Atrazine对斑马鱼神经系统发育及功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莠去津(Atrazine, ATR)是一类常用的禾本科杂草和阔叶草类除草剂,具有长期广泛的环境毒性。ATR属于内分泌干扰物(Endocrine-disrupting chemicals, EDCs),它的毒性危害主要体现在诱发生殖器官畸形、致癌性、发育迟缓、免疫力低下等方面。目前关于ATR对神经系统的毒理作用的认识仅限于它干扰丘脑—垂体轴的中枢神经内分泌调控。本文以斑马鱼胚胎和幼鱼作为实验对象,通过行为学、组织细胞形态学和乙酰胆碱酯酶(AChE)活性定量分析,研究了不同ATR浓度急性处理的胚胎和幼鱼的生理生化指标的变化,以及这些变化对神经信号整合和行为的影响。研究发现,ATR可以削弱幼鱼的游泳活力、削弱对整合能力要求较高的逃避行为。这些行为指标改变的组织学基础是ATR诱导的肌节发育不良和运动中枢内纤维束减少。白肌肌纤维的数量和排列方式受ATR影响显著,肌节长度缩短。进一步分析发现,ATR处理的幼鱼体内AChE活性水平被下调,可以指示肌肉的神经支配效率被削弱。有趣的是,ATR处理的胚胎体内AChE活性则被上调;与此同时,胚胎体内主要表达AChE的初级感觉神经元(Rohon-Beard cells)的生理性凋亡减少。这些现象表明,ATR通过干扰感觉神经元的发育过程、肌肉的神经支配以及神经信号的上下行传导过程来干扰斑马鱼的运动整合能力。这一结果对于全面认识ATR的环境风险和评价其毒性危害具有重要意义。
Atrazine (2-chloro-4-ethylamino-6-isopropylamine-s-triazine, ATR) is a widely used selective herbicide to control broadleaf weeds and gramineous grasses. It has intensified pollution of the environment and maintains toxicity on long-time scale. ATR is a kind of endocrine-disrupting chemicals, inducing malformation of reproductive system, carcinogenesis, adolescence delay, weakness of immunity and others. Despite it disrupts neuroendocrine regulation of thalamus-pituitary axis, little is known about its effects on neural system. In the dissertation, zebrafish embryos and larvae had worked as bio-monitor to discover physiological and biochemical changes of embryos and larvae acute treated with ATR as well as neural integration and behavior affected by these changes. By quantitative analysis of behavior, histological and cellular morphology, AChE activity, the study observed that ATR weakened swimming activity of larvae and impaired escape behavior. The behavioral changes caused by ATR-induced hypogenetic axial muscles and by reduced injective fasciculi in hindbrain and spinal cord. Number and arrangement of myofibers (esp. white muscle myofibers) were significantly influenced, and trunk myotomes shortened. Corresponding to this, AChE activity level has been down-regulated in ATR treated larvae. It marked that efficiency of muscle innervation has been crippled. Interestingly, AChE activity has been up-regulated in ATR-treated larvae. A parallel phenomenon shown that embryonic primary sensory neurons (Rohon-Beard cells), principally expressing AChE in embryos, survived the physiological apoptosis. All above indicate that ATR disrupts maturation of primary sensory neurons and innervation of axial muscle and injection of upper/lower motor neuron, and causes to harm integration of locomotion. The results play important role to entirely understand environmental risks and to estimate neurotoxic damage of ATR.
引文
[1]Wiegand C, Krause E, Steinberg C, et al. Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio). Ecotoxicol Environ Saf,2001,49(3):199-205.
    [2]U S EPA. Overview of atrazine risk assessment. In:Revised Risk Assessments. Epub: http://www.epa.gov/oppsrrdl/reregistration/atrazine,2002:1-23.
    [3]Tavera-Mendoza L, Ruby S, Brousseau P, et al. Response of the amphibian tadpole (Xenopus laevis) to atrazine during sexual differentiation of the testis. Environ Toxicol Chem,2002,21(3):527-531.
    [4]Barraclough C. Neural control of the synthesis and release of luteinizing hormone-releasing hormone. Ciba Found Symp,1992,168:233-251.
    [5]Bretaud S, Lee S, Guo S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease. Neurotoxicol Teratol,2004,26(6):857-864.
    [6]Nicholls JG, Martin AR, Wallace BG, et al. Integrative mechanisms:circuits mediating stereotyped behavior. In:From neuron to brain,4th ed, Sunderland:Sinauer Associates Inc.,2001:293-304, 525-548
    [7]Abbott LF, Varela JA, Sen K, et al. Synaptic depression and cortical gain control. Science,1997, 275(5297):220-224.
    [8]Goldsmith P. Zebrafish as a pharmacological tool:the how, why and when. Curr Opin Pharmacol, 2004,4(5):504-512.
    [9]Miklosi A AR. The zebrafish as a model for behavioral studies. Zebrafish,2006,3(2):227-234.
    [10]U S EPA. Summary of atrazine risk assessment. In:Revised Risk Assessments. Epub: http://www.epa.gov/oppsrrdl/reregistration/atrazine,2002:1,2.
    [11]Moe SJ, Stenseth NC, Smith RH. Effects of a toxicant on population growth rates:sublethal and delayed responses in blowfly population. Funct Ecol,2001,15(6):712-721.
    [12]Rohr JR, Sager T, Sesterhenn TM, et al. Exposure, postexposure, and density-mediated effects of atrazine on amphibians:breaking down net effects into their parts. Environ Health Perspect,2006, 114(1):46-50.
    [13]Akkanen J, Penttinen S, Haitzer M, et al. Bioavailability of atrazine, pyrene and benzo[a]pyrene in European river waters. Chemosphere,2001,45(4-5):453-462.
    [14]Su YH, Zhu YG. Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings. Environ Pollut,2006,139(1):32-39.
    [15]du Preez, van Vuren JH. Bioconcentration of atrazine in the banded tilapia, Tilapia sparrmanii. Comp Biochem Physiol C,1992,101(3):651-655.
    [16]Wiegand C, Pflugmacher S, Giese M, et al. Uptake, toxicity, and effects on detoxication enzymes of atrazine and trifluoroacetate in embryos of zebrafish. Ecotoxicol Environ Saf,2000,45(2):122-131.
    [17]Hock B, Elstner EF. Damaging effects on plants:textbook of plant toxicology,2nd ed. Mannheim: Wissenschaftsverlag,1995.
    [18]Shimabukuro RH, Swanson HR, Walsh WC. Glutathione Conjugation:Atrazine Detoxication Mechanism in Corn. Plant Physiol,1970,46(1):103-107.
    [19]Weete JD, Pillai P, Davies D. Metabolism of atrazine by Spartina alterniflora.2. Waters soluble metabolites. JAgric Food Chem,1980,28(3):636-640.
    [20]Prasad TA, Srinivas T, Reddy SJ, et al. Atrazine toxicity on transport properties of hemocyanin in the crab Oziotelphusa senex senex. Ecotoxicol Environ Saf,1995,30(2):124-126.
    [21]Hussein SY, El-Nasser MA, Ahmed SM. Comparative studies on the effects of herbicide atrazine on freshwater fish Oreochromis niloticus and Chrysichteres auratus at Assiut, Egypt. Bull Environ Contam Toxicol,1996,57(3):503-510.
    [22]Phyu YL, Warne MS, Lim RP. Toxicity and bioavailability of atrazine and molinate to the freshwater shrimp(Paratya australiensis) under laboratory and simulated field conditions. Ecotoxicol Environ Saf,2005,60(2):113-122.
    [23]Neskovic NK, Elezovic I, Karan V, et al. Acute and subacute toxicity of atrazine to carp (Cyprinus carpio L). Ecotoxicol Environ Saf,1993,25(2):173-182.
    [24]Tomlin C. The pesticide manual:a world compendium. Farnham:British Crop Protection Council, 2000,11-19.
    [25]Quemerais CL, Lum KR. Concentrations and Sources of PCBs and Organochlorine Pesticides in St.Lawrence River (Canada) and Its Tributaries. Chmostphere,1994,29(3):591-910
    [26]Hawks R, Taylor LL. Atrazine:Toxicology chapter of the reregistration eligibility decision. Washington:U S EPA,2001:5.
    [27]GreenFacts. Endocrine disruptor glossary:definition of endocrine disruptor. http://www.greenfacts.org/glossary/def/endocrine-disruptors-endocrine-disrupting-chemicals.htm. 2006.
    [28]Birnbaum LS, Fenton SE. Cancer and Developmental Exposure to Endocrine Disruptors. Environ Health Perspect,2003, 111(4):389-394.
    [29]Stoker TE, Guidici DL, Laws SC, et al. The effects of atrazine metabolites on puberty and thyroid function in the male Wistar rat. Toxicol Sci,2002,67(2):198-206.
    [30]Eldridge JC, McConnell CF, Wetzel LT, et al. Role of strain-specific reproductive patterns in the appearance of mammary tumors in atrazine-treated rats. In:Triazine Herbicides Risk Assessment. Washington DC:American Chemical Society,1998:399-413.
    [31]Cooper RL, Stoker TE, Tyrey L, et al. Atrazine disrupts the hypothalamic control of pituitary-ovarian function. Toxicol Sci,2000,53(2):297-307.
    [32]Das PC, McElroy WK, Cooper RL. Alteration of catecholamines in pheochromocytoma (PC12) cells in vitro by the metabolites of chlorotriazine herbicide. Toxicol Sci,2001,59(1):127-137.
    [33]Ben-Jonathan N. Dopamine:a prolactin-inhibiting hormone. Endocr Rev,1985,6(4):564-589.
    [34]Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol,2005, 45:51-88.
    [35]Igarashi A, Ohtsu S, Muroi M, et al. Effects of possible endocrine disrupting chemicals on bacterial component-induced activation of NF-kB. Biol Pharm Bull,2006,29(10):2120-2122.
    [36]Rowe AM, Brundage KM, Schafer R, et al. Immunomodulatory effects of maternal atrazine exposure on male Balb/c mice. Toxicol Appl Pharmacol,2006,214(1):69-77.
    [37]张一宾.世界三嗪类除草剂的发展概况.中国农药,2006(2):25-26.
    [38]李宏园,马红,陶波.除草剂阿特拉津的生态风险分析与污染治理.东北农业大学学报,2006,37(4):552-556.
    [39]高仙灵,卢慧星,李国婧,等.有机磷生物修复研究进展.中国生物工程杂志,2007,27(3):127.
    [40]万年升,顾继东,段舜山.阿特拉津生态毒性与生物降解的研究.环境科学学报,2006,26(4):552-560.
    [41]王辉,赵春燕,李宝明,等.微生物降解阿特拉津的研究进展.土壤通报,2005,36(5):791-794.
    [42]Streisinger G, Walker C, Dower N, et al. Production of clones of homozygous diploid zebrasifh (BrachyDanio rerio). Nature,1981,291(5813):293-296.
    [43]Kimmel CB, Law RD. Cell lineage of zebrafish blastomeres. Ⅰ. Cleavage pattern and cytoplasmic bridges between cells. Dev Biol,1985,108(1):78-85.
    [44]Kimmel CB, Law RD. Cell lineage of zebrafish blastomeres. Ⅱ. Formation of the yolk syncytial layer. Dev Biol,1985,108(1):86-93.
    [45]Kimmel CB, Law RD. Cell lineage of zebrafish blastomeres. Ⅲ. Clonal analyses of the blastula and gastrula stages. Dev Biol,1985,108(1):94-101.
    [46]Kimmel CB, Metcalfe WK, Schabtach E. T reticular interneurons:a class of serially repeating cells in the zebrafish hindbrain. J Comp Neurol,1985,233(3):365-376.
    [47]Westerfield M, McMurray JV, Eisen JS. Identified motoneurons and their innervation of axial muscles in the zebrafish. JNeurosci,1986,6(8):2267-2277.
    [48]Karlstrom RO, Kane DA. A flipbook of zebrafish embryogenesis. Development,1996,123:461.
    [49]Gahtan E, Baier H. Of lasers, mutants, and see-through brains:Functional neuroanatomy in zebrafish. JNeurobiol,2004,59(1):147-161.
    [50]Mullins MC, Hammerschmidt M, Haffter P, et al. Largescale mutagenesis in the zebrafish:in search of genes controlling development in a vertebrate. Curr Biol,1994,4(3):189-202.
    [51]Wienholds E, Schulte-Merker S, Walderich B, et al. Targetselected inactivation of the zebrafish ragl gene. Science,2002,297(5578):99-102.
    [52]Gaiano N, Amsterdam A, Kawakami K, et al. Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature,1996,383(6603):829-832.
    [53]Kawakami K, Takeda H, Kawakami N, et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell,2004,7(1):133-144.
    [54]Nasevicius A, Ekker SC. Effective targeted gene "knockdown" in zebrafish. Nat Genet,2000,
    26(2):216-220.
    [55]Hyatt TM, Ekker SC. Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol,1999,59:117-126.
    [56]Ando H, Okamoto H. Efficient transfection strategy for the spatiotemporal control of gene expression in zebrafish. Mar Biotechnol (NY),2006,8(3):295-303.
    [57]Meng A, Jessen JR, Lin S. Transgenesis. Methods Cell Biol,1999,60:133-148.
    [58]Picker A, Scholpp S, Bohli H, et al. A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promotor in transgenic lines. Development,2002,129(13):3227-3239.
    [59]Beis D, Stainier DY. In vivo cell biology:following the zebrafish trend. Trends Cell Biol,2006, 16(2):105-112.
    [60]Pelegri F. Maternal factors in zebrafish development. Dev Dyn,2003,228(3):535-554.
    [61]Schier AF, Talbot WS. Molecular genetics of axis formation in zebrafish. Annu Rev Genet,2005, 39:561-613.
    [62]Bainter JJ, Boos A, Kroll KL. Neural induction takes a transcriptional twist. Dev Dyn,2001, 222(3):315-327.
    [63]Kimelman D. Mesoderm induction:from caps to chips. Nat Rev Genet,2006,7(5):360-372.
    [64]Montero JA, Heisenberg CP. Gastrulation dynamics:cells move into focus. Trends Cell Biol,2004, 14(11):620-627.
    [65]Lewis KE, Eisen JS. From cells to circuits:development of the zebrafish spinal cord. Prog Neurobiol, 2003,69(6):419-449.
    [66]Wilson SW, Houart C. Early steps in the development of the forebrain. Dev Cell,2004,6(2):167-181.
    [67]Rhinn M, Picker A, Brand M. Global and local mechanisms of forebrain and midbrain patterning. Curr Opin Neurobiol,2006,16(1):5-12.
    [68]Thisse C, Zon LI. Organogenesis-heart and blood formation from the zebrafish point of view. Science, 2002,295(5554):457-462.
    [69]Auman HJ, Yelon D. Vertebrate organogenesis:getting the heart into shape. Curr Biol,2004, 14(4):R152-R153.
    [70]Ober EA, Field HA, Stainier DY. From endoderm formation to liver and pancreas development in zebrafish. Mech Dev,2003,120(1):5-18.
    [71]McManus C. Reversed bodies, reversed brains, and (some) reversed behaviors:of zebrafish and men. Dev Cell,2005,8(6):796-797.
    [72]Raz E. Primordial germ-cell development:the zebrafish perspective. Nat Rev Genet,2003, 4(9):690-700.
    [73]Langheinrich U, Vacun G, Wagner T. Zebrafish embryos express an orthologue of HERG and are sensitive toward a range of QT-prolonging drugs inducing severe arrhythmia. Toxicol Appl Pharmacol, 2003,193(3):370-382.
    [74]Cheng KC, Levenson R, Robishaw JD. Functional genomic dissection of multimeric protein families in zebrafish. Dev Dyn,2003,228(3):555-567.
    [75]Fishman M. Genomics:zebrafish-the canonical vertebrate. Science,2001,294(5545):1290-1291.
    [76]Guo S. Linking genes to brain, behavior and neurological diseases:what can we learn from zebrafish? Genes Brain Behav,2004,3(2):63-74.
    [77]Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science,2002, 298(5601):2188-2190.
    [78]Huysseune A, Thesleff I. Continuous tooth replacement:the possible involvement of epithelial stem cells. Bioessays,2004,26(6):665-671.
    [79]Bikle DD, Halloran BP, Morey-Holton E. Space flight and the skeleton:lessons for the earthbound. Endocrinologist,1997,7(1):10-22.
    [80]Vico L, Collet P, Guignandon A, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet,2000,355(9215):1607-1611.
    [81]Brownlie A, Donovan A, Pratt SJ, et al. Positional cloning of the zebrafish sauternes gene:a model for congenital sideroblastic anaemia. Nat Genet,1998,20(3):244-250.
    [82]Wang H, Long Q, Marty SD, et al. A zebrafish model for hepatoerythropoietic porphyria. Nat Genet, 1998,20(3):239-243.
    [83]Weinstein BM, Stemple DL, Driever W, et al. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med,1995,1(11):1143-1147.
    [84]Malicki J, Neuhauss SC, Schier AF, et al. Mutations affecting development of the zebrafish retina. Development,1996,123:263-273.
    [85]Drummond IA, Majumdar A, Hentschel H, et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development,1998,125(23):4655-4667.
    [86]Sun Z, Amsterdam A, Pazour GJ, et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development,2004,131(16):4085-4093.
    [87]Whitfield T. Zebrafish as a model for hearing and deafness. JNeurobiol,2002,53(2):157-171.
    [88]Goldsmith P, Harris WA. The zebrafish as a tool for understanding the biology of visual disorders. Semin Cell Dev Biol,2003,14(1):11-18.
    [89]Bassett DI, Bryson-Richardson RJ, Daggett DF, et al. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development,2003,130(23):5851-5860.
    [90]Langenau DM, Traver D, Ferrando AA, et al. Myc-induced T cell leukemia in transgenic zebrafish. Science,2003,299(5608):887-890.
    [91]Berghmans S, Murphey RD, Wienholds E, et al, Look AT. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci USA,2005,102(2):407-412.
    [92]Shepard JL, Amatruda JF, Stern HM, et al. A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc Natl Acad Sci USA,2005,102(37):13194-13199.
    [93]Moore JL, Rush LM, Breneman C, et al. Zebrafish genomic instability mutants and cancer
    susceptibility. Genetics,2006,174(2):585-600.
    [94]Alestrom P, Holter JL, Nourizadeh-Lillabadi R. Zebrafish in functional genomics and aquatic biomedicine. Trends Biotechnol,2006,24(1):15-21.
    [95]Handley-Goldstone HM, Grow MW, Stegeman JJ. Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos. Toxicol Sci,2005,85(1):683-693.
    [96]Stickney HL, Schmutz J, Woods IG, et al. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res,2002,12(12):1929-1934.
    [97]Wienholds E, Kloosterman WP, Miska E, et al. MicroRNA expression in zebrafish embryonic development. Science,2005,309(5732):310-311.
    [98]Ekker SC, Larson JD. Morphant technology in model developmental systems. Genetics,2001, 30(3):89-93.
    [99]Xie Y, Chen X, Wagner TE. A ribozyme-mediated, gene "knockdown" strategy for the identification of gene function in zebrafish. Proc Natl Acad Sci USA,1997,94(25):13777-13781.
    [100]Dodd A, Chambers SP, Love DR. Short interfering RNA-mediated gene targeting in the zebrafish. FEBS Lett,2004,561(1-3):89-93.
    [101]Urtishak KA, Choob M, Tian X, et al. Targeted gene knockdown in zebrafish using negatively charged peptide nucleic acid mimics. Dev Dyn,2003,228(3):405-413.
    [102]Oates AC, Bruce AE, Ho RK. Too much interference:injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev Dyn,2000,224(1):20-28.
    [103]McCallum CM, Comai L, Greene EA, et al. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol,2000,123(2):439-442.
    [104]Lee KY, Huang H, Ju B, et al. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat Biotechnol,2002,20(8):795-799.
    [105]Fan L, Crodian J, Liu X, et al. Zebrafish embryo cells remain pluripotent and germline competent for multiple passages in culture. Zebrafish,2004,1:21-26.
    [106]Pan X, Wan H, Chia W, et al. Demonstration of site-directed recombination in transgenic zebrafish using the Cre/loxP system. Transgenic Res,2005,14(2):217-223.
    [107]Sire JY, Allizard F, Babiar O, et al. Scale development in zebrafish(Danio rerio). JAnat,1997, 190(Pt4):545-561.
    [108]Schwerte T, Uberbacher D, Pelster B. Non-invasive imaging of blood cell concentration and blood distribution in zebrafish Danio rerio incubated in hypoxic conditions in vivo. J Exp Biol,2003, 206(Pt8):1299-1307.
    [109]Farber SA, Pack M, Ho SY, et al. Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science,2001,292(5520):1385-1388.
    [110]Clader J. The discovery of ezetimibe:a view from outside the receptor. J Med Chem,2004, 47(1):1-9.
    [111]MacRae CA, Peterson RT. Zebrafish-based small molecule discovery. Chem Biol,2003, 10(10):901-908.
    [112]Peterson RT, Link BA, Dowling JE, et al. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci USA,2000,97(24):12965-12969.
    [113]Ho SY, Pack M, Farber SA. Analysis of small molecule metabolism in zebrafish. Methods Enzymol,2003,364:408-426.
    [114]Tong SK, Chung BC. Analysis of zebrafish cyp19 promoters. J Steroid Biochem Mol Biol,2003, 86(3-5):381-386.
    [115]Peterson RT, Shaw SY, Peterson TA, et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol,2004,22(5):595-599.
    [116]Stern HM, Murphey RD, Shepard JL, et al. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat Chem Biol,2005, 1(7):366-370.
    [117]Fleming A, Sato M, Goldsmith P. High-throughput in vivo screening for bone anabolic compounds with zebrafish. JBiomol Screen,2005,10(8):823-831.
    [118]Kazeto Y, Place AR, Trant JM. Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles. Aquat Toxicol 2004,69(1):25-34.
    [119]Nilsen BM, Berg K, Eidem JK, et al. Development of quantitative vitellogenin-ELISAs for fish test species used in endocrine disruptor screening. Anal Bioanal Chem,2004,378(3):621-633.
    [120]Nagel R. DarT:the embryo test with the zebrafish Danio rerio-a general model in ecotoxicology and toxicology. ALTEX,2002,19(Suppll):38-48.
    [121]Schulte C, Nagel R. Testing acute toxicity in the embryo in zebrafish, BrachyDanio rerio, as an alternative to the acute fish test:preliminary results. Altern Lab Anim,1994,22(1):12-19.
    [122]Strmac M, Braunbeck T. Effects of triphenyltin acetate on survival, hatching success, and liver ultrastructure of early life stages of zebrafish(Danio rerio). Ecotoxicol Environ Saf,1999, 44(1):25-39.
    [123]OECDTG212. Fish, Short-term toxicity test on embryo and sac-fry stages. OECD Guidelines for the Testing of Chemicals (Paris),2007,1(2):1-20.
    [124]Langenau DM, Ferrando AA, Traver D, et al. In vivo tracking of T cell development ablation and engraftment in transgenic zebrafish. Proc Natl Acad Sci USA,2004,101(19):7369-7374.
    [125]Grosser T, Yusuff S, Cheskis E, et al. Developmental expression of functional cyclooxygenases in zebrafish. Proc Natl Acad Sci USA,2002,99(12):8418-8423.
    [126]Parng C. In vivo zebrafish assays for toxicity testing. Curr Opin Drug Discov Devel,2005, 8(1):100-106.
    [127]Wullimann MF, Rupp B, Reichert H. The brain of the zebrafish Danio rerio:an overview. In: Neuroanatomy of the zebrafish brain:a topological atlas. Berlin:Birkhauser,1996:7-17.
    [128]Muto A, Orger MB, Wehman AM, et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet,2005,1(5):e66.
    [129]Haffter P, Granato M, Brand M, et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development,1996,123:1-36.
    [130]Borla MA, Palecek B, Budick S, et al. Prey capture by larval zebrafish:evidence for fine axial motor control. Brain Behav Evol,2002,60(4):207-229.
    [131]McElligott MB, O'malley DM. Prey tracking by larval zebrafish:Axial kinematics and visual control. Brain Behav Evol,2005,66(3):177-196.
    [132]Gahtan E, Sankrithi N, Campos JB, et al. Evidence for a widespread brain stem escape network in zebrafish. JNeurophysiol,2002,87(1):608-614.
    [133]Eaton RC, Lee RK, Foreman MB. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog Neurobiol,2001,63(4):467-485.
    [134]Budick SA, O'Malley DM. Locomotor repertoire of the larval zebrafish:swimming, turning and prey capture. JExp Biol,2000,203(Pt 17):2565-2579.
    [135]Weiss SA, Zottoli SJ, Faber DS, et al. Chronic medullary recordings from freely swimming fish during the C-start escape. Soc Neurosci Abstr,2004, No 672.4.61.
    [136]Foreman MB, Eaton RC. The direction change concept for reticulospinal control of goldfish escape. JNeurosci,1993,13(10):4101-4113.
    [137]Canfield JG. Functional evidence for visuospatial coding in the Mauthner neuron. Brain Behav Evol,2006,67(4):188-202.
    [138]Metcalfe WK, Mendelson B, Kimmel CB. Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol,1986,251(2):147-159.
    [139]Kimmel CB, Westerfield M. Primary neurons of the zebrafish. In:Signals and sense:Local and global order in perceptual maps. New York:Wiley-Liss,1990:561-588.
    [140]Myers PZ, Eisen JS, Westerfield M. Development and axonal outgrowth of identified motoneurons in the zebrafish. JNeurosci,1986,6(8):2278-2289.
    [141]Fetcho JR, O'Malley DM. Visualization of active neural circuitry in the spinal cord of intact zebrafish. J Neurophysiol,1995,73(1):399-406.
    [142]Svoboda KR, Linares AE, Ribera AB. Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development,2001,128(18):3511-3520.
    [143]Ritter DA, Bhatt DH, Fetcho JR. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. JNeurosci,2001,21 (22):8956-8965.
    [144]Neuhauss SC, Biehlmaier O, Seeliger MW, et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. JNeurosci,1999,19(19):8603-8615.
    [145]Balm PH, Groneveld D. The melanin-concentrating hormone system in fish. Ann NY Acad Sci, 1998,839:205-209.
    [146]Kelsh RN, Brand M, Jiang YJ, et al. Zebrafish pigmentation mutations and the processes of neural crest development. Development,1996,123:369-389.
    [147]Kay JN, Finger-Baier KC, Roeser T, et al. Retinal ganglion cell genesis requires lakritz, a zebrafish atonal homolog. Neuron,2001,30(3):725-736.
    [148]Li L, Dowling JE. A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proc Natl Acad Sci USA,1997,94(21):11645-11650.
    [149]Kratz E, Dugas JC, Ngai J. Odorant receptor gene regulation:implications from genomic organization. Trends genet,2002,18(1):29-34.
    [150]Laberge F, Hara TJ. Neurobiology of fish olfaction:a review. Brain Res Brain Res Rev,2001, 36(1):46-59.
    [151]Michel WC, Sanderson MJ, Olson JK, et al. Evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system. JExp Biol,2003,206(Pt 10):1697-1706.
    [152]Granato M, van Eeden FJ, Schach U, et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development,1996,123:399-413.
    [153]Colwill RM, Raymond MP, Ferreira L, et al. Visual discrimination learning in zebrafish (Danio rerio). Behav Processes,2005,70(1):19-31.
    [154]Turnell ER, Mann KD, Rosenthal GG, et al. Mate choice in zebrafish(Danio rerio) analyzed with video-stimulus techniques. Biol Bull,2003,205(2):225-226.
    [155]Mann KD, Turnell ER, Atema J, et al. Kin recognition in juvenile zebrafish(Danio rerio) based on olfactory cues. Biol Bull,2003,205(2):224-225.
    [156]Andrew RJ. Behavioral development and lateralization. In:Comparative vertebrate lateralization. London:Oxford University Press.2002:157-205.
    [157]Miklosi A, Andrew RJ, Savage H. Behavioural lateralization of the tetrapod type in the zebrafish (Brachydanio rerio). Physiol Behav,1998,63(1):127-135.
    [158]Gerlai R, Lahav M, Guo S, et al. Drinks like a fish:zebra fish(Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav,2000,67(4):773-782.
    [159]Ninkovic J, Bally-Cuif L. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods,2006,39(3):262-274.
    [160]Serra EL, Medalha CC, Mattioli R. Natural preference of zebrafish(Danio rerio) for a dark environment. Braz J Med Biol Res,1999,32(12):1551-1553.
    [161]Darland T, Dowling JE. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci USA,2001,98(20):11691-11696.
    [162]Stoker TE, Guidici DL, Laws SC, et al. The effects of atrazine metabolites on puberty and thyroid function in the male Wistar rat. Toxicol Sci,2002,67(2):198-206.
    [163]Dlugos CA, Rabin RA. Ethanol effects on three strains of zebrafish:model system for genetic investigations. Pharmacol Biochem Behav,2003,74(2):471-480.
    [164]Igarashi A, Ohtsu S, Muroi M, et al. Effects of possible endocrine disrupting chemicals on bacterial component-induced activation of NF-kB. Biol Pharm Bull,2006,29(10):2120-2122.
    [165]Carvan MJ 3rd, Loucks E, Weber DN, et al. Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol,2004,26(6):757-768.
    [166]Williams FE, White D, Messer WS. A simple spatial alternation task for assessing memory function in zebrafish. Behav Process,2002,58(3):125-132.
    [167]Levin ED, Chen E. Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol, 2004,26(6):731-735.
    [168]Pradel G, Schmidt R, Schachner M. Involvement of L1.1 in memory consolidation after active avoidance conditioning in zebrafish. JNeurobiol,2000,43(4):389-403.
    [169]Bi G, Poo M. Synaptic modification by correlated activity:Hebb's postulate revisited. Annu Rev Neurosci,2001,24:139-166.
    [170]Hall D, Suboski MD. Visual and olfactory stimuli in learned release of alarm reactions by zebra danio fish (BrachyDanio rerio). Neurobiol Learn Mem,1995,63(3):229-240.
    [171]Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol,2002,64:355-405.
    [172]Desai NS, Cudmore RH, Nelson SB, et al. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat Neurosci,2002,5(8):783-789.
    [173]Anichtchik OV, Kaslin J, Peitsaro N, et al. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. JNeurochem,2004,88(2):443-453.
    [174]Engeszer RE, Ryan MJ, Parichy DM. Learned social preference in zebrafish. Curr Biol,2004, 14(10):881-884.
    [175]Bilotta J, Barnett JA, Hancock L,et al. Ethanol exposure alters zebrafish development:a novel model of fetal alcohol syndrome. Neurotoxicol Teratol,2004,26(6):737-743.
    [176]Bourne Y, Taylor P, Marchot P. Acetylcholinesterase inhibition by fasciculin:crystal structure of the complex. Cell,1995,83(3):503-512.
    [177]Harel M, Kryger G, Rosenberry TL, et al. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors. Protein Sci,2000, 9(6):1063-1072.
    [178]Kryger G, Harel M, Giles K, et al. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr D Biol Crystallogr,2000,56(Pt 11):1385-1394.
    [179]Dvir H, Wong DM, Harel M, et al.3D structure of Torpedo californica acetylcholinesterase complexed with huprine X at 2.1 A resolution:kinetic and molecular dynamic correlates. Biochemistry, 2002,41(9):2970-2981.
    [180]Nair HK, Seravalli J, Arbuckle T, et al. Molecular recognition in acetylcholinesterase catalysis: free-energy correlations for substrate turnover and inhibition by trifluoro ketone transition-state analogs. Biochemistry,1994,33(28):8566-8576.
    [181]Shafferman A, Kronman C, Flashner Y, et al. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem,1992, 267(25):17640-17648.
    [182]Li Y, Camp S, Rachinsky TL, et al. Gene structure of mammalian acetylcholinesterase Alternative exons dictate tissue-specific expression. JBiol Chem,1991,266(34):23083-23090.
    [183]Luo ZD, Camp S, Mutero A, et al. Splicing of 5'introns dictates alternative splice selection of acetylcholinesterase pre-mRNA and specific expression during myogenesis. J Biol Chem,1998, 273(43):28486-28495.
    [184]Donger C, Krejci E, Serradell AP, et al. Mutation in the human acetylcholinesterase-associated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with end-plate acetylcholinesterase deficiency (Type Ic). Am J Hum Genet,1998,63(4):967-975.
    [185]Massoulie J, Anselmet A, Bon S, et al. Acetylcholinesterase:C-terminal domains, molecular forms and functional localization. JPhysiol Paris,1998,92(3-4):183-190.
    [186]Futerman AH, Low MG, Ackermann KE, et al. Identification of covalently bound inositol in the hydrophobic membrane-anchoring domain of Torpedo acetylcholinesterase. Biochem Biophys Res Commun,1985,129(1):312-317.
    [187]Bertrand C, Chatonnet A, Takke C, et al. Zebrafish acetylcholinesterase is encoded by a single gene localized on linkage group 7. Gene structure and polymorphism, molecular forms and expression pattern during development. JBiol Chem,2001,276(1):464-474.
    [188]Polinsky RJ, Holmes KV, Brown RT, et al. CSF acetylcholinesterase levels are reduced in multiple system atrophy with autonomic failure. Neurology,1989,39(1):40-44.
    [189]Wright CI, Geula C, Mesulam MM. Neurological cholinesterases in the normal brain and in Alzheimer's disease:relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol,1993,34(3):373-384.
    [190]Betz H, Bourgeois JP, Changeux JP. Evolution of cholinergic proteins in developing slow and fast skeletal muscles in chick embryo. J Physiol,1980,302:197-218.
    [191]Layer PG. Cholinesterases preceding major tracts in vertebrate neurogenesis. Bioessays,1990, 12(9):415-420.
    [192]Kreutzberg GW. Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc Natl Acad Sci USA,1969,62(3):722-728.
    [193]Bigbee JW, Sharma KV, Chan EL, et al. Evidence for the direct role of acetylcholinesterase in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res,2000,861(2):354-362.
    [194]Grifman M, Galyam N, Seidman S, Soreq H. Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc Natl Acad Sci USA,1998,95(23):13935-13940.
    [195]Koenigsberger C, Chiappa S, Brimijoin S. Neurite differentiation is modulated in neuroblastoma cells engineered for altered acetylcholinesterase expression. JNeurochem,1997,69(4):1389-1397.
    [196]de la Escalera S, Bockamp EO, Moya F,et al. Characterization and gene cloning of neurotactin, a Drosophila transmembrane protein related to cholinesterases. EMBOJ,1990,9(11):3593-3601.
    [197]Darboux I, Barthalay Y, Piovant M, et al. The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties. EMBO J,1996, 15(18):4835-4843.
    [198]Sternfeld M, Ming G, Song H, et al. Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini. J Neurosci,1998,18(4):1240-1249.
    [199]Scheiffele P, Fan J, Choih J, et al. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell,2000,101(6):657-669.
    [200]Whitehouse PJ, Price DL, Clark AW, et al. Alzheimer disease:evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol,1981,10(2):122-126.
    [201]Younkin SG, Goodridge B, Katz J, et al. Molecular forms of acetylcholinesterases in Alzheimer's disease. Fed Proc,1986,45(13):2982-2988.
    [202]Fishman EB, Siek GC, MacCallum RD, et al. Distribution of the molecular forms of acetylcholinesterase in human brain:alterations in dementia of the Alzheimer type. Ann Neurol,1986, 19(3):246-252.
    [203]Mesulam M. Alzheimer plaques and cortical cholinergic innervation. Neuroscience,1986, 17(1):275-276.
    [204]Inestrosa NC, Alvarez A, Perez CA, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils:possible role of the peripheral site of the enzyme. Neuron,1996,16(4):881-891.
    [205]Alvarez A, Alarcon R, Opazo C, et al. Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. JNeurosci,1998,18(9):3213-3223.
    [206]Geula C, Mesulam MM. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord,1995,2(suppl2):23-28.
    [207]Sberna G, Saez-Valero J, Beyreuther K, et al. The amyloid beta-protein of Alzheimer's disease increases acetylcholinesterase expression by increasing intracellular calcium in embryonal carcinoma P19 cells. J Neurochem,1997,69(3):1177-1184.
    [208]Sberna G, Saez-Valero J, Li QX, et al. Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the beta-amyloid protein precursor of Alzheimer's disease. JNeurochem,1998,71(2):723-731.
    [209]Lev-Lehman E, Deutsch V, Eldor A, et al. Immature human megakaryocytes produce nuclear-associated acetylcholinesterase. Blood,1997,89(10):3644-3653.
    [210]Paoletti F, Mocali A, Vannucchi AM. Acetylcholinesterase in murine erythroleukemia (Friend) cells:evidence for megakaryocyte-like expression and potential growth-regulatory role of enzyme activity. Blood,1992,79(11):2873-2879.
    [211]Kawashima K, Fujii T. Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther,2000, 86(1):29-48.
    [212]Soreq H, Patinkin D, Lev-Lehman E, et al. Antisense oligonucleotide inhibition of acetylcholinesterase gene expression induces progenitor cell expansion and suppresses hematopoietic apoptosis ex vivo. Proc Natl Acad Sci USA,1994,91(17):7907-7911.
    [213]Brown LM, Blair A, Gibson R, et al. Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res,1990,50(20):6585-6591.
    [214]Lev-Lehman E, Evron T, Broide RS, et al. Synaptogenesis and myopathy under acetylcholinesterase overexpression. J Mol Neurosci,2000,14(1-2):93-105.
    [215]Stephenson J, Czepulkowski B, Hirst W, et al. Deletion of the acetylcholinesterase locus at 7q22 associated with myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Leuk Res, 1996,20(3):235-241.
    [216]Zhang XJ, Yang L, Zhao Q, et al. Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ,2002,9(8):790-800.
    [217]Yang L, He HY, Zhang XJ. Increased expression of intranuclear AChE involved in apoptosis of SK-N-SH cells. Neurosci Res,2002,42(4):261-268.
    [218]Camp S, Taylor P. Structure and Function of Cholinesterases and Related Proteins. New York: Plenim,1998:51-55.
    [219]Chan RY, Adatia FA, Krupa AM, et al. Increased expression of acetylcholinesterase T and R transcripts during hematopoietic differentiation is accompanied by parallel elevations in the levels of their respective molecular forms. JBiol Chem,1998,273(16):9727-9733.
    [220]Grisaru D, Deutsch V, Shapira M, et al. ARP, a peptide derived from the stress-associated acetylcholinesterase variant, has hematopoietic growth promoting activities. Mol Med,2001, 7(2):93-105.
    [221]Atanasova E, Chiappa S, Wieben E, et al. Novel messenger RNA and alternative promoter for murine acetylcholinesterase. JBiol Chem,1999,274(30):21078-21084.
    [222]Chan RY, Boudreau-Lariviere C, Angus LM, et al. An intronic enhancer containing an N-box motif is required for synapse-and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc Natl Acad Sci USA,1999,96(8):4627-4632.
    [223]Shapira M, Tur-Kaspa I, Bosgraaf L, et al. A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet,2000, 9(9):1273-1281.
    [224]Kaufer D, Friedman A, Seidman S, et al. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature,1998,393(6683):373-377.
    [225]Schober A, Minichiello L, Keller M, et al. Reduced acetylcholinesterase (AChE) activity in adrenal medulla and loss of sympathetic preganglionic neurons in TrkA-deficient, but not TrkB-deficient, mice. J Neurosci,1997,17(3):891-903.
    [226]Shohami E, Kaufer D, Chen Y, et al. Antisense prevention of neuronal damages following head injury in mice. J Mol Med,2000,78(4):228-236.
    [227]Burrone J, Murthy VN. Synaptic gain control and homeostasis. Curr Opin Neurobiol,2003, 13(5):560-567.
    [228]Erb C, Troost J, Kopf S, et al. Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase. JNeurochem,2001,77(2):638-646.
    [229]Okumura T, Takasu N, Ishimatsu S, et al. Report on 640 victims of the Tokyo subway sarin attack. Ann Emerg Med,1996,28(2):129-135.
    [230]Anglister L, Stiles JR, Salpeter MM. Acetylcholinesterase density and turnover number at frog neuromuscular junctions, with modeling of their role in synaptic function. Neuron,1994, 12(4):783-794.
    [231]Sanders EJ, Wride MA. Programmed cell death in development. Int Rev Cytol,1995, 163:105-173.
    [232]Choi DW. Excitotoxic cell death. JNeurobiol,1992,23(9):1261-1276.
    [233]Trump BF, Berezesky IK. Calcium-mediated cell injury and cell death. FASEB J,1995, 9(2):219-228.
    [234]Vaux DL, Korsmeyer SJ. Cell death in development. Cell,1999,96(2):245-254.
    [235]Cole LK, Ross LS. Apoptosis in the developing zebrafish embryo. Dev Biol,2001, 240(1):123-142.
    [236]Yamaguchi K, Nagai S, Ninomiya-Tsuji J, et al, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J,1999, 18(1):179-187.
    [237]Cox RT, McEwen DG, Myster DL, et al. A screen for mutations that suppress the phenotype of Drosophila armadillo, the beta-catenin homolog. Genetics,2000,155(4):1725-1740.
    [238]Lin A. Activation of the JNK signaling pathway:breaking the brake on apoptosis. Bioessays, 2003,25(1):17-24.
    [239]Thibert C, Teillet MA, Lapointe F, et al. Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science,2003,301(5634):843-846.
    [240]Datta SR, Ranger AM, Lin MZ, et al. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell,2002,3(5):631-643.
    [241]Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell,1986,44(6):817-829.
    [242]Inohara N, Nunez G. Genes with homology to mammalian apoptosis regulators identified in zebrafish. Cell Death Differ,2000,7(5):509-510.
    [243]Schulze-Osthoff K, Ferrari D, Los M, et al. Apoptosis signaling by death receptors. Eur J Biochem,1998,254(3):439-459.
    [244]Yeo W, Gautier J. Early neural cell death:Dying to become neurons. Dev Biol,2004, 274(2):233-244.
    [245]Behra M, Cousin X, Bertrand C, et al. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci,2002,5(2):111-118.
    [246]Barde Y. Trophic factors and neuronal survival. Neuron,1989,2(6):1525-1534.
    [247]Oppenheim RW. The neurotrophic theory and naturally occurring motoneuron death. Trands Neurosci,1989,12(7):252-255.
    [248]Reyes R, Haendel M, Grant D, et al. Slow degeneration of zebrafish Rohon-Beard neurons during programmed cell death. Dev Dyn,2004,229(1):30-41.
    [249]Frotscher M. Dual role of Cajal-Retzius cells and reelin in cortical development. Cell Tissue Res, 1997,290(2):315-322.
    [250]Williams JA, Holder N. Cell turnover in neuromasts of zebrafish larvae. Hear Res,2000, 143(1-2):171-181.
    [251]Nicholson DW, Thornberry NA. Caspases:killer proteases. Trends Biochem Sci,1997, 22(8):299-306.
    [252]Thornberry NA, Lazebnik Y. Caspases:enemies within. Science,1998,281(5381):1312-1316.
    [253]Nunez G, Benedict MA, HuY, et al. Caspases:the proteases of the apoptotic pathway. Oncogene, 1998,17(25):3237-3245.
    [254]Colussi PA, Kumar S. Targeted disruption of caspase genes in mice:what they tell us about the functions of individual caspases in apoptosis. Immunol Cell Biol,1998,77(1):58-63.
    [255]Cryns V, Yuan J. Proteases to die. Genes Dev,1998,12(11):1551-1570.
    [256]Yabu T, Kishi S, Okazaki T, et al. Characterization of zebrafish caspase-3 and induction of apoptosis through ceramide generation in fish fathead minnow tailbud cells and zebrafish embryo. Biochem J,2001,360(Ptl):39-47.
    [257]Yabu T, Todoriki S, Yamashita M. Stress-induced apoptosis by heat shock, UV and g-ray irradiation in zebrafish embryos detected by increased caspase activity and whole mount TUNEL staining. Fish Sci,2001,67(2):333-340.
    [258]Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apol, and DR3 and is lethal prenatally. Immunity,1998,9(2):267-276.
    [259]Yeh WC, Pompa JL, McCurrach ME, et al. FADD:essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science,1998,279(5358):1954-1958.
    [260]Yoshida H, Kong YY, Yoshida R, et al. Apafl is required for mitochondrial pathways of apoptosis and brain development. Cell,1998,94(6):739-750.
    [261]Chen MC, Gong HY, Cheng CY, et al. Cloning and characterization of a novel nuclear Bcl-2 family protein, zfMcl-la, in zebrafish embryo. Biochem Biophys Res Commun,2000,279(2):725-731.
    [262]Houde ED. Fish early life dynamics and recruitment variability. Am Fish Soc Symp,1987, 2(1):17-29.
    [263]Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol,2000, 10(2):73-80.
    [264]Takeda Y, Tashima M, Takahashi A, et al. Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3. J Biol Chem,1999, 274(15):10654-10660.
    [265]Buss RR, Sun W, Oppenheim RW. Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci,2006,29:1-35.
    [266]Kimmel CB, Ballard WW, Kimmel SR, et al. Stages of embryonic development of the zebrafish. Dev Dyn,1995,203(3):203,253-310.
    [267]Levin ED, Swain HA, Donerly S, et al. Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicol Teratol,2004,26(6):719-723.
    [268]Briggs JP. The zebrafish:a new model organism for integrative physiology. Am J Physiol Regul Integr Comp Physiol.2002,282(1):R3-9.
    [269]McElligott MB, O'malley DM. Prey tracking by larval zebrafish:Axial kinematics and visual control. Brain Behav Evol,2005,66(3):177-196.
    [270]Buss RR, Drapeau P. Physiological properties of zebrafish embryonic red and white muscle fibers during early development. J Neurophysiol,2000,84(3):1545-1557.
    [271]Parnetti L. Clinical pharmacokinetics of drugs for Alzheimer's disease. Clin Pharmacokinet,1995, 29(2):110-129.
    [272]Linton DM, Philcox D. Myasthenia gravis. Dis Mon,1990,36(11):593-637.
    [273]Rowe AM, Brundage KM, Schafer R, et al. Immunomodulatory effects of maternal atrazine exposure on male Balb/c mice. Toxicol Appl Pharmacol,2006,214(1):69-77.
    [274]Linney E, Upchurch L, Donerly S. Zebrafish as a neurotoxicological model. Neurotoxicol Teratol, 2004,26(6):709-718.
    [275]Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol,2000, 10(2):73-80.
    [276]Gahtan E, Baier H. Of lasers, mutants, and see-through brains:Functional neuroanatomy in zebrafish. JNeurobiol,2004,59(1):147-161.
    [277]Appel B, Chitnis A. Neurogenesis and specification of neuronal identity. Results Probl Cell Differ,2002,40:237-251.
    [278]Kimmel CB. Patterning the brain of the zebrafish embryo. Annu Rev Neurosci,1993,16:707-732.
    [279]Mueller T, Wullimann MF. Anatomy of neurogenesis in the early zebrafish brain. Brain Res Dev Brain Res,2003,140(1):137-155.
    [280]Brustein E, Saint-Amant L, Buss RR, et al. Steps during the development of the zebrafish locomotor network. J Physiol Paris,2003,97(1):77-86.
    [281]Laughlin S. The role of sensory adaptation in the retina. JExp Biol,1989,146:39-62.
    [282]Spitzer NC, Kingston PA, Manning TJ, et al. Outside and in:development of neuronal excitability. Curr Opin Neurobiol,2002,12(3):315-323.
    [283]Borodinsky LN, Root EM, Cronin JA, et al. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature,2004,429(6991):515-517.
    [284]Oppenheim R. Cell death during development of the nervous system. Annu Rev Neurosci,1991, 14:453-501.
    [285]Moody WJ, Bosma MM. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol Rev,2005,85(3):883-941.
    [286]Mienville JM, Pesold C. Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal-Retzius cell death. JNeurosci,1999,19(5):1636-1646.
    [287]Kilb W, Luhmann HJ. Characterization of a hyperpolarization-activated inward current in Cajal-Retzius cells in rat neonatal neocortex. J Neurophysiol,2000,84(3):1681-1691.
    [288]Luhmann HJ, Reiprich RA, Hanganu I, et al. Cellular physiology of the neonatal rat cerebral cortex:intrinsic membrane properties, sodium and calcium currents. J Neurosci Res,2000, 62(4):574-584.
    [289]Ribera AB, Nusslein-Volhard C. Zebrafish touch-insensitive mutants reveal an essential role for the developmental regulation of sodium current. J Neurosci,1998,18(22):9181-9191.
    [290]Novak. AE, Ribera AB. Different evolutionary strategies in mammals and fish lead to simiar diversity in Navl gene number. Soc Neurosci Abstr,2004:634.1.
    [291]Novak AE, Taylor AD, Pineda RH, et al. Embryonic and larval expression of zebrafish voltage-gated sodium channel alpha-subunit genes. Dev Dyn,2006,235(7):1962-1973.
    [292]Tsai CW, Tseng JJ, Lin SC, et al. Primary structure and developmental expression of zebrafish sodium channel Na (v) 1.6 during neurogenesis. DNA Cell Biol,2001,20(5):249-255.
    [293]Pineda RH, Heiser RA, Ribera AB. Developmental, molecular, and genetic dissection of INa in vivo in embryonic zebrafish sensory neurons. J Neurophysiol,2005,93(6):3582-3593.
    [294]Pineda RH, Svoboda KR, Wright MA, et al. Knockdown of Navl.6a Na+ channels affects zebrafish motoneuron development. Development,2006,133(19):3827-3836.
    [295]Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 2000,4th ed., Univ. of Oregon Press, Eugene.
    [296]Detrich HW3rd, Westerfield M, Zon LI. The zebrafish:cellular and developmental biology. Methods Cell Biol,2004,76:209-236.
    [297]Detrich HW3rd, Westerfield M, Zon LI. The zebrafish:cellular and developmental biology. Methods Cell Biol,2004,76:75-86.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.