmacol Biol Psychiatr ,1993, 17~21
    39 Pellegrini-Giampietro DE, Cherici Galesiani M ,et al. Excitatpry amino acid release amd free
     radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci,
     1990, 10:1035~1041
    40 Choi DW. Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol,1996,6:667~672
    41 Zador Z, Lacza Z, Benyo Z, et al. Apoptosis in focal brain ischemia. Ideggyogy
     Sz,2003 ,56(7~8):216~28
    42 Clemens JA, Stephenson DT, Smalstig EB, et al. Global ischemia activates nuclear factor-kappa
     B in forebrain neurons of rats.Stroke,1997, 28:1073~1081
    43 Matsushita K, Matsuyama T, Kitagawa K, et al. Alterations of Bcl-2 family proteins precede
     cytoskeletal protelysis in the penumbra,but not in infarct centers following focal cerebral
     ischemia in mice.Neuroscience,1998, 83:439~448
    44 Shinoura R, Satou R, Yoshida Y, et al. Adenovirus-mediated transfer of Bcl-X(L) protects
     neuronal cells fron Bax-induced apoptosis. Exp Cell Res,2000, 254:221~231
    45 Guegan C,Sola B.Early and sequential recruitment of apoptotic effectors after focal permanent
     ischemia in mice. Brain Res,2000,856:93~100
    46 Blomgren K, Zhu C, Hallin U, et al. Mitochondria and ischemic reperfusion damage in the adult
     and in the developing brain. Biochem Biophys Res Commun. 2003 ,304(3):551~9
    47 Liu D, Lu C, Wan R, et al. Activation of mitochondrial ATP-dependent potassium channels
     protects neurons against ischemia-induced death by a mechanism involving suppression of Bax
     translocation and cytochrome c release. J Cereb Blood Flow Metab. 2002Apr, 22(4):431~43
    48 Taylor BM, Fleming WE, Benjamin CW, et al. The mechanism of cytoprotective action of
     lazaroids I: inhibition of reactive oxygen species formation and lethal cell injury during periods of
     energy depletion. J Pharmacol ExpTher,1996, 276:1224~1231
    49 Tagami M, Yamagata K, Ikeda K, et al. VitE prevents apoptosis in cortical neurons during
     hypoxia and oxygen reperfusion. Lab Invest,1998, 78(11):1415~1429
    
    
    -30- 培养大鼠星形胶质细胞对拟脑缺血再灌注损伤神经元的作用和抗呆Ⅰ号的影响
    50 Sheng H, brady TC, Pearlstein RD, et al. Extracellular superoxide dismutase deficiency worsens
     outcone faon focal cerebral ischemia in the mouse. Neurosci Lett,1999, 267(1):13~ 16
    51 Fpster AC, Gill R, Woodruff GN. Neuroprotective effects of MK-801 in vivo:selectivity and
     evidence for delayed degeneration mediated by NMDA receptor activation. J Neurosci,1988,
     8:4745~4754
    52 DeGraba TJ. The role of inflammation after acute stroke:utility of pursuing anti-adhesion
     molecule therapy.Neurology,1998, 51:s62~68
    53 Lutsep HL, Clark WM.Current status of neuroprotective agents in the treatment of acute ischemic
     stroke. Curr Neurol Neurosci Rep. 2001, 1(1):13~8
    54 Schaller B, Graf R. Cerebral ischemic preconditioning. An experimental phenomenon or a
     clinical important entity of stroke prevention? J Neurol. 2002 ,249(11):1503~11
    55 Kitagawa K,Matsumoto M,Tagaya M,et al. “Ischemic tolerance” phenomenon found in the
     brain. Brain Res,1990, 528(1):21~26
    56 Schaller B, Graf R. Cerebral ischemia tolerance. Schweiz Rundsch Med Prax.
     2002 ,91(40):1639~44
    57 Moncayo J,De Freitas GR,Bogousslavsky J,et al. Do transient ischemic attacks have a
     neuroprotective effect? Neurology, 2000, 54(11):2089~2094
    58 Sugawara T, Noshita N, Lewen A, et al .Neuronal expression of the DNA repair protein Ku 70
     after ischemic preconditioning corresponds to tolerance to global cerebral ischemia. Stroke. 2001,
     32(10):2388~93
    59 Currie RW,Ellison JA,White RF。Benign focal ischemic preconditioning induces neuronal
     hsp70 and prolonged astrogliosis with expression of hsp27.Brain Res,2000,863(1-2):169-181.
    60 Chen J, Graham SH, Zhu RL. Stress proteins and tolerance to focal cerebral ischemia. J Cereb
     Blood Flow Metab,1996, 16(4):566~577
    61 Nagata K. Regulation of thermotolerance and ischemic tolerance.EXS,1996, 77:467~481
    62 Feuerstein GZ, Wang X, Barone FC. Inflammatory gene expression in cerebral ischemia and
     trauma.Potential new therapeutic targets.Ann NyAcad sci,1997, 825:179~193
    63 Wang X, li X, Erhardt JA, et al. Detection of tumor necrosis factor-alpha mRNA induction in
     ischemic brain tolerance by meams of realtime polymerase chain reaction. J Cereb Blood Flow
     Metab,2000, 20(1):15~20.
    64 Ssito K, Suyanak, Nishida K, et al .Early increasea in TNF-α,IL-6 and IL-1β levels following
     transient cerebral ischemia in gerbil brain. Neurosci Lett,1996;206(2):149~152
    65 Shimazaki K,Ishida A,Kawai N. Increase in bcl-2 oncoprotein and the tolerance to
     ischemia-induced neuronal death in the ge4ril hippocampus. Neurosci Res, 1994, 20(1):95~99
    66 Barone FC, White RF, Spera PA, et al. Ischemic preconditioning. Brain tolerance: temporal
     histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor
     antagonist and early gene expression.Stroke,1998, 29(9):1937~1950
    67 Tomasevic G, Shamloo M, Israeli D, et al. Activation of p53 and its target genes p21(WAF/Cipl)
    
    
    综述一 脑缺血再灌注损伤 -31-
     and PAG608/Wig-1 in ischemic preconditioning .Brain Res Mol Brain Res,1999,
     70(2):304~313
    68 Chimon GN, Wong PT. Ischemic tolerance and lipid peroxidation in the brain.Neuroreport,1998,
    9(10):2268~2272.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.