安宫清开灵干预自发性高血压大鼠脑出血模型炎症反应的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出血性中风(intracerebral hemorrhage,ICH)是一种严重的中风亚型,伴有很高的死亡率和致残率,严重影响着人类的健康。而目前治疗脑出血的药物无一具有突破性的治疗效果,尤其是继发性脑损伤导致的神经功能缺失未得到根本解决。减轻出血后继发性脑损伤,营救神经元仍然是治疗的目标,而更好的理解脑出血的病理生理机制无疑是提高临床疗效的有效途径。
     目前临床有关脑出血的认识上,注重血肿的压迫效应,治疗上也强调血肿的清除和促进血肿的吸收。但这些治疗措施并没能有效的降低脑出血患者的死亡率和致残率。虽然现代医学研究也逐渐认识到脑出血后血管反应进而级联的炎症反应在脑微环境的破坏,进而神经细胞损伤的病理性过程中的作用,但是炎症反应并没有引起临床医生的重视,而且临床上也缺乏相应的治疗药物。因此,研制一种针对脑出血后炎症反应的药物是当务之急。
     本研究认为炎症反应导致继发性脑损伤发病机理与传统中医理论“毒损脑络”的病机相吻合,因此以炎症反应为切入点,探讨“解毒通络”药物对脑出血后继发性脑损伤的治疗作用具有重要的现实意义,有望能够为出血性中风的治疗提供新型的干预途径。
     安宫清开灵注射液是在前期973(课题号:G1999054404)研究成果的基础上,在863计划支持下,结合出血性中风的发病特点,研制的治疗出血性中风的新一代中药制剂,是按照“解毒通络”的大法组方,主要针对ICH“毒损脑络”病机而设立的,由栀子苷、黄芩苷、猪去氧胆酸、珍珠母水解液和三七的有效组分组成,具有“解毒通络”的功效。
     研究的目的主要是(1)观察脑出血后炎症反应与脑组织继发性病理损伤之间的关系;(2)观察安宫清开灵干预脑出血后炎症反应的作用机制。
     本研究采用尾状核胶原酶注射法复制SHR大鼠脑出血模型,采用放射免疫、酶联免疫吸附方法、免疫组织化学染色、HE染色、Weatern Blotting等实验手段观察了:①脑出血后TNF-α、IL-1β和ICAM-1的时程表达;②TNF-α与脑出血后炎症反应启动及IL-1β、ICAM-1生成表达和中性白细胞活化的关系;③脑出血后脑组织的病理形态学变化以及安宫清开灵的干预特征;④安宫清开灵对前炎症细胞因子TNF-α、IL-1β的作用效果;⑤安宫清开灵对黏附分子和中性白细胞活化的影响;⑥安宫清开灵对脑出血后核转录因子和热休克蛋白-70表达的影响特征;⑦安宫清开灵对细胞凋亡的影响等七个方面的内容。
     实验结果如下:
     1.脑出血后24小时、48小时、72小时和7天,脑内TNF-α、IL-1β、ICAM-1的含量显著升高。
     2.采用外源性抗体治疗后,脑组织和血液中的IL-1β和sICAM-1的含量显著降低。
     3.脑出血后48小时,基底核部位可见典型的弥漫型出血灶,并有小血肿形成。出血灶中可见广泛弥漫性结构破坏。出血灶周边呈现脑水肿、炎细胞浸润和微血管不畅等损害表现;而安宫清开灵可显著减轻该损害,以中、高剂量组最为显著。脑出血后14天血肿部位形成了胶质瘢痕,并可见空洞的形成。而安宫清开灵可显著减小胶质瘢痕的体积以及空洞形成的数量,以中、高剂量组效果最明显。
     4.放射免疫方法和免疫组织化学染色方法证实,ICH后48小时安宫清开灵可以显著抑制前炎症细胞因子TNF-α表达,而出血后7天这种抑制作用消失,而对前炎症细胞因子IL-1β表达的抑制作用能够从出血后48小时持续到出血后7天。
     5.酶联免疫吸附实验和免疫组织化学染色方法证实,ICH后48小时安宫清开灵可以显著抑制ICAM-1的表达,作用可以持续到出血后7天;而对中性白细胞活化的抑制作用以出血后48小时最显著,至出血后7天抑制作用减弱。
     6.免疫组织化学染色方法证实,ICH后48小时安宫清开灵可以显著抑制NF-κB的激活,而对HSP-70没有显著的促合成作用。
     7.免疫组织化学染色方法证实,ICH后48小时安宫清开灵可以减少血肿周围组织凋亡细胞的数量。
     总结以上实验结果,可以发现ICH后48小时,通过两种以上的实验方法证实,安宫清开灵低、中、高三个剂量组对前炎症细胞因子(TNF-α和IL-1β)、黏附分子(sICAM-1和ICAM-1)、白细胞活化的标志物MPO、核转录因子NF-κB和细胞死亡的数量都有显著的抑制作用,并呈现一定的剂量依赖关系,其中以中、高剂量的作用效果最突出。至出血后7天,安宫清开灵对IL-1β、sICAM-1和MPO仍有一定的抑制作用,也具有一定的剂量依赖关系,中、高剂量的效果最明显。可见安宫清开灵在出血的急性期(出血48小时)对出血侧脑组织炎症反应的启动和细胞凋亡发挥了广泛的抑制作用,并能持续到出血后的7天。
     分析以上实验结果,得出如下结论:
     1.炎症反应与脑出血后脑组织的继发性病理损伤存在密切的关系。
     2.安宫清开灵注射液通过有效抑制核转录因子NF-κB和前炎症细胞因子TNF-α和IL-1β和粘附分子、炎性白细胞的活化等,对炎症反应呈现显著的抑制作用。并能改善出血周围组织循环,为神经组织的再生修复提供了良好的微环境。
     3.脑出血的病理过程产生的前炎症细胞因子、活化的中性白细胞、内皮细胞和神经细胞表达的黏附分子等物质从病理性质上都应归属于传统医学“毒”的范畴,这些物质产生后直接或间接作用于血管内皮细胞或神经元,改变局部微环境,使血管舒缩功能障碍,血管壁通透性增加,造成局部组织水肿和能量代谢障碍,最终导致神经细胞的坏死和凋亡,这是对“毒损脑络”病机的进一步诠释。而安宫清开灵注射液可以抑制前炎症细胞因子和黏附分子的过度表达和白细胞的过度活化,能够解除这些“毒”的侵害,既可以抑制神经细胞的坏死,又可以防止细胞凋亡,起到了“解毒通络”的作用。
Intracerebral hemorrhage is a devastating stroke subtype with high mortality and morbidity, with harmful effects on human’s health. There has no breakthrough medicine to the disease; especially neurological deficits caused by secondary brain injury still exist. The therapeutic object is to relieve secondary brain injury following ICH. Nevertheless, to better understanding the path-physiological mechanisms will be a good way to enhance the clinical therapeutic effect.
     Vascular reaction has attracted great attention of the medical science circle,which is related to pathologic lesion following ICH, and this academic trends partly coincides with the new rising hypothesis of‘toxin hurts brain collaterals’and the therapeusis of‘removing toxin and dredging collaterals’in Chinese medicine. Vascular endothelial cell damage exerted important effect on various pathological aspect of collaterals disease. A series of reaction arose as a compensative mechanisms,such as focal vasoconstriction, activation of the coagulation cascade, releasing of thrombin, erythrocatalysis,hemoglobin and its degradation products,which can lead to vascular reaction in hematoma and its surrounding. Vascular endothelial cells are activated and generate cytokine, which may affect neuron and focal microenvironment and lead to homeostasis disorder, cell surface receptor activated, and disorder of the signal transduction. Therefore, it is important to develop a formula to intervene vascular reaction following ICH, which probably enhances the therapeutic efficacy of stroke.
     An Gong Qing Kai Ling injection is a multicomponent injection derived from the study results of“973”and a latest Chinese drugs pharmaceutics for hemorrhagic stroke, which is developed according to the hypothesis of‘toxin hurts brain collaterals’and the therapeusis of‘removing toxin and dredging collaterals’. The components are include jasminoidin, baicalin, hyodeoxycholic acid, concha margaritifera usta digest and Radix Notoginseng. The research of“Study on functionary mechanisms of An Gong Qing Kai Ling injection in blocking inflammation following intracerebral hemorrhage”was funded by National High Technology Research Program of China (863 Program, 2002AA2Z3220).
     We copied experimental intracerebral hemorrhage model of spontaneous hypertensive rats using collagenase infusion in caudate nucleus method. And we used radioimmunoassay (RIA), enzyme linked immunosorbent assay (ELISA), immunohistochemistry stain, hematoxylin- eosine stain (HE) and Weatern Blotting to observe:①the time course of tumor necrosis factor-alpha(TNF-α), interleukin-1 beta(IL-1β) and intercellular adhesion molecule-1(ICAM-1) following intracerebral hemorrhage;②the relationship between tumor necrosis factor-alpha and inflammatory reaction, expression of interleukin-1 beta(IL-1β) and intercellular adhesion molecule-1(ICAM-1) and activation of neutrophil;③the pathomorphism changes in brain following ICH and the effect of An Gong Qing Kai Ling Injection;④the effection of An Gong Qing Kai Ling Injection on the expression of proinflamatory cytokine--TNF-αand IL-1β;⑤the effection of An Gong Qing Kai Ling Injection on the intercellular adhesion molecule-1 and activation of neutrophil;⑥the effection of An Gong Qing Kai Ling Injection on the expression of nuclear factor-κB and heat shock protein 70;⑦the effection of An Gong Qing Kai Ling Injection on the number of apoptotic cells. Results are as follows:
     1. The contents of TNF-α、IL-1βand ICAM-1 are significant elevated at 24 hours,48 hours, 72 hours and 7days following ICH.
     2. The concentration of IL-1βand sICAM-1 in brain or blood degrades after treated by exogenous anti- TNF-αmonoclonal antibody.
     3. Typical widespread hemorrhagic focus is formed at 48 hours after infusion, with small hematoma formation. The hemorrhagic focus is charactered by erythrocyte and inflammatory cell (neutrophil) infiltration, edema, nuclear structure of neurons are obscure, denaturation and necrosis, and sometimes neuronophagia can be seen. The tissues around hemorrhagic focus are loose, accompanied by infiltration of lymphocyte, cellular edema in neurons and glia cell, vascular endothelial cell swelling, cell aggregation leading to capillary blocked. An Gong Qing Kai Ling Injection can relieve the degree of looseness, The same as the inflammatory cell (neutrophil) infiltration, edema and vascular endothelial cell damage, without accumulation of blood cells, especially in middle and high dose groups. At 14 days following intracerebral hemorrhage, the hematoma was absorbed and its volume became small, and glial scar was formed with lots of microglial cells, vascular proliferation. Sometimes cavity was seen. There were microglial cells around hematoma which had been swallowing hemosiderin. The volume of glial scar and the number of cavity decreased in An Gong Qing Kai Ling Injection treated groups and control group, especially in middle and high dose groups.
     4. It has been confirmed that An Gong Qing Kai Ling Injection can prevent the expression of TNF-αat 48hours following ICH by RIA and immunohistochemistry stain, however the preventive effect diminished at 7days after ICH. The inhibitive effect of An Gong Qing Kai Ling Injection on the expression of IL-1βcan last from 48hours to 7 days following ICH.
     5. It has been found that An Gong Qing Kai Ling Injection can prevent the expression of ICAM-1 at 48 hours following ICH by ELISA and immunohistochemistry stain, and the effect can last from 48 hours to 7 days following ICH. The inhibitive effect of An Gong Qing Kai Ling Injection on the activation of neutrophil was significant at 48 hours following ICH, which weakened at 7 days.
     6. It has been found that An Gong Qing Kai Ling Injection can prevent the expression of NF-κB at 48 hours following ICH by immunohistochemistry stain. However it had no effect on the generation of HSP-70.
     7. It has been found that An Gong Qing Kai Ling Injection can decrease the number of apoptotic cells at 48 hours following ICH by immunohistochemistry stain.
     In summary, An Gong Qing Kai Ling Injection (low dose, middle dose and high dose) can prevent the expression of TNF-α, IL-1β, sICAM-1, MPO, NF-κB and decrease the number of apoptotic cells with dose-dependent manner at 48 hours and 7 days .following ICH. It is thus clear that An Gong Qing Kai Ling Injection can extensively suppress inflammatory reaction and decrease the number of apoptotic cells in acute stage.
     We can make such conclusion as follows:
     1. The content of cytokine was elevated and its peak between 24 hours and 72 hours following ICH, soon after descending and rising again ay 7days after ICH. Therefore, we select 48 hours and 7 days as the time window to administration.
     2. The content of IL-1β, sICAM-1 and MPO decreased after treated by TNF-αmonoclone antibody. It is thus clear that neutralization TNF-αin circulation can effectively suppress the expression of proinflamatary cytokine and adhesion molecule, as well as the activation of neutrophil.
     3. An Gong Qing Kai Ling Injection can effectively interfere the generation of TNF-αand IL-1β, thus can prevent the trigger of inflammatory reaction. Its action mechanism may be related with its prevention on the NF-κB.
     4. An Gong Qing Kai Ling Injection also can surppress the activation of neutrophil and the expression of ICAM-1. That is to say, it possess dual effect on cell adhersion, it can not only interfere VEC, neuron and glial cell in expression ICAM-1, but also suppress the actication of neutrophil, accordingly can decrease the neutrophil infiltration in hemorrhagic focus and exert neurprotective effect.
     5. An Gong Qing Kai Ling Injection also can decrease the number of apoptotic cells and prevent neuronal cell death, which can improve the outcome in clinic. Its mechanism may be related to its suppression on TNF-α, IL-1β, HSP-70 and NF-κB.
引文
1. Ojemann RG, Mohr JP. Hypertensive brain hemorrhage [J]. Clin Neurosurg 1976, 23: 220–244.
    2. Broderick JP, Brott TG, Tomsick T, Barsan W, Spilker J. Ultra-early evaluation of intracerebral hemorrhage [J]. J Neurosurg 1990, 72: 195–199.
    3. Fujii Y, Tanaka R, Takeuchi S, Koike T, Minakawa T, Sasaki O. Hematoma enlargement in spontaneous intracerebral hemorrhage[J]. J Neurosurg 1994, 80: 51–57.
    4. Fujii Y, Takeuchi S, Sasaki O, Minakawa T, Tanaka R. Multivariate analysis of predictors of hematoma enlargement in spontaneous intracerebral hemorrhage[J]. Stroke 1998, 29: 1160–1166.
    5. Kazui S, Naritomi H, Yamamoto H, et al. Enlargement of spontaneous intracerebral hemorrhage: incidence and time course [J]. Stroke 1996, 27: 1783–1787.
    6. Brott T, Broderick J, Kothari R, et al. Early hemorrhage growth in patients with intracerebral hemorrhage [J]. Stroke 1997, 28: 1–5.
    7. Kazui S, Minematsu K, Yamamoto H, Sawada T, Yamaguchi T. Predisposing factors to enlargement of spontaneous intracerebral hematoma [J]. Stroke 1997, 28: 2370–2375.
    8. Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage [J]. Stroke 1999, 30: 1167–1173.
    9. Mayer SA, Brun NC, Begtrup K, et al. Recombinant activated factor Ⅶ for acute intracerebral hemorrhage [J]. N Engl J Med 2005, 352: 777–785.
    10. NINDS ICH Workshop Participants. Priorities for clinical research in intracerebral hemorrhage [J]. Stroke 2005, 36: 23–41.
    11. Hickenbottom SL, Grotta JC, Strong R, Denner LA, Aronowski J. Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats[J]. Stroke 1999, 30: 2472–2477.
    12. Matsushita K, Meng W, Wang X, et al. Evidence for apoptosis after intercerebral hemorrhagein rat striatum [J]. J Cereb Blood Metab 2000, 20: 396–404.
    13. Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death [J]. Neurosci Lett 2000, 283: 230–232.
    14. Gong C, Boulis N, Qian J, Turner DE, Hoff JT, Keep RF. Intracerebral hemorrhage-induced neuronal death [J]. Neurosurgery 2001, 48: 875–883.
    15. Qureshi AI, Ling GS, Khan J, et al. Quantitative analysis of injured, necrotic, and apoptotic cells in a new experimental model of intracerebral hemorrhage [J]. Crit Care Med 2001, 29: 152–157.
    16. Qureshi AI, Suri MF, Ostrow PT, et al. Apoptosis as a form of cell death in intracerebral hemorrhage [J]. Neurosurgery 2003, 52: 1041–1047.
    17. Suzuki J, Ebina T. Sequential changes in tissue surrounding ICH. In: Pia HW, Longmaid C, Zierski J, eds. Spontaneous intracerebral hematomas. Berlin: Springer, 1980: 121–128.
    18. Kase CS, Caplan LR. Intracerebral hemorrhage. Boston: Butterworth-Heinemann, 1994.
    19. Xi G, Keep RF, Hoff JT. Pathophysiology of brain edema formation [J]. Neurosurg Clin N Am 2002, 13: 371–383.
    20. Wagner KR, Xi G, Hua Y, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter [J]. Stroke 1996, 27: 490–497.
    21. Ropper AH. Lateral displacement of the brain and level of consciousness in patients with an acute hemispheral mass [J]. N Engl J Med 1986, 314: 953–958.
    22. Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats[J]. J Neurosurg 1998, 89: 991–96.
    23. Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats[J]. J Neurosurg 1994, 81: 93–102.
    24. Enzmann DR, Britt RH, Lyons BE, Buxton JL, Wilson DA. Natural history of experimental intracerebral hemorrhage: sonography, computed tomography and neuropathology [J]. AJNR Am J Neuroradiol 1981, 2: 517–526.
    25. Tomita H, Ito U, Ohno K, Hirakawa K. Chronological changes in brain edema induced by experimental intracerebral hematoma in cats [J]. Acta Neurochir Suppl 1994, 60: 558–560.
    26. Garcia JH, Ho KL, Caccamo D. Intracerebral hemorrhage: pathology of selected topics. In: Kase CS, Caplan LR, eds. Intracerebral hemorrhage. Boston: Butterworth, 1994: 45–72.
    27. Broderick J, Brott T, Kothari R. Very early edema growth with ICH [J]. Stroke 1995, 26: 184.
    28. Suzuki R, Ohno K, Hiratsuka H, Inaba Y. Chronological changes in brain edema in hypertensive intracerebral hemorrhage observed by CT and xenon-enhanced CT. In: Inaba Y, Klatzo I, Spatz M, eds. Brain edema [J]. Berlin: Springer, 1985: 613–620.
    29. Ropper AH, King RB. Intracranial pressure monitoring in comatose patients with cerebral hemorrhage [J]. Arch Neurol 1984, 41: 725–728.
    30. Gebel JM, Jauch EC, Brott TG, et al. Relative edema volume is a predictor of outcome in patients with spontaneous intracerebral hemorrhage [J]. Stroke 2002, 33: 2636–2641.
    31. Betz AL, Iannotti F, Hoff JT. Brain edema: a classification based on blood-brain barrier integrity [J]. Cerebrovasc Brain Metab Rev 1989, 1: 133–154.
    32. Skriver EB, Olsen TS. Tissue damage at computed tomography following resolution of intracerebral hematomas [J]. Acta Radiol Diagn (Stockh) 1986, 27: 495–500.
    33. Xi G, Fewel ME, Hua Y, et al. Intracerebral hemorrhage: pathophysiology and therapy[J]. Neurocrit Care 2004, 1: 5–18.
    34. Felberg RA, Grotta JC, Shirzadi AL, et al. Cell death in experimental intracerebral hemorrhage: the“black hole”model of hemorrhagic damage [J]. Ann Neurol 2002, 51: 517–524.
    35. Sinar EJ, Mendelow AD, Graham DI, et al. Experimental intracerebral hemorrhage: effects of a temporary mass lesion [J]. J Neurosurg 1987, 66: 568–576.
    36. Lee KR, Colon GP, Betz AL, et al. Edema from intracerebral hemorrhage: the role of thrombin [J]. J Neurosurg 1996, 84: 91–96.
    37. Hua Y, Schallert T, Keep RF, et al. Behavioral tests after intracerebral hemorrhage in the rat [J]. Stroke 2002, 33: 2478–2484.
    38. Xi G, Wagner KR, Keep RF, et al. The role of blood clot formation on early edema development following experimental intracerebral hemorrhage [J]. Stroke 1998, 29: 2580–2586.
    39. Gebel JM, Sila CA, Sloan MA, et al. Thrombolysis-related intracranial hemorrhage: a radiographic analysis of 244 cases from the GUSTO-1 trial with clinical correlation [J]. Stroke 1998, 29: 563–569.
    40. Gebel JM, Brott TG, Sila CA, et al. Decreased perihematomal edema in thrombolysis-related intracerebral hemorrhage compared with spontaneous intracerebral hemorrhage[J]. Stroke 2000, 31: 596–600.
    41. Gebel JM, Broderick JP. Intracerebral hemorrhage [J]. Neurol Clin 2000, 18: 419–438.
    42. Mendelow AD, Bullock R, Teasdale GM, eet al. Intracranial haemorrhage induced at arterial pressure in the rat. Part 2: short term changes in local cerebral blood flow measured by autoradiography [J]. Neurol Res 1984, 6: 189–193.
    43. Nath FP, Kelly PT, Jenkins A, et al. Effects of experimental intracerebral hemorrhage on blood flow, capillary permeability, and histochemistry [J]. J Neurosurg 1987, 66: 555–562.
    44. Qureshi AI, Wilson DA, Traystman RJ. No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage [J]. Neurology 1999, 52: 266–272.
    45. Lee KR, Kawai N, Kim S, et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model [J]. J Neurosurg 1997, 86: 272–278.
    46. Xi G, Hua Y, Bhasin RR, et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and bloodbrain barrierintegrity [J]. Stroke 2001, 32: 2932–2938.
    47. Zazulia AR, Diringer MN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage [J]. J Cereb Blood Flow Metab 2001, 21: 804–810.
    48. Carhuapoma JR, Wang PY, Beauchamp NJ, et al. Diffusion-weighted MRI and proton magnetic resonance spectroscopic imaging in the study of secondary neuronal injury after intracerebral hemorrhage [J]. Stroke 2000, 31: 726–732.
    49. Mayer SA, Lignelli A, Fink ME, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage: a SPECT study [J]. Stroke 1998, 29: 1791–1798.
    50. Tanaka A, Yoshinaga S, Nakayama Y, et al. Cerebral blood flow and clinical outcome in patients with thalamic hemorrhage: a comparison with putaminal hemorrhage[J]. J Neurol Sci 1996, 144: 191–197.
    51. Qureshi AI, Mohammad YM, Yahia AM, et al. A prospective multicenter study to evaluate the feasibility and safety of aggressive antihypertensive treatment in patients with acute intracerebral hemorrhage [J]. J Intensive Care Med 2005, 20: 34–42.
    52. Powers WJ, Zazulia AR, Videen TO, et al. Autoregulation of cerebral blood flow surrounding acute (6 to 22 hours) intracerebral hemorrhage [J]. Neurology 2001, 57: 18–24.
    53. Kuwata N, Kuroda K, Funayama M, et al. Dysautoregulation in patients with hypertensive intracerebral hemorrhage: a SPECT study [J]. Neurosurg Rev 1995, 18: 237–245.
    54. Lee KR, Betz AL, Keep RF, et al. Intracerebral infusion of thrombin as a cause of brain edema[J]. J Neurosurg 1995, 83: 1045–1050.
    55. Lee KR, Betz AL, Kim S, Keep RF, Hoff JT. The role of the coagulation cascade in brain edema formation after intracerebral hemorrhage [J]. Acta Neurochir 1996, 138: 396–400.
    56. Lee KR, Drury I, Vitarbo E, et al. Seizures induced by intracerebral injection of thrombin: a model of intracerebral hemorrhage [J]. J Neurosurg 1997, 87: 73–78.
    57. Nishino A, Suzuki M, Ohtani H, et al. Thrombin may contribute to the pathophysiology of central nervous system injury[J]. J Neurotrauma 1993, 10: 167–179.
    58. Vaughan PJ, Pike CJ, Cotman CW,et al. Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults [J]. J Neurosci 1995, 15: 5389–5401.
    59. Striggow F, Riek M, Breder J, et al. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations [J]. Proc Natl Acad Sci USA 2000, 97: 2264–2269.
    60. Jiang Y, Wu J, Hua Y, et al. Thrombin-receptor activation and thrombin-induced brain tolerance [J]. J Cereb Blood Flow Metab 2002, 22: 404–410.
    61. Kitaoka T, Hua Y, Xi G, et al. Delayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage [J]. Stroke 2002, 33: 3012-3018.
    62. Donovan FM, Pike CJ, Cotman CW, et al. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities [J]. J Neurosci 1997,17: 5316–5326.
    63. Gingrich MB, Junge CE, Lyuboslavsky P, et al. Potentiation of NMDA receptor function by the serine protease thrombin [J]. J Neurosci 2000, 20: 4582–4595.
    64. Moller T, Hanisch UK, Ransom BR. Thrombin-induced activation of cultured rodent microglia [J]. J Neurochem 2000, 75: 1539–1547.
    65. Xi G, Keep RF, Hua Y, et al. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning [J]. Stroke 1999, 30: 1247–1255.
    66. Dery O, Corvera CU, Steinhoff M, et al. Proteinaseactivated receptors: novel mechanisms of signaling by serine proteases [J]. Am J Physiol 1998, 274: 1429–1452.
    67. Coughlin SR. How the protease thrombin talks to cells. Proc Natl Acad Sci USA 1999, 96: 11023–11027.
    68. Coughlin SR. Thrombin signalling and protease-activated receptors [J]. Nature 2000, 407: 258–264.
    69. Niclou S, Suidan HS, Brown-Luedi M, et al. Expression of the thrombin receptor mRNA in rat brain [J]. Cell Mol Biol 1994, 40: 421–428.
    70. Weinstein JR, Gold SJ, Cunningham DD, et al. Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and codistribution with prothrombin mRNA [J]. J Neurosci 1995, 15: 2906–2919.
    71. Suidan HS, Stone SR, Hemmings BA, et al. Thrombin causes neurite retraction in neuronal cells through activation of cell surface receptors [J]. Neuron 1992, 8: 363–375.
    72. Debeir T, Benavides J, Vige X. Dual effects of thrombin and a 14-amino acid peptide agonist of the thrombin receptor on septal cholinergic neurons [J]. Brain Res 1996, 708: 159–166.
    73. Noorbakhsh F, Vergnolle N, Hollenberg MD, et al. Proteinase activated receptors in the nervous system [J]. Nat Rev Neurosci 2003, 4: 981–990.
    74. Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective [J]? J Neurochem 2003, 84: 3–9.
    75. Junge CE, Sugawara T, Mannaioni G, et al. The contribution of protease-activated receptor 1 to neuronal damage caused by transient focal cerebral ischemia [J]. Proc Natl Acad Sci USA 2003, 100: 13019–13024.
    76. Hamada R, Matsuoka H, Wagner KR, et al. Antithrombin therapy for intracerebral hemorrhage [J]. Stroke 2000, 31: 794–795.
    77. Darrow VC, Alvord EC Jr, Mack LA,et al. Histologic evolution of the reactions to hemorrhage in the premature human infant’s brain: a combined ultrasound and autopsy study and a comparison with the reaction in adults [J]. Am J Pathol 1988, 130: 44–58.
    78. Marlet JM, Barreto Fonseca JdP. Experimental determination of time of intracranial hemorrhage by spectrophotometric analysis of cerebrospinal fluid [J]. J Forensic Sci 1982, 27:880–888.
    79. Koeppen AH, Dickson AC, McEvoy JA. The cellular reactions to experimental intracerebral hemorrhage [J]. J Neurol Sci 1995, 134: 102–112.
    80. Wu J, Hua Y, Keep RF, et al. Iron and iron-handling proteins in the brain after intracerebral hemorrhage [J]. Stroke 2003, 34: 2964–2969.
    81. Nakamura T, Keep R, Hua Y, et al. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage [J]. J Neurosurg 2004, 100: 672–678.
    82. Hua Y, Xi G, Keep RF, et al. Complement activation in the brain after experimental intracerebral hemorrhage [J] . J Neurosurg 2000, 92: 1016–1022.
    83. Wagner KR, Sharp FR, Ardizzone TD, et al. Heme and iron metabolism: role in cerebral hemorrhage [J]. J Cereb Blood Flow Metab 2003, 23: 629–652.
    84. Wu J, Hua Y, Keep RF, et al. Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage [J]. Brain Res 2002, 953: 45–52.
    85. Matz PG, Weinstein PR, Sharp FR. Heme oxygenase–1 and heat shock protein 70 induction in glia and neurons throughout rat brain after experimental intracerebral hemorrhage [J]. Neurosurgery 1997, 40: 152–160.
    86. Kutty RK, Maines MD. Purification and characterization of biliverdin reductase from rat live [J]r. J Biol Chem 1981, 256: 3956–3962.
    87. Huang F, Xi G, Keep RF, et al. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products [J]. J Neurosurg 2002, 96: 287–293.
    88. Hua Y, Keep RF, Hoff JT, et al. Thrombin preconditioning attenuates brain edema induced by erythrocytes and iron [J]. J Cereb Blood Flow Metab 2003, 23: 1448–1454.
    89. Wagner KR, Hua Y, de Courten-Myers GM, et al. Tinmesoporphyrin a potent heme oxygenase inhibitor for treatment of intracerebral hemorrhage: in vivo and in vitro studies [J]. Cell Mol Biol 2000, 46: 597–608.
    90. Koeppen AH, Dickson AC, Smith J. Heme oxygenase in experimental intracerebral hemorrhage: the benefit of tinmesoporphyrin [J]. J Neuropathol Exp Neurol 2004, 63: 587–597.
    91. Nakamura T, Xi G, Park JW, et al. Holotransferrin and thrombin can interact to cause brain damage. Stroke 2005, 36: 348–352.
    92. Hammond EJ, Ramsay RE, Villarreal HJ, et al. Effects of intracortical injection of blood and blood components on the electrocorticogram [J]. Epilepsia 1980, 21: 3–14.
    93. Willmore LJ, Sypert GW, Munson JV, et al. Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex [J]. Science 1978, 200: 1501–1503.
    94. Jenkins A, Maxwell W, Graham D. Experimental intracerebral hematoma in the rat: sequential light microscopic changes [J]. Neuropathol Appl Neurobiol 1989, 15: 477–486.
    95. Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage [J]. Brain Res 2000, 871: 57–65.
    96. Gong Y, Hua Y, Keep RF,et al. Intracerebral hemorrhage: effects of aging on brain edema and neurological deficits[J]. Stroke 2004, 35: 2571–2575.
    97. Wang J, Rogove AD, Tsirka AE, Tsirka SE. Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage [J]. Ann Neurol 2003, 54: 655–664.
    98. Wang J, Tsirka SE. Tuftsin fragment 1-3 is beneficial when delivered after the induction of intracerebral hemorrhage [J]. Stroke 2005, 36: 613–618.
    99. Lee J, Yin K, Hsin I, et al. Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy [J]. Ann Neurol 2003, 54: 379–382.
    100. Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral hemorrhage [J]. Brain 2005, 127: 1622–1633.
    101. Tang J, Liu J, Zhou C, et al. MMP-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice [J]. J Cereb Blood Flow Metab 2004, 24: 1133–1145.
    102. Morgan BP, Gasque P, Singhrao S, et al. The role of complement in disorders of the nervous system [J]. Immunopharmacology 1997, 38: 43–50.
    103. Cole DS, Morgan BP. Beyond lysis: how complement influences cell fate [J]. Clin Sci 2003, 104: 455–466.
    104. Esser AF. Big MAC attack: complement proteins cause leaky patches [J]. Immunol Today 1991, 12: 316–318.
    105. Hansch GM, Shin Ml. Complement attack phase. In: Rother K, Till GO, Hansch GM, Eds. The complement system. Berlin: Springer-Verlag, 1998: 115–145.
    106. Xi G, Hua Y, Keep RF, et al. Systemic complement depletion diminishes perihematomal brain edema [J]. Stroke 2001, 32: 162–167.
    107. Castillo J, Davalos A, Alvarez-Sabin J, et al. Molecular signatures of brain injury after intracerebral hemorrhage[J]. Neurology 2002, 58: 624–629.
    108. Holers VM. Phenotypes of complement knockouts [J]. Immunopharmacology 2000, 49: 125–131.
    109. Mukherjee P, Pasinetti GM. The role of complement anaphylatoxin C5a in neurodegeneration: implications in Alzheimer’s disease [J]. J Neuroimmunol 2000, 105: 124–130.
    110. Nakamura T, Xi G, Hua Y, Schallert T, Hoff J, Keep R.Intracerebral hemorrhage in mice: model characterization and application for genetically modified mice[J]. J Cereb Blood Flow Metab 2004, 24: 487–495.
    111. Nakamura T, Hua Y, Keep R, et al. Estrogen therapy for experimental intracerebral hemorrhage [J]. J Neurosurg 2005, 103: 97–103.
    112. Alkayed NJ, Harukuni I, Kimes AS, et al. Gender-linked brain injury in experimental stroke [J]. Stroke 1998, 29: 159–165.
    113. Zhang YQ, Shi J, Rajakumar G, et al. Effects of gender and estradiol treatment on focal brain ischemia [J]. Brain Res 1998, 784: 321–324.
    114. Roof RL, Duvdevani R, Stein DG. Gender influences outcome of brain injury: progesterone plays a protective role [J]. Brain Res 1993, 607: 333–336.
    115. Roof RL, Hall ED. Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone [J]. J Neurotrauma 2000, 17: 367–388.
    116. Regan RF, Guo Y. Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures [J]. Brain Res 1997, 764: 133–140.
    117. Culmsee C, Vedder H, Ravati A, et al. Neuroprotection by estrogens in a mouse model of focal cerebral ischemia and in cultured neurons: evidence for a receptor-independent antioxidative mechanism [J]. J Cereb Blood Flow Metab 1999, 19: 1263–1269.
    118. Daverat P, Castel JP, Dartigues JF, et al. Death and functional outcome after spontaneous intracerebral hemorrhage: a prospective study of 166 cases using multivariate analysis [J]. Stroke 1991, 22: 1–6.
    119. Alberts MJ. Stroke genetics update [J]. Stroke 2003, 34: 342–344.
    120. Greenberg SM, Rebeck GW, Vonsattel JP, et al. Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy [J]. Ann Neurol 1995, 38: 254–259.
    121. McCarron MO, Muir KW, Weir CJ, et al. The apolipoprotein E epsilon 4 allele and outcome in cerebrovascular disease [J]. Stroke 1998, 29: 1882–1887.
    122. Kokubo Y, Chowdhury AH, Date C, et al. Age-dependent association of apolipoprotein E genotypes with stroke subtypes in a Japanese rural population. Stroke 2000, 31: 1299–1306.
    123. Woo D, Sauerbeck LR, Kissela BM, et al. Genetic and environmental risk factors for intracerebral hemorrhage: preliminary results of a population-based study [J]. Stroke 2002, 33: 1190–1195.
    124. McCarron MO, Nicoll JA, Stewart J, et al. The apolipoprotein E epsilon 2 allele and the pathological features in cerebral amyloid angiopathy-related hemorrhage [J]. J Neuropathol Exp Neurol 1999, 58: 711–718.
    125. Fang X, Namba H, Akamine S, et al. Methylenetetrahydrofolate reductase gene polymorphisms in patients with cerebral hemorrhage [J]. Neurol Res 2005, 27: 73–76.
    126. Slowik A, Turaj W, Dziedzic T, et al. DD genotype of ACE gene is a risk factor for intracerebral hemorrhage [J]. Neurology 2004, 63: 359–361.
    127. Obach V, Revilla M, Vila N,et al. _(1)- antichymotrypsin polymorphism: a risk factor for hemorrhagic stroke in normotensive subjects [J]. Stroke 2001, 32: 2588–2591.
    128. Endler G, Funk M, Haering D, et al. Is the factor XIII 34Val/Leu polymorphism a protective factor for cerebrovascular disease [J]? Br J Haematol 2003, 120: 310–314.
    129. McCarron MO, Weir CJ, Muir KW, et al. Effect of apolipoprotein E genotype on in-hospital mortality following intracerebral haemorrhage [J]. Acta Neurol Scand 2003, 107: 106–109.
    130. McCarron MO, Hoffmann KL, DeLong DM, et al. Intracerebral hemorrhage outcome: apolipoprotein E genotype, hematoma, and edema volumes [J]. Neurology 1999, 53: 2176–2179.
    131. Bird TD, Jarvik GP, Wood NW. Genetic association studies: genes in search of diseases [J]. Neurology 2001, 57: 1153–1154.
    132. Teasdale GM, Nicoll JA, Murray G, Fiddes M. Association of apolipoprotein E polymorphism with outcome after head injury [J]. Lancet 1997, 350: 1069–71.
    133. McCarron MO, Muir KW, Nicoll JA, et al. Prospective study of apolipoprotein E genotype and functional outcome following ischemic stroke [J]. Arch Neurol 2000, 57: 1480–1484.
    134. Catto AJ, McCormack LJ, Mansfield MW, et al. Apolipoprotein E polymorphism in cerebrovascular disease [J]. Acta Neurol Scand 2000, 101: 399–404.
    135. Liaquat I, Dunn LT, Nicoll JA, et al. Effect of apolipoprotein E genotype on hematoma volume after trauma. J Neurosurg 2002, 96: 90–96.
    136. Lu A, Tang Y, Ran R, et al. Brain genomics of intracerebral hemorrhage [J]. J Cereb Blood Flow Metab 2005, published online July 20. DOI: 10.1038/sj.jcbfm.9600183
    137. Hankey GJ, Hon C. Surgery for primary intracerebral hemorrhage: is it safe and effective? A systematic review of case series and randomized trials [J]. Stroke 1997, 28: 2126–2132.
    138. Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial [J]. Lancet 2005, 365: 387–397.
    139. Morgenstern LB, Demchuk AM, Kim DH, et al. Rebleeding leads to poor outcome in ultra-early craniotomy for intracerebral hemorrhage [J]. Neurology 2001, 56: 1294–1299.
    140.Thiex R, Rohde V, Rohde I, et al. Frame-based and frameless stereotactic hematoma puncture and subsequent fibrinolytic therapy for the treatment of spontaneous intracerebral hemorrhage [J]. J Neurol 2004, 251: 1443–1450.
    141. Tsirka SE, Rogove AD, Strickland S. Neuronal cell death and tPA [J]. Nature 1996, 384: 123–124.
    142. Wang YF, Tsirka SE, Strickland S, et al. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice [J]. Nat Med 1998, 4: 228–231.
    143. Kaur J, Zhao Z, Klein GM, et al. The neurotoxicity of tissue plasminogen activator [J]? J Cereb Blood Flow Metab 2004, 24: 945–963.
    144. Brown DL, Morgenstern LB. Stopping the bleeding in intracerebral hemorrhage [J]. N Engl J Med 2005, 352: 828–830.
    1. Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats: relationship between blood fractions and brain cell death. Stroke, 2000, 31: 1721 - 1727.
    2. Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rats [J]. Brain Res, 2000, 871(1):57-65.
    3.张祥建,李春岩,刘春燕等.炎症反应与大鼠脑出血后脑损伤的相关性[J].中华神经科杂志, 2005,38(6):396-397.
    4. Li GQ, Dong WW. The study of leucocyte infiltration and the effect of doxycycline around rat′s cerebral hemorrhage [J]. Chin J Neu2 rol, 1999, 329(1): 58-59.
    5. Kim JS. Cytokines and adhesion molecules in stroke and related diseases [J]. Neurol Sci, 1996, 137(20):69-78.
    6. Del BigioMR, Yan HJ, Buist R, et al. Experimental intracerebral hemorrhage in rats: magnetic resonance imaging and histopathological correlates[J]. Stroke, 1996, 27:2312-2319.
    7. Xue M, Del Bigio MR. Acute tissue damage after injections of thrombin and plasmin into rat striatum [J]. Stroke, 2001, 32:2164-2169.
    8. Xue M, Del BigioMR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death [J]. Neurosci Lett, 2000, 283:230-232.
    9. Wang J, Rogove AD, Tsirka AE, et al. Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage [J]. Ann Neurol, 2003, 54: 655 - 664.
    10. Chao G, Julian T Hoff, Richarld F, et al. Acute inflammatory reaction following experimental intracerebral hemorrhage in rats [J]. Brain Res, 2000, 871(1):57-65.
    11. Castillo J, Leira R, BlancoM. Metallop roteinases and neurovascular injury [J]. Neurologia, 2004, 19:312-320.
    12. Power C, Henry S, Marc R, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinages [J]. Ann Neurol, 2003, 53(6):731-742.
    13. Abilleira S, Montaner J, Molinac A, et al. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage [J]. J Neurosurg, 2003, 99(1):65-70.
    14. Inoue K, Slaton J W, Kims J, et al. Interleukin 8 expression regulates tumor igenicity and metastasis in human bladder cancer[J]. Cancer Res, 2000, 60(8):2290-2299.
    15. Xi G, Keep RF, Hua Y, et al. Attenuation of thromin-induced brain edema by cerebral thrombin preconditioning [J]. Stroke, 1999, 30(6): 1247-1255.
    16. Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective [J]? J Neurochem. 2003, 84:3-9.
    17. Lee KR, Betz AL, Keep RF, Chenevert TL, Kim A, Hoff JT. Intracerebral infusion of thrombin as a cause of brain edema [J]. J Neurosurg. 1995, 83: 1045–1050.
    18. Kitaoka T, Hua Y, Xi G, Hoff JT, et al. Delayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage [J]. Stroke. 2002, 33:3012–3018.
    19. Hua Y, Schallert T, Keep RF, et al. Behavioral tests after intracerebral hemorrhage in the rat. Stroke. 2002,33:2478–2484
    20. Holmin S, Mathiese T. Intracerebral and adminstration of interleukin-1βand induction of inflammation, apoptosis and vasogenic edema [J]. J Neurosurg, 2000, 92(1):108-120.
    21. Kimelberg HK. Current concepts of brain edema. Review of laboratory investigations [J]. J Neurosurg, 1995, 83(6):1051-1059.
    22. Fassbender K, Rossol S, Kammer T, et al. Proinflammtory cytokines in serum of patients with acute cerebral ischemia :kinetics of serection and relation to the extent of brain damage and outcome of disease [J] . J Neurol Sci, 1994, 122(2):135-139.
    23. Henrich-Noack P, Prehn JH, Krieglstein J, et al. Transforming growth factor beta 1 protects hippocampal neurons against degeneration caused by transient global ischemic. Dose-response relationship and potential neuropretective mechanisms [J]. Stroke, 1996, 27(9):1609-1615.
    24. Saito K, Suyama K, Nishida K, et al. Early increase in TNF-α, IL-6 and IL-1βlevels following transient cerebral ischemia in gerbil brain [J]. Neurosci Lett, 1996, 206(223):149-152.
    25. Castillo J, Davalos A, AIvarez-sabin J, et al. Molecular siguatures of brain injury after intracerebral hemorrhage [J] . Neurology, 2002, 58(4):624-629.
    26. Mayne M, Ni W, Yan HJ, et al. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor2alpha expression is neuroprotective after intracerebral hemorrhage [J]. Stroke, 2001, 32(1):240-248.
    27. Hickenbottom S L, Grotta J C, Strong R, et al .Nuclear factor-kappa B and cell death after experimental intracerebral hemorrhage in rats [J]. Stroke, 1999, 30 (11): 2472-2427.
    28. 顾萍,张勇,丁新生等. 尼膜同对脑出血大鼠血肿周围核转录因子-κB 表达的影响[J].南京医科大学学报(自然科学版),2006,26(3):153-155,188.
    29. 赵性泉,王拥军,王春雪等.大鼠脑出血模型血肿周围继发损害的分子生物学机制研究[J].首都医科大学学报, 2005,26(1):77-80
    30. Clemens J A, Stephenson DT, Yin T, et al. Drug induced neuroprotection from global ischemia is associated with prevention of persistent but not transient activation of nuclear factor-kappa B in rats [J]. Stroke, 1998, 29(3):6772682.
    31. Hua Y, Xi G, Keep RF, et al. Complement activation in the brain after experimental intracerebral hemorrhage [J]. J Neurosurg, 2000, 92(6):1016-1022.
    32. Guohua Xi, Ya Hua, Richard F. Keep, et al. Systemic Complement Depletion Diminishes Perihematomal Brain Edema in Rats. Stroke, 2001, 32:162-167.
    33. Xi G, Hua Y, Keep R F, et al. Brain edema after intracerebral hemorrhage: the effects ofsystemic complement depletion [J]. Acta Neurochir, 2002, 81 (Suppl):253-256.
    34. Homeister JW, Lucchesi BR. Complement activation and inhibition in myocardial ischemia and reperfusion injury [J]. Annu Rev Pharmacol Toxicol, 1994, 34(1):17-40.
    35. Hansch GM, Shin MI. Complement attack phase [A]. In Rother K, Till GO, Hansch GM. The Complement System [M]. Nwe York: Springer-Verlag , 1998.115-145.
    36. Czermak BJ, Lentsch AB, Blessn M, et al .Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement [J]. American Journal of Pathology, 1999, 154(5):1513-1524.
    37. Heo JH, Lucero J, Abumiya T, et al .Matrix met alleproteinases increase very early during expeerimental cerebral ischemia [J]. J cerebra Blood Flow Metab, 1999, 19(6): 624- 633.
    38. Goussev AV, Zhang Z, Anderson DC, et al. Pselectin antibody reduces hemorrhage and infarct volume resulting from MCA occlusion in the rat [J]. J Neurol Sci, 1998, 161(1):16-22. Metab, 1999, 19(6):624-633.
    39. Hery C, Sebire S, PeudenierM, et al. Adhesion to human neurons and astrocytes of monocytes: the role of interaction of CR3 and ICAM-1 and modulation by cytokines [J]. J Immunol, 1995, 57: 101-109.
    1. 王永炎, 杨宝琴, 黄启福. 络脉络病与病络[J].北京中医药大学学报,2003, 26(4):1-2.
    2. 雷燕. 络病理论探微[J].北京中医药大学学报, 1998,21(2):18-23.
    3. 雷燕, 黄启福, 王永炎.论瘀毒阻络是络病形成的病理基础[J].北京中医药大学学报, 1999,22(2):8-10.
    4. 赵京生. 论十五络脉的实际意义[J]. 南京中医药大学学报,1998,14(5):289-290.
    5. 王永炎,常富业,杨宝琴.病络与络病对比研究[J].北京中医药大学学报,2005,28(3):1-6.
    6. 李梢, 王永炎. 从“络”辨治痹病学术思想举隅[J], 北京中医药大学学报, 2002,25(1):43-45.
    7. 吴以岭. 络病理论体系的构建[J].疑难病杂志,2005,4(6):349-350.
    8. 王永炎. 关于提高脑血管疾病疗效难点的思考[J].中国中西医结合杂志, 1997,17(2):195.
    9. 李澎涛,王永炎,黄启福.“毒损脑络”病机假说的形成及其理论与实践意义[J].北京中医药大学学报,2001,24(1):1-7.
    1. 王永炎. 关于提高脑血管疾病疗效的思考[J].中国中西医结合杂志,1997,17(2):195-196.
    2. 雷燕.络病理论探微[J]. 北京中医药大学学报.1998, 21(2):18-23;72.
    3. 史常永.络病论与微循环[J]. 中国医药学报, 1992,7(5): 267-270.
    4. 穆腊梅. 络脉是附属于经脉的离体网状系统[J]. 湖北中医杂志,1994,16(6):21-22.
    5. 宋俊生.试述中西医结合的切入点[J].辽宁中医杂志,2000,27(5):197-198.
    6. 刘伍立,江一平.浅谈微循环与络脉的关联[J].北京中医,1986,5(2):44-45.
    7. 王永炎,常富业,杨宝琴. 病络与络病对比研究[J]. 北京中医药大学学报,2005,28(3):1-6.
    8. 汤健.生物活性蛋白的功能多样性与分子内调控[J].中华医学杂志,2000,80(10):727-728.
    9. 吴以岭. 络病理论体系的构建[J]. 疑难病杂志,2005,4(6):349-350.
    10. 赵海滨,郭玉海,左俊岭,等.中风病之内生热毒形成演变及特性初探[J].上海中医药杂志,2003,37(12):33-35.
    11. 李岩,赵雁,黄启福,等.中医络病的现代认识[J].北京中医药大学学报,2002,25(3):1-5.
    12. 李嘉强,李卫.脑卒中患者血浆内皮素、血栓素B2、6-酮-前列腺素F1α与脑血流量的关系[J].中华老年医学杂志,1999,18(1):51-52.
    13. J Kraus, P Oschmann, S Leis, et al. High concentrations of sVCAM-1 and sICAM-1 in the cerebrospinal fluid of patients with intracerebral haemorrhage are associated with poor outcome [J]. J Neurol Neurosurg Psychiatry, 2002, 73 (3): 346-347.
    14. 吴以岭.络病病机特点与病机变化[J].疑难病杂志,2004,3(5):282-284.
    15. 郭跃进,梁晖.三七对高血压性脑出血颅内血肿吸收的影响[J].福建中医学院学报,1997,7(2):8.
    1. 包新民, 舒斯云. 大鼠脑立体定位图谱[M].人民卫生出版社, 1991.
    2. Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rats [J]. Brain Res, 2000, 871(1): 57-65.
    3. Del Zoppo GJ, Becker KJ, Hallenbeck JM. Inflammation after stroke [J]. Arch Neurol, 2001, 58 (4): 669-672.
    1. Arvin B, Neville LF, Barone FC, Feuerstein GZ. Brain injury and inflammation: a putative role of TNF alpha. Ann N Y Acad Sci. 1995; 765:62–71.
    2. Arvin B, Neville LF, Barone FC, Feuerstein GZ. The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev. 1996; 20: 445–452
    3. Chao Gong, Julian T. Hoff, Richard F. Keep. Acute inflammatory reaction followingexperimental intracerebral hemorrhage in rat. Brain Research 871 (2000) 57–65
    4. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994; 370:555–557
    5. Bethea JR, Gillespie GY, Chung IY, Benveniste EN. Tumor necrosis factor production and receptor expression by a human malignant glioma cell line, D54-MG. J Neuroimmunol. 1990; 30:1–13.
    6. Chen P, Mayne M, Power C, Nath A. The tat protein of HIV-1 induces tumor necrosis factor-a production: implications for HIV-1 associated neurological diseases. J Biol Chem. 1997; 272:22385–22388.
    7. Chung IY, Norris JG, Benveniste EN. Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitissusceptible and -resistant rat strains. J Exp Med. 1991; 173:801–811.
    8. Tchelingerian JL, Quinonero J, Booss J, Jacque C. Localization of TNF alpha and IL-1 alpha immunoreactivities in striatal neurons after surgical injury to the hippocampus. Neuron. 1993;10:213–224.
    9. Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG, Feuerstein GZ. Tumor necrosis factor-alpha: a mediator of focal ischemic brain injury. Stroke. 1997; 28:1233–1244.
    10. Ffrench-Constant C. Pathogenesis of multiple sclerosis. Lancet. 1994; 343:271–275.
    11. Saito K,Suyama K,Nishida K, et al . Early increase in TNA -α, IL-6 and IL-1β levels following transient cerebral ischemia in gerbil brain [J]. Neurosci Lett, 1996, 206(223):1492152.
    12. Tomimoto H, Akiguchi I, Wakita H, Kinoshita A, Ikemoto A, Nakamura S, Kimura J. Glial expression of cytokines in the brains of cerebrovascular disease patients. Acta Neuropathol (Berl). 1996; 92:281–287.
    13. Castillo J, Davalos A, Alvarez-Sabin J, et al. Molecular signatures of brain injury after intracerebral hemorrhage[J]. Neurology 2002, 58: 624–629.
    1. Marc R. Del Bigio, Hui-Jin Yan, et al. Experimental intracerebral hemorrhage in rats: magnetic resonance imaging and histopathological correlates [J]. Stroke, 1996, 27: 2312–2320.
    2. F.C. Barone, B. Arvin, R.F. White, et al. Tumor necrosis factor-alpha: a mediator of focal ischemic brain injury [J]. Stroke, 1997, 28:1233–1244.
    3. Feuerstein G, Wang X, Barone FC. Cytokines in brain ischemia: the role of TNF alpha [J]. Cell Mol Neurobiol, 1998, 18(6): 695–701.
    4. Feuerstein GZ, Liu T, Barone FC. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha [J]. Cerebrovasc Brain Metab Rev, 1994, 6:341–360.
    5. Del Zoppo G, Ginis I, Hallenbeck JM, et al. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia [J]. Brain Pathol, 2000, 10(1): 95–112.
    6. Gearing AJ, Beckett P, Christodoulou M, et al. Processing of tumor necrosis factor-alpha precursor by metalloproteinases [J]. Nature. 1994, 370: 555–557
    7. Bethea JR, Gillespie GY, Chung IY, et al. Tumor necrosis factor production and receptor expression by a human malignant glioma cell line, D54-MG [J]. J Neuroimmunol. 1990, 30(1): 1–13.
    8. Chen P, Mayne M, Power C, et al. The Tat protein of HIV-1 induces tumor necrosis factor-a production: implications for HIV-1-associated neurological diseases [J]. J Biol Chem. 1997, 272(36): 22385–22388.
    9. Chung IY, Norris JG, Benveniste EN. Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains [J]. J Exp Med. 1991, 173(4): 801–811.
    10. Tchelingerian JL, Quinonero J, Booss J, et al. Localization of TNF alpha and IL-1 alpha immunoreactivities in striatal neurons after surgical injury to the hippocampus [J]. Neuron. 1993, 10(2): 213–224.
    11. Ffrench-Constant C. Pathogenesis of multiple sclerosis [J]. Lancet, 1994, 343: 271–275.
    12. Meistrell ME 3rd, Botchkina GI, Wang H, et al. Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia [J]. Shock. 1997, 8(5): 341–348.
    13. Tomimoto H, Akiguchi I, Wakita H, et al. Glial expression of cytokines in the brains of cerebrovascular disease patients [J]. Acta Neuropathol (Berl). 1996, 92(3): 281–287.
    14. Sharief MK, Hentges R. Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis [J]. N Engl J Med. 1991, 325(7): 467– 472.
    15. M. Mayne, W. Ni, H.J. Yan. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-a expression is neuroprotective after intracerebral hemorrhage [J]. Stroke. 2001, 32: 240-248
    16. Bruce AJ, Boling W, Kindy MS, et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors [J]. Nat Med. 1996, 2(7): 788 –794.
    17. Nawashiro H, Martin D, Hallenbeck JM. Inhibition of tumor necrosis factor and amelioration of brain infarction in mice [J]. J Cereb Blood Flow Metab. 1997, 17(2): 229 –232.
    18. Loddick SA, Rothwell NJ. Neuroprotective effects of human recombinant interleukin-1 receptor antagonist in focal cerebral ischaemia in the rat [J]. J Cereb Blood Flow Metab, 1996, 16(5): 932–940.
    19. Hara H, Fink K, Endres M, et al. Attenuation of transient focal cerebral ischemic injury intransgenic mice expressing a mutant ICE inhibitory protein [J]. J Cereb Blood Flow Metab. 1997, 17(4): 370 –375.
    20. Jelena Lazovic, Anirban Basu Hsiao-Wen Lin. Neuroinflammation and Both Cytotoxic and Vasogenic Edema Are Reduced in Interleukin-1 Type 1 Receptor-Deficient Mice Conferring Neuroprotection [J]. Stroke, 2005, 36(10):2226-2231
    1. Hery C, Sebire S, PeudenierM, et al. Adhesion to human neurons and astrocytes of monocytes: the role of interaction of CR3 and ICAM-1 and modulation by cytokines. J Immunol, 1995, 57: 1012-109.
    2. Pleines UE, Stover JF, Kossmann T, et al. Soluble ICAM-1 in CSF coincides with the extent of cerebral damage in patients with severe traumatic brain injury. J Neurotrauma, 1998,15(6):399-409.
    3. Barone FC, ArvinB, White RF, et al.Tumor nocrosis factor-a: a mediator of focal ischemic brain injury.Stroke, 1997, 28:1233.
    4. Barone FC, Schmidt DB, Hillegass LM. Reperfusion increases neutrophils and leukotriene B4 recrptor binding in rat focal ischemia. Stroke, 1992, 20(9):1337.
    5. Chao Gong*, Julian T. Hoff, Richard F. Keep. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Research 871 (2000) 57–65
    6. 何球藻,吴吼声,曹雪涛. 细胞与分子免疫学[M]. 上海:上海科学技术文献出版社,1997,114-115
    7. Durien TO, Chaverot N, Gazaubon S, et el. Intercellular adhesion molecule -1 activation induces tyrosine phosphorylation of the eytoskeleton-associated protein cortactin in brain microvessel endothelin cells [J]. J Biol Chem, 1994,269(17): 12536-12543.
    1. Bauerle PA, Baltimore D. NF-kB ten years after. Cell. 1996, 87:13–20.
    2. Kopp EB, Ghosh S. NF-kB and rel proteins in innate immunity. Adv Immunol. 1995;58:1–27.
    3. Barnes JP, Karin M. Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1996, 336: 1066 –1071.
    4. Grilli M, Pizzi M, Memo M, Spano P. Neuroprotection by aspirin and sodium salicylate through blockade of NF-kB activation. Science. 1996; 274:1383–1385.
    5. Lin KI, Lee SH, Narayanan R, Baraban JM, Hardwick JM, Ratan RR. Thiol agents and bcl-2 identify an alphavirus-induced apoptotic pathway that requires activation of NF-kB. J Cell Biol. 1995;131:1–14.
    6. Kitajima I, Soejima Y, Takasaki I, Beppu H, Tokioka T, Maruyama I. Ceramide-induced nuclear translocation of NF-kB is a potential mediatorof the apoptotic response to TNF-α in murine clonal osteoblasts. Bone. 1996; 19: 263–270.
    7. Kessler JA, Ludlam WH, Freidin MM, Hall DH, Michaelson MD, Spray DC, Dougherty M, Batter DK. Cytokine-induced programmed cell death of cultured sympathetic neurons. Neuron. 1993; 11:1123–1132.
    8. Beg AA, Baltimore D. An essential role for NF-kB in preventing TNFa- induced cell death. Science. 1996; 274: 782–784.
    9. Wang CY, Mayo MW, Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis potentiation by inhibition of NF- kB. Science. 1996; 274: 784–787.
    10. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-α-induced apoptosis by NF-kB. Science. 1996. 274:787–789.
    11. Barger SW, Mattson MP. Induction of neuroprotective kappa B-dependent transcription by secreted forms of the Alzheimer’s beta amyloid precursor. Mol Brain Res, 1996; 40:116–126.
    12. Barger SW, Horster D, Furudawa K, Goodman Y, Krieglstein J, Mattson MP. Tumor necrosis factor α and β protect neurons against amyloid β-peptide toxicity: evidence for involvement of kB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A. 1995; 92: 9328 –9332.
    13. Goodman Y, Mattson MP. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults and amyloid b-peptide toxicity. J Neurochem, 1996; 66:869–872.
    14. Clemens JA, Stephenson DT, Yin T, Smalstig EB, Pannetta JA, Little SP. Drug-induced neuroprotection from global ischemia is associated with prevention of persistent but not transient activation of nuclear factor-kB in rats. Stroke, 1998, 29: 677– 682.
    15. Susan L. Hickenbottom, James C. Grotta, Roger Strong, et al. Nuclear factor-kB and cell death after experimental intracerebral hemorrhage in Rats. Stroke, 1999; 30: 2472-2478.
    16. Hang CH, Shi JX, Li JS, et al. Concomitant upregulation of nuclear factor-κBactivity, proinflammatory cytokines and ICAM-1 in the injured brain after cortical contusion trauma in a rat model. Neurology India, 2005, 53: 312-317.
    17. Xiangjian Zhang, Haiyan Li, Shuchao Hu, et al. Brain edema after intracerebral hemorrhage in rats: The role of inflammation. Neurology India, 2006, 54: 402-407.
    18. Samali A,Cotter TG.. Heat shock proteins increase resistance to apoptesis[J].Exp Cell Res,1996,223(1): 163-170.
    19. Matx PG, Sundaresan S. Induction of HSP-70 in rat brain following subarachnoid hemorrhage produced by endovascular perforation[J]. J Neurosurg,1996, 85(1): 138-145.
    20. Matz PG,Weinstein PR,Sharp FR.Heme oxygenase-1and heat shock protein70induction in glia and neurons throughout rat brain after ex-perimental intracerebral hemorrhage[J].Neurosurgery,1997,40(1): 152-162.
     1. Matsushita K, Meng W, Wang X, et al. Evidence for apoptosis after intercerebral hemorrhage in rat striaum [J]. J Cereb Blood Flow Metab 2000, 20(2): 396-404
    2. 张尉华,饶明俐,吴江等. 实验性脑出血后的细胞凋亡和凋亡相关基因转录、表达水平[J]. 中风与神经疾病杂志,2005,22(1): 10-12.
    3. Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death [J]. Neurosci Lett,2000, 283(3): 230-232
    4. 鲍刚,郭宁,张仲林等. 大鼠脑出血模型神经细胞凋亡的特征及 Bcl-2 蛋白对细胞凋亡的调控[J]. 中国临床康复,2004,8(31):6926-6928.
    5. Xue M, Del Bigio MR. Acute tissue damage after injections of thrombin and p lasmin into rat striatum [J]. Stroke, 2001, 32: 2164 - 2169.
    6. Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death [J]. Neurosci Lett, 2000, 283: 230 - 232.
    7. Mayer SA, Lignelli A, Fenk ME, et al. perilesional blood flow and edema formation in acute intracerebral hemorrhage. ASPECT study [J]. Stroke 1998, 29: 1791-1798
    8. Lotocki G, Alonso OF, Dietrich WD, et al. Tumor necrosis factor receptor 1 and its signaling intermediates are recruited to lip id rafts in the traumatized brain [J]. J Neurosci, 2004, 24: 11010 - 11016.
    9. Druzhyna NM, Musiyenko SI, Wilson GL, et al. Cytokines induce nitric oxide-mediated mtDNA damage and apoptosis in oligodendrocytes. Protective role of targeting 8-oxoguanine glycosylase to mitochondria [J]. J Biol Chem, 2005, 280: 21673 - 21679.
    10. Narcisse L, Scemes E, Zhao Y, et al. The cytokine IL21β transient ly enhances P2X7 recep tor exp ression and function in human astrocytes [J]. Glia, 2005, 49: 245 - 258.
    11. Martin DS, Lonergan PE, Boland B, et al. Apop totic changes in the aged brain are triggered by interleukin-1βinduced activation of p38 and reversed by treatment with eicosapentaenoic acid [J]. J Biol Chem, 2002, 277: 34239 - 34246.
    12. Hickenbottom SL, Grotta JC, Strong R, et al. Nuclear factor-κB and cell death after experimental intracerebral hemorrhage in rats [J]. Stroke, 1999, 30: 2472 - 2477
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.