易错PCR突变提高植酸酶活力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植酸酶是一种能将植物性饲料中植酸(盐)降解为肌醇和无机磷酸盐的酶类,其作为单胃动物的饲料添加剂,对提高畜禽业生产效益及降低植酸磷对环境的污染有重要作用。但目前酶活力和稳定性较低是植酸酶在生产运用中的一个瓶颈,因此通过基因工程和蛋白质工程技术对植酸酶进行改造具有重要的科学和实用价值。定向进化技术是在体外模拟达尔文自然进化过程,该技术已成为改造酶分子的一种有效策略,在农业、工业和医药等领域都展现了其巨大的潜力。
     定向进化技术改造植酸酶基因的过程中的一个关键是构建高通量的筛选方法。本研究在常规钼钒法测定植酸酶活性的基础上,进行微板法酶活微量测定研究,并在摇瓶培养基因工程菌的基础上进行微板上的微量培养研究,构建起一套针对植酸酶酶活力改造的高通量筛选方法。结果表明,酶活微量测定法和常规钼钒测定法的稳定性基本一致;无机磷的最低检出值前者为0.67μg/mL,后者为0.30μg/mL,两种方法灵敏度均较高;精确度前者为8.8%,后者为8.2%,两种方法的精确度差异不显著。无机磷浓度测定的线性范围前者为0.67μg/mL-48.14μg/mL,后者为0.30μg/mL-25.50μg/mL,微板法测定的线性范围略大于常规钼钒法;测定值的变异系数前者为12.1%,后者为10.5%,两种方法的变异系数差异不显著。并且微板法还可以大大提高工作效率、降低实验成本。微量培养所得样品酶液的酶活力低于用三角瓶进行的摇瓶培养发酵所得样品酶液的酶活力,但是在高通量的初步筛选中,本研究关注的是突变菌株与原始出发菌株的比较,因此这种微量培养方法是可行的。
     本研究采用定向进化技术中较为成熟的一种方法——易错PCR对植酸酶基因进行改造。通过优化,易错PCR体系中Mn~(2+)浓度为0.1mmol/L,Mg~(2+)浓度为7mmol/L,dATP,dGTP浓度与dCTP,dTTP浓度比例为1:5。将易错PCR产物构建入pPIC9K载体质粒中,经线性化后转化毕赤酵母工程菌GS115,形成突变体库。利用高通量筛选方法进行筛选,获得了一株较高活性的产植酸酶突变基因工程菌PP-NP~(ep)-6A,其酶活力达到82034U/mL,较出发菌株PP-NP~m-8(63667U/mL)提高了29%。该酶的最适反应温度为55℃,最适反应pH为5.6。经DNA测序分析表明PP-NP~(ep)-6A中突变植酸酶基因发生了9个碱基突变,并引起了4个氨基酸的变化,分别是Glu156Gly,Thr236Ala,Gln396Arg,Leu406Thr。经蛋白质二级结构预测发现,突变基因工程菌PP-NP~(ep)-6A表达的植酸酶二级结构与未突变一致,理化性质和等电点无明显变化。通过同源建模预测三维结构发现,突变菌株PP-NP~(ep)-6A表达的植酸酶与未突变具有相同的多肽骨架,三维结构一致,活性中心未见改变。而四个氨基酸突变可能使酶蛋白结构发生了微变化,增加了酶蛋白结构柔性,从而引起酶活力提高。
     本研究利用易错PCR的方法,在毕赤酵母表达载体pPIC9K上构建了突变体库,并筛选出酶活提高的突变株,为进一步通过定向进化改造植酸酶奠定了基础。
Phytases belong to the family of histidine acid phosphatases which catalyze the release of phosphate from phytic acid. As a kind of feed additive phytases have been added to the feed to meet the phosphorus requirements of some monogastric animals like poultry, pigs and it play an important part in reducing phosphorous contamination as well. But at present, the activity of phytase still need to improve to meet the needs. Directed evolution mimics the process of Darwinian evolution in a test tube, and it's has become a effective strategies to engineer enzymes for the requirements of industrial, medical and research application.
     The building of effective high-throughput screening method is the key factor of success for directed evolution of phytase. This research stablished a high-throughput screening method for phytase engineering. On the basis of general Molybdenum-Vanadium method for detecting phytase activity, the microplate method was developed for the determination of trace activity of phytase, and the microculture method was developed for culture of phytase on the basic of flask culture. The results shows that both of the microplate method and Molybdenum-Vanadium methods had similar accuracy、sensitivity and stability, and the microplate method can greatly improve the efficiency and lower the cost of experiments. The samples gained from microculture had enzyme activity and their activity were lower than the flask culture samples,but what we focused is the enzyme activity comparion between mutant strain and original strain in preliminary high-throughput screening, so the microplate method is feasible.
     This research engineed the activity of phytase with ep-PCR which is a mature technology of directed evolution. After optimization,the concentration of Mn~(2+) is 01.mmol/L and the concentration of Mg~(2+) is 7mmol/L in ep-PCR reaction system. Structured ep-PCR products into plasmid vector pPIC9K and transformed the recombinant palsmid into Pichia pastris GS115 through electroporation after linearization. After high-throughput screening we acquired a mutant strain PP-NP~(ep)-6A (82034U/mL) which has 29% higher phytase enzyme activity than original strain PP-NP~m-8 (63667U/mL) . And the optimum temperature for catalytic reaction of mutant phytase is 55℃,the optimum pH is 5.6. After DNA sequencing we found that 9 bases have changed in mutant sequence,and the change result in 4 amino acid change which were Glu156Gly. Thr236Ala, Gln396Arg, Leu406Thr. After protein secondary structure prediction we found that mutant phytase has the similar physicochemical property and isoelectric point compared with original phytase. After protein three dimensional structure prediction we found that mutant phytase has the same backbone and 3D structure with orignal phytase,and the active centre has no change. The mutation of 4 amino acid may lead to micro-variation on protein structure and increase the flexibility of enzyme constitution, that may result in the increasing of enzyme activity.
     This research acquired a mutant strain which has higher enzyme activity through ep-PCR,that will laid the foundation for further studiy on directed evolution of phytase.
引文
[1] Wodzinski RJ, Ullah AH. Phytase[J]. Adv Appl Microbiol, 1996,42: 263-302
    
    [2] Mullaney EJ, Daly CB. Advances in phytase research[J].Adv Appl Microhiol,2000,47:157-199
    
    [3] Kerovuo J, Lauraeus M. Isolation,characterization,molecular gene Cloning,and sequencing of a novel phytase from Bacillus subtilis[J].Appl Environ Microbiol,1998,64(6):2079-2085
    [4] Kerovuo J, Lappalainen L. The metal dependence of Bacillus subtilis phytase[J]. Biochem Biophys Res Commun,2000,268(2):365-369
    [5] Quan C S, Tian W J. Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1[J]. Biosci Bioeng, 2004, 97(4): 260-266
    [6] Segueilha L, Lambrechts C. Purification and properties of the phytase from Schwanriomyces castellii[J]. Ferment Bioeng, 1992, 74: 7-11
    [7] Ostanin K, Saccd A. heterologous expression of human prostatic acid phosphatase and site-directed mutagenesis of the enzyme active site[J]. Biol Chem, 1994, 269(12): 8971
    [8] Vats P, Banerjee U C. Biochemical characterisation of extracellular phytase (myo-inositol hexakisphosphate phosphohydrolase) from a hyper-producing strain of Aspergillus niger van Teighem[J]. Ind Microbiol Biotechnol. 2005, 32(4): 141-147
    [9] Ullah A H, Sethumadhavan K. Biochemical characterization of cloned Aspergillus fumigatus phytase (phyA)[J]. Biochem Biophys Res Commun, 2000, 275(2):279-285
    [10] Gulati H K., Chadha B S. Production, purification and characterization of thermostable phytase from thermophilic fungus Thermomyces lanuginosus TL-7[J]. Acta Microbiol Immunol Hung, 2007, 54(2): 121-38.
    [11] Gulati H K, Chadha B S. Production and characterization of thermostable alkaline phytase from Bacillus laevolacticus isolated from rhizosphere soil[J]. Ind Microbiol Biotechnol, 2007,34(1): 91-8.
    [12] Boyce A, Walsh G. Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement[J]. Environ Sci Health A Tox Hazard Subst Environ Eng, 2006. 41(5): 789-798
    [13] Nelson T S. The utilization of phytase phosphorus by poultry—A review[J]. Poultry Sciense, 1967, 46(4):862-871
    [14] Perney K M, Cantor A H, Straw M L. The effect of dietary phytase on growth performance an phosphorus utilization of broiler chickens[J].Poultry Science,1993,72(11):2106-2114
    [15]Yi Z,komegay E T,Ravindran V,Denbow D M.Improving phytase phosphorus availability in corn an soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase[J].Poultry Sciense,1996,75(2):240-249
    [16]Lehmann M,Kostrewa D.From DNA sequence to improved functionality:using protein sequence comparisons to rapidly design a thermostable consensus phytase[J].Protein Engineering,2000,13(1):49-57
    [17]Tomschy A,Lehmann M.Engineering of phytase for improved activity at low pH[J].Appl Environ Microbiol.2002 Apt;68(4):1907-13.
    [18]Tao xiang,Qun Liu.Crystal structure of a heat-resilient phytase from Aspergillus fumigatus,carrying a phosphorylated histidine[J].Mol.Biol,2004,339(2):437-445
    [19]Tomschy A,Tessier M.Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure[J].Protein Sci,2000,9(7):1304-11.
    [20]贝锦龙,陈庄.人工合成的黑曲霉NRRL3135菌株植酸酶基因在毕赤酵母系统中的高效表达[J].生物工程学报,2001,17(3):254-258
    [21]Mullaney EJ,Daly CB,Kim T.Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH4.0[J].Biochem and Biophys Res Commun,2002,297(4):1016-1020
    [22]陈惠等.F43Y、1354M及L358F定点突变对植酸酶热稳定性及酶活性的改善[J].中国生物化学与分子生物学报,2005,21(4):516-520
    [23]Jermutus L,Tessier M.Structure-based chimeric enzymes as an alternative to directed enzyme evolution:phytase as a test case[J].Biotehnol,2001,85(1):15-24
    [24]Lehmann M,loch C.The consensus concept for thermostability enginering of proteins:further proof of concept[J].Protein Engineering,2002,15(5):403-411
    [25]Petrounia I P,Arnold F H.Designed Evolution of Enzymatic Properties[J].Current Opinion in Biotechnology,2000,11(4):325-330
    [26]Farinas E T,Bulter T.Directed enzyme evolution[J].Curr Opin Biotechnol,2001,12(6):545-551
    [27]Garmaise M.Rational beliefs and security Design[J].Rev.Financ.Stud.,2001,14:1183-1213
    [28]Jermutus L,Tessier M.Structure-based chimeric enzymes as an alternative to directed enzyme evolution:phytase as a test case[J].Biotehnol,2001,85(1):15-24
    [29] Lehmann M, Pasamontes L. The consensus concept for thermostability engineering of proteins[J]. Biochim Biophys Acta, 2000, 1543(2): 408-415
    [30] Arnold F H. Protein Engineering for Unusual Environmentsl[J]. Curr Opin Biotechnol, 1993, 4:450-455
    [31] Stemmer W P C. DNA shuffling by random fragmentation and reassembly in vitro recombination for molecular evolution[J]. Proc Natl Acad Sci USA, 1994, 91(22): 10747-10751
    [32] Shao Z, Zhao H. Random-priming in vitro recombination: an effective tool for directed evolution[J]. Nucl Acids Res, 1998, 26(2):681-685
    [33] Zhao H, Giver L. Molecular evolution by staggered extension process (StEP) in vitro recombination[J]. Nature Biotech. 1998, 16(3):258-261
    [34].Chen K, Arnold F H. Enzyme engineering for nonaqueous solvent: random mutagenesis to enhance activity of subtilisin E in polar organic media[J]. Bio Technology. 1991.9(11): 1073-1077.
    [35] Miyazaki K, Arnold F H. Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function[J], Mol Evol, 1999, 49(6):716-720
    
    [36] Stefan A. Directed evolution of beta-galactosidase from Escherichia coli by mutator strains defective in the 3-5' exonuclease activity of DNA polymerase[J], FEBS Lett, 2001, 493(2-3): 139-143
    [37] Long-McGie J, Liu A D. Rapid in vivo evolution of a β-lactamase using phagemids[J]. Biotechnol Bioeng, 2000, 68(1):121-125
    [38] Miyazaki K. Creating random mutagenesis libraries by megaprimer PCR of whole plasmid (MEGAWHOP) [J]. Methods Mol Biol, 2003,231:23-28
    [39] Fujii R. Kitaoka M. Error-prone rolling circle amplification: the simplest random mutagenesis protocol[J]. Nat Protoc, 2006, 1(5):2493-2497.
    [40] Wong T S, Tee K L. Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution[J]. Nucleic Acids Res, 2004, 32(3):e26
    [41] Fujii R, Kitaoka M. RAISE: a simple and novel method of generating random insertion and deletion mutations[J]. Nucleic Acids Res, 2006, 34(4):e30
    [42] Coco W M, Levinson W E. DNA shuffling method for generating highly recombined genes and evolved enzymes[J]. Nat Biotechnol, 2001, 19(4):354-359.
    
    [43] Ness J E, Kim S. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently[J]. Nat Biotechnol, 2002,20(12): 1251-1255
    [44] Babushok D V, Ohshima K. A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids[J]. Genome Res, 2007, 17(8):1129-1138
    [45] Gibbs M D, Nevalainen K M. Degenerate oligonucleotide gene shuffling (DOGS): a method for enhancing the frequency of recombination with family shuffling[J]. Gene, 2001, 271(1): 13-20
    [46] Bergquist P L, Gibbs M D. Degenerate oligonucleotide gene shuffling[J]. Methods Mol Biol. 2007, 352:191-204
    [47] Evlampiev K, Isambert H. Modeling protein network evolution under genome duplication and domain shuffling[J]. BMC Syst Biol, 2007, 1(1):49
    [48] Kitamura K, Kinoshita Y. Construction of block-shuffled libraries of DNA for evolutionary protein engineering: Y-ligation-based block shuffling[J]. Protein Eng, 2002, 15(10):843-853
    [49] Volkov A A, Shao Z, Arnold F H. Random chimeragenesis by heteroduplex recombination[J]. Methods Enzymol, 2000, 328:456-463
    [50] Coco W M. RACHITT: Gene family shuffling by Random Chimeragenesis on Transient Templates[J]. Methods Mol Biol, 2003,231:111-127
    [51] Zha D, Eipper A. Assembly of designed oligonucleotides as an efficient method for gene recombination: a new tool in directed evolution[J]. Chembiochem, 2003, 4(1):34-39
    [52] Si H L, Eon J R, Min J K. A new approach to directed gene evolution by recombined extension on truncated templateds(RETT)[J]. Journal of Molecular Catalysis B: Enzymatic, 2003,26:119-129
    [53] Song J K, Chung B, Oh Y H. Construction of DNA-shuffled and incrementally truncated libraries by a mutagenic and unidirectional reassembly method: changing from a substrate specificity of phospholipase to that of lipase[J].Appl Environ Microbiol, 2002, 68(12):6146-6151
    [54] Xiong A S, Yao Q H. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences[J]. Nucleic Acids Res, 2004, 32(12):e98
    [55] Eggert T, Funke S A. Multiplex-PCR-based recombination as a novel high-fidelity method for directed evolution[J]. Chembiochem, 2005,6(6): 1062-1067
    [56] Song J K, Chung B. Construction of DNA-shuffled and incrementally truncated libraries by a mutagenic and unidirectional reassembly method: changing from a substrate specificity of phospholipase to that of lipase[J]. Appl Environ Microbiol, 2002, 68(12):6146-6151
    [57] Lutz S, Ostermeier M. Rapid generation of incremental truncation libraries for protein engineering using alpha-phosphothioate nucleotides[J]. Nucleic Acids Res, 2001, 29(4):el6
    [58] Lutz S, Ostermeier M. Creating multiple-crossover DNA libraries independent of sequence identity[J]. Proc Natl Acad Sci USA, 2001, 98(20): 11248-11253
    [59] Udit A K, Silberg J J. Sequence homology-independent protein recombination (SH1PREC) [J], Methods Mol Biol, 2003, 231:153-163
    [60] Hiraga K, Arnold F H. General method for sequence-independent site-directed chimeragenesis[J]. Mol Biol, 2003, 330(2):287-296
    [61] Bittker J A, Le B V. Directed evolution of protein enzymes using nonhomologous random recombination[J]. Proc Natl Acad Sci U S A, 2004, 101(18):7011-7016
    [62] Doyon J B, Liu D R. Identification of eukaryotic promoter regulatory elements using nonhomologous random recombination[J]. Nucleic Acids Res, 2007, 35(17):5851-5860
    [63] Funke S A, Otte N, Eggert T. combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution[J]. Protein Eng Des Sel, 2005, 18(11):509-514
    [64] Dwyer M A, Looger L L. Computational design of a biologically active enzyme[J]. Science, 2004, 304(5679): 1967-1971
    [65] Kuhlman B G, Dantas G C, Ireton G. Design of a novel globular protein fold with atomic-level accuracy[J]. Science, 2003, 302(5649): 1364-1368
    [66] Korkegian A, Black M E. Computational thermostabilization of an enzyme[J]. Science, 2005, 308(5723):857-860
    
    [67] Chica R A, Doucet N, Pelletier J N. Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design[J]. Curr Opin Biotechnol, 2005, 16(4):378-384.
    [68] Shanklin J. Exploring the possibilities presented by protein engineering[J]. Curr Opin Plant Biol, 2000, 3(3):243-248
    [69] Park H S, Nam S H. Design and evolution of new catalytic activity with an existing protein scaffold[J]. Science, 2006, 311(5760):535-538
    [70] Lin H, Cornish V W. Screening and selection methods for large-scale analysis of protein function[J]. Angew Chem, 2002, 41:4402-4425
    [71] Matsuura T, Yomo T. In vitro evolution of proteins[J]. Biosci Bioeng, 2006, 101(6):449-456
    [72] You L,Arnold F H. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide[J]. Protein Engineering, 1996, 9(1): 77-83.
    [73] Olsen M, Lverson B, Georgiou G. High-throughput screening of enzyme libraries[J]. Curr Opin Biotech, 2000, 11(4): 331-337.
    [74] Zhao H, Arnold F H. Combinatorial protein design: strategies for screening protein libraries[J]. Curr Opin Struct Biol, 1997,7(4): 480-485.
    [75] Crarneri A, Whitehorn E A, Tate E. Improved green fluorescent protein by molecular evolution using DNA shuffiing[J]. Nat Biotechnol, 1996, 14(3): 315-319.
    [76] Joo H, Arisawa A, Lin zh-L. A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases[J]. Chemistry & Biology, 1999, 6(10): 699-706.
    [77].Knaust R K C, Nordlund P. Screening for soluble expression of recombinant proteins in a 96-well format[J]. Analytical Biochemistry, 2001, 297(1): 79-85.
    [78] Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985,228(4705): 1315-1317.
    [79] Minshull J, Stemmer P C. Protein evolution by molecular breeding[J]. Current Opinion in Chemistry Biology, 1999, 3:284-290.
    
    [80] 张爱华,余模松.噬菌体抗体库技术[J].国际生物制品学杂志,2006.29(1):13一16.
    [81] Mattheakes L C, Bhatt R R, Dower W J. An in vitro polysome display system for identifying ligands from very large peptide libraries[J]. Proc Natl Acad Sci USA, 1994, 91: 9022-9026.
    [82] Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display[J]. Proc Natl Acad Sci USA, 1997,94(10): 4937-4942.
    [83] Takahashi T T, Austin R J, Robeas R W. mRNA display: ligand discovery, interaction analysis and beyond[J]. Trends in Biochemical Sciences, 2003, 28(3): 159-165.
    [84] Chen W, Georgiou G. Cell surface display of heterologous proteins: From high-throughput screening to environmental applications[J]. Biotechnol bioeng, 2002, 79(5): 496-503.
    [85] Stahl S, Uhhn M. Bacterial surface display: trends and progress[J]. Trends In Biotechnology, 1997, 15(5): 185-192.
    [86] Kim Y S, Jung H C, Pan J G. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants[J]. Applied and Environmental Microbiology, 2000, 66(2): 788-793.
    [87]Boder E T,Wittrup K D.Yeast surface display for screening combinatorial polypeptide libraries[J].Nat Biotechnol,1997,15(6):553-557.
    [88]Boder E T,Wittrup K D.Optional screening of surface-displayed polypeptide libraries[J].Biotechnol Prog,1998,14(1):55-62.
    [89]Van Antwerp J J,Wittrup K D.Fine affinity discrimination by yeast surface display and flow cytometry[J].Biotechnol Prog,2000,16(1):31-37.
    [90]王红宁,吴琦等.黑曲霉N25植酸酶phyA基因的克隆及序列分析[J].微生物学报.2001,41(3):310-315
    [91]王红宁,马孟根,吴琦等.黑曲霉N25植酸酶phyA基因在巴斯德毕赤酵母中高效表达的研究[J].菌物系统.2001,20(4):486-493
    [92]王平章.植酸酶phyA基因转化毕赤酵母的筛选及工程菌培养基研究[学位论文].雅安,四川农业大学,2002
    [93]赵海霞.植酸酶phyA基因活性中心密码子的改造及基因工程菌培养条件的研究[学位论文].雅安,四川农业大学,2004
    [94]黄遵锡,章克昌,徐柔.植酸酶活测定不同方法的比较研究[J].饲料工业,1999,20(12):20-22
    [95]黄遵锡,章克昌,徐柔.微板法在植酸酶活测定过程中的应用[J].工业微生物,2000,30(2):23-25
    [96]赵赣等主编.植酸酶活性测定.生物化学实验指导(第一版).江西科学技术出版社.2000
    [97]Invitrogen.Multi-copy Pichia Expression Kit(Version E).Cataiog no.K1750-01
    [98]张庆华,K.W.Schramm,徐盈.利用96孔板和重组基因酵母筛选环境内分泌干扰物[JJ.环境科学学报,2003,23(5):702-704
    [99]Sanela Kurtovic,Ronnie Jansson,Bengt Mannervik.Colorimetric endpoint assay for enzyme-catalyzed iodide ion release for high-throughput screening in microtiter plates[J].Archives of biochemistry and biophysics,2007,464(2):284-287
    [100]Knaust R K C,Nordlund P.Screening for soluble expression of recombinant proteins in a 96-well format[J].Analytical Biochemistry,2001,297(1):79-85
    [101]Zhao H,Arnold F H.Combinatorial protein design:strategies for screening protein libraries[J].Current Opinion in Structural Biology,1997,7(4):480-485.
    [102]Petrounia I P,Arnold F H.Designed Evolution of Enzymatic Properties[J].Current Opinion in Biotechnology,2000,11(4):325-330
    [103] Xiong A S, Yao Q H. High level expression of a recombinant acid phytase gene in pichia pastoris[J]. Appl Microbiol, 2005,98(2): 418-428
    [104] Zhao D M, Wang M. Screening, cloning and overexpression of Aspergillus niger phytase (phyA) in pichia pastoris with favourable characteristics[J]. Lett Appl Microbiol, 2007,45(5): 522-528
    [105] Zhou L K, Wang H N. Design and expression of a synthetic phyC gene encoding the neutral phytase in Pichia pastoris[J]. Acta Biochim Biophys Sin, 2006, 38(11):803-1.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.