碱和超声波促进污泥厌氧水解酸化—好氧减量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用超声波对剩余污泥进行破解,可以促使污泥胞内外物质溶出进入液相,既能促进后续污泥的厌氧水解酸化,还有可能形成新的污泥减量工艺。目前国内外破解污泥大多采用声能密度为0.096 W/mL至2 W/mL的超声波,声能密度较高能耗也较大,在实际工程中难以推广。本文采用25 kHz、0.05 W/mL的较低声能密度的超声波破解加碱后的剩余污泥,研究破解对后续厌氧酸化的促进作用,并探索将酸化后的污泥回流至曝气池进行隐性生长实现污泥减量的可能性。
     实验结果表明,污泥经加碱超声波破解后,污泥SCOD溶出率随着加碱量和超声波作用时间的增加而增加。厌氧酸化过程中,对照组总VFAs产量一直处于较低水平,而经预处理后的污泥最大产酸量集中出现在厌氧酸化的第48~88 h,说明加碱后超声波破解对污泥厌氧水解酸化有较好的促进作用。
     剩余污泥酸化后重新回流入曝气池进行隐性生长,可以实现污泥的减量。污泥酸化-好氧减量工艺在30 d的运行中,除了取样分析,基本没有外排剩余污泥,而对照组在此期间共排放干污泥86.1 g。酸化污泥重新回流入曝气池后使测试组进水COD平均值比对照组增加147%,氨氮增加32%,TP增加294%,系统出水TP值成倍增加,需考虑污泥酸化液除磷的问题。酸化污泥回流后使测试组曝气池混合液污泥浓度平均值增加725 mg/L,VSS/SS值比对照组低。长时间的运行后,污泥减量系统内的污泥微生物活性有所下降,建议每隔一定时间对其进行少量排泥,以保证微生物活性。
Ultrasonic can be applied to disintegrate the waste activated sludge(WAS), so that the substances inside and outside the cells release into the liquid phase. After disintegration, the rate of subsequent anaerobic hydrolysis and acidification was improved and a new excess sludge reduction process may be found. At present, ultrasonic densities ranging from 0.096 W/mL to 2 W/mL was the most commonly applied method used for sludge disintegrate. However, higher ultrasonic density resulted in higher energy consumption, which made it’s hard for practical engineering applying. In this paper, ultrasonic with relatively lower density (25 kHz, 0.05 W/mL) was employed to disintegrate the sludge that alkali was added in before. The promoting effects of disintegrate to sludge hydrolysis and acidification with the possibility of recycling the acidified sludge to the aeration bank to realize sludge reduction based on the lysis growth were studied.
     It has been found that the soluble chemical oxygen demand (SCOD) leaching rate increase with the alkali amount and ultrasonic disintegration time. During the procedure of anaerobic hydrolysis and acidification, the control total volatile fatty acids(VFAs) production has been at a low level, while with proper pretreatment the VFAs concentration came to the highest mostly after 48 to 88 hours, demonstrated that ultrasonic disintegrate after adding alkali have well promoting effect on sludge acidification.
     Excess sludge reduction process based on the lysis growth can be realized by recycling the acidified sludge back to the aeration tank. Acidification-aerobic sludge reduction process operated stably 30 d without any sludge discharging except sampling analysis however; the control discharges 86.1 g dry sludge during this period. The recycling of acidified sludge increase the average COD、ammonia nitrogen and total phosphorus(TP) by 147%、32% and 294%, respectively;and, a duplicated total phosphorus vaule in effluent was observed, phosphorus removal form acidified sludge should be considered. Recycling of acidified sludge increase the sludge concentration in the aeration tank by 725 mg/L. After a long time operation, the microorganism’s activity in the sludge reduction system declined. It’s suggested that some sludge is discharged for a certain time to keep the activity of microorganisms.
引文
[1]张光明,张信芳,张盼月.城市污泥资源化技术进展[M].北京:化学工业出版社,2006.
    [2]张辰.污泥处置处理技术研究进展[M].北京:化学工业出版社,2005:93.
    [3]中华人民共和国环境保护部.2007年中国环境状况公报.北京,2008.
    [4]国家环保总局.2003年中国环境状况公报.北京,2004.
    [5]国家环保总局.2004年中国环境状况公报.北京,2005.
    [6]国家环保总局.2005年中国环境状况公报.北京,2006.
    [7]国家环保总局.2006年中国环境状况公报.北京,2007.
    [8] Low E U,Chase H A,Milner M G,et al.Uncoupling of metabolism to reduce biomass production in the activated sludge process[J].Water Research,2000,34(12):3204-3212.
    [9]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2005.
    [10]张雪英,周立祥.江苏地区城市污水处理厂污泥泥质研究I-污泥养分特征与供肥潜力[J].农业环境科学学报,2004,23(1):110-114.
    [11]张自杰,林荣忱,金儒霖.排水工程下册(第四版)[M].北京:中国建筑工业出版社,2000.
    [12]汪群慧.固体废物处理及资源化[M].北京:化学工业出版社,2004.
    [13]赵庆良,刘雨,马放,等.废水处理与资源化新工艺[M].北京:中国建筑出版社,2006.
    [14] Liu Y,Tay J H.Strategy for minimization of excess sludge production from the activated sludge process[J].Biotechnology Advances,2001,19(2):97-107.
    [15] Chen G H,Mo H K,Liu Y.Utilization of a metabolic uncoupler,3,3′,4′,5-tetrachlorosalicylanilide(TCS) to reduce sludge growth in activated sludge culture [J].Water Research,2002,36(8):2077-2083.
    [16] Van Loosdrecht M C M,Henze M.Maintenance,endogeneous respiration,lysis,decay and predation [J].Water Science and Technology,1999,39(1):107-117.
    [17] Kepp U,Machenbach I,Weisz N,et al.Enhanced stabilisation of sewage sludge through thermal hydrolysis-three years of experience with full scale plant[J].Water Science and Technology,2000,42(9):89-96.
    [18] Rocher M,Goma G,Begue A P,et al.Towards a reduction in excess sludge production in activated sludge processes:biomass physicochemical treatment andbiodegradation[J].Applied Microbiology and Biotechnology,1999,51(6):883-890.
    [19] Rocher M,Roux G,Goma G,et al.Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment[J].Water Science and Technology,2001,44(2-3):437-444.
    [20] Neyens E,Baeyens J,Creemers C.Alkaline thermal sludge hydrolysis[J].Journal of Hazardous Materials,2003,97(1-3):295-314.
    [21]应崇福.超声学[M].北京:科学出版社,1990.
    [22] Harrison S L.Bacterial cell disruption:A key unit operation in the recovery of intracellular products[J].Biotechnology Advances,1991,9(2):217-240.
    [23] Tiehm A,Nickel K,Zellhorn M,et al.Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J].Water Research,2001,35(8):2003-2009.
    [24] Zhang G M,Zhang P Y,Yang J M,et al.Ultrasonic reduction of excess sludge from the activated sludge system[J].Journal of Hazardous Materials,2007,145(3):515-519.
    [25] Zhang G M,He J G,Zhang P Y,et al.Ultrasonic reduction of excess sludge from activated sludge system II:Urban sewage treatment[J].Journal of Hazardous Materials,2009,164(2-3):1105-1109.
    [26] Yasui H,Shibata M.An innovative approach to reduce excess sludge production in the activated sludge process[J].Water Science and Technology,1994,30(9): 11-20.
    [27] Saby S,Djafer M,Chen G H.Feasibility of using a chlorination step to reduce excess sludge in activated sludge process[J].Water Research,2002,36(3): 656-666.
    [28] Low E W,Chase H A.The use of chemical uncouplers for reducing biomass production during biodegradation[J].Water Science and Technology,1998,37(4-5):399-402.
    [29] Liu Y.Effect of chemical uncoupler on the observed growth yield in batch culture of activated sludge[J].Water Research,2000,34(7):2025-2030.
    [30] Yang X F,Xie M L,Liu Y.Metabolic uncouplers reduce excess sludge production in an activated sludge process[J].Process Biochemistry,2003,38(9): 1373-1377.
    [31] Strand S E,Harem G N,Stensel H D.Activated-sludge yield reduction using chemical uncouplers[J].Water Environment Research,1999,71(4-5):454-458.
    [32]叶芬霞,陈英旭,冯孝善.化学解耦联剂对活性污泥工艺中污泥产率的影响[J].环境科学,2003,24(6):112-115.
    [33]叶芬霞,陈英旭,冯孝善.化学解耦联剂对活性污泥工艺中剩余污泥的减量作用[J].环境科学学报,2004,24(3):394-399.
    [34] Abbassi B,Dullstein S,R?biger N.Minimizatinn of excess sludge production by increase of oxygen concentration in activated sludge flocs:experimental and theoretical approach[J].Water Research,2000,34(1):139-146.
    [35] Liu Y,Tay J H.The essential role of hydrodynamic shear force in the formation of biofiim and granular sludge[J].Water Research,2002,36(7):1653-1665.
    [36] Liu Y,Tay J H.Metabolic response of biofilm to shear stress in fixed-film culture[J].Journal of Applied Microbiology,2001,90(3):337-342.
    [37]王琳,王宝贞.污泥减量技术的新进展[J].污染防治技术,2002,13(1):48-50.
    [38]冯权,邢新会,刘则华.以剩余污泥减量化为目标的废水生物处理技术研究进展[J].化工进展,2004,23(8):832-836.
    [39] Copp J B,Dold P L.Comparing sludge production under aerobic and anoxic condition[J].Water Science and Technology,1998,38(1):285-294.
    [40]张全,陆鲁,许德俊.剩余污泥微氧消解工艺研究[J].上海环境科学,1995,14(11):15-16.
    [41]朱振超,周路.剩余有机污泥―零排放‖工程性实验[J].上海环境科学,1996,15(8):40-41.
    [42] Chen G H,Yip W K,Mo H K,et al.Effect of sludge fasting/feasting on growth of activated sludge cultures[J].Water Research,2001,35(4):1029-1037.
    [43] Lee N M,Welander T.Reducing sludge production in aerobic wastewater treatment through manipulation of the ecosystem[J].Water Research,1996, 30(8):1781-1790.
    [44] Rensink J H,Rulkens W H.Using metazoa to reduce sludge production[J].Water Science and Technology,1997,36(11):171-179.
    [45] Ratsak C H.Effects of Nais elinguis on the performance of an activated sludge plant[J].Hydrobiologia,2001,463(1-3):217-222.
    [46]杨建.生物滤池污泥的生态稳定试验研究[J].上海环境科学,2002,21(9):533-535.
    [47] Wei Y S,Van Houten R T,Borger A R,et al.Minimization of excess sludge production for biological wastewater treatment[J].Water Research,2003,37(18): 4453-4467.
    [48] Canales A,Pareilleux A,Rols J L,et al.Decreased sludge production strategy for domestic wastewater treatment[J].Water Science and Technology,1994,30(8):96-106.
    [49]何圣兵,王宝贞,王琳,等.厌氧-好氧生物膜处理污水、污泥的研究[J].中国给水排水,2002,18(9):39-41.
    [50] Song K G,Choung Y K,Ahn K H,et al.Performance of membrane bioreactor system with sludge ozonation process for minimization of excess sludge production[J].Desalination,2003,157(1-3):353-359.
    [51] Yoon S H,Kim H S,Lee S H.Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production[J].Process Biochemistry,2004,39(12):1923-1929.
    [52] Morgenroth E,Kommedal R,Harremo?s P.Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater treatment-a review[J].Water Science and Technology,2002,45(6):25-40.
    [53] Bryers J D,Mason C A.Biopolymer particulate turnover in biological waste treatment systems:a review [J].Bioprocess and Biosystems Engineering,1987, 2(3):95-109.
    [54]国际水协厌氧消化工艺数学模型课题组.厌氧消化数学模型(张亚雷,周雪飞译,赵健夫校)[M].上海:同济大学出版社,2004.
    [55]苑宏英.基于酸碱调节的剩余污泥水解酸化及其机理研究[D].上海:同济大学,2006.
    [56]苑宏英,张华星,陈银广,等.pH对剩余污泥厌氧发酵产生的COD、磷及氨氮的影响[J].环境科学,2006,27(7):1358-1361.
    [57] Chen Y G,Jiang S,Yuan H Y,et al.Hydrolysis and acidification of waste activated sludge at different pHs[J].Water Research,2007,41(3):683-689.
    [58] Banerjee A,Elefsiniotis P,Tuhtar D.The effect of addition of potato-processing wastewater on the acidgenesis of primary sludge under varied hydraulic retention time and temperature[J].Journal of Biotechnology,1999,72(3):203-212.
    [59] Lie E,Christensson M,Jonsson k,et al.Carbon and phosphorus transformations in a full-scale enhanced biological phosphorus rernaval process[J].Water Research,l 997,31(11 ):2693-2698.
    [60] Kruhne U,Henze M,Larose A,et al.Experimental and model assisted investigation of an operational strategy for the BPR under low influent concentrations[J].Water Research,2003,37(8):1953-1971.
    [61]沈耀良,王宝贞.水解酸化工艺及其应用研究[J].哈尔滨建筑大学学报,1999, 32(6):35-38.
    [62]孙美琴,彭超英,梁多.水解酸化预处理工艺及应用[J].四川环境,2003,22(4):52-55.
    [63]秦智,任南琪,李建政,等.产酸相反应器的过酸状态及其控制[J].哈尔滨工业大学学报,2003,5(1):1105-1108.
    [64] Jiang S,Chen Y G,Zhou Q.Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification[J].Chemical Engineering Journal,2007, 132(1-3):311-317.
    [65] Jiang S,Chen Y G,Zhou Q,et al.Biological short-chain fatty acids(SCFAs) production from waste-activated sludge affect by surfactant[J].Water Research,2007,41(14):3112-3120.
    [66]吴一平.初沉污泥水解产酸及其利用研究[D].西安:西安建筑科技大学,2004.
    [67] Banerjee A,Elefsiniotis P,Tuhtar D.Effect of HRT and temperature on the acidogenesis of municipal primary sludge and industrial wastewater[J].Water Science and Technology,1998,38(8-9):417-423.
    [68] Eastman J A,Ferguson J F.Solubilization of particulate organic carbon during the acid phase of anaerobic digestion[J].Journal of the Water Pollution Control Federation,1981,53(3):352-366.
    [69] Mahmoud N,Grietje Z,Huub G,et al.Anaerobic stabilisation and conversion of biopolymers in primary sludge-effect of temperature and sludge retention time[J].Water Research,2004,38(4):983-991.
    [70]张希衡,王宝泉,刘欣荣,等.废水厌氧生物处理工程[M].北京,中国环境科学出版社,1996.
    [71] Woodard S E,Wukasch R F.A hydrolysis/thickening/filtration process for the treatment of waste activated sludge[J].Water Science Technology,1994,30(3):29-38.
    [72] Chyi Y T,Dague R R.Effects of particulate size in anaerobic acidogenesis using cellulose as a sole carbon source[J].Water Environment Research,1994,66(5):670-678.
    [73]王芬.超声破解对污泥特性的影响机制与零剩余污泥排放工艺研究[D].天津:天津大学,2006.
    [74]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社,2005.
    [75]国家环境保护总局《水和废水监测分析方法》编委会编.水和废水监测分析方法(第四版增补版)[M].北京:中国环境科学出版社,2002.
    [76]杨虹,王芬,季民,等.超声与碱耦合作用破解剩余污泥的效能分析[J].环境污染治理技术与设备,2006,7(5):78-81.
    [77]王芬,季民.剩余污泥超声破解性能研究[J].农业环境科学学报,2004,23(3):584-587.
    [78]朱明权,周冰莲.污水厂污泥稳定方法及稳定化程度的评价指标[J].给水排水,1997,23(10):5-10.
    [79] Tanaka S,Kobayashi T,Kamiyama K,et al.Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge[J].Water Science and Technology,1997,35(8):209-215.
    [80] Yuan H Y,Chen Y G,Zhang HX,et a1.Improved Bioproduction of Short-Chain Fatty Acids (SCFAs) from Excess Sludge under Alkaline Conditions [J].Environmental Science and Technolgy,2006,40:2025-2029.
    [81]陈路全.加碱和超声破解预处理对剩余污泥厌氧消化的影响[D].天津:天津大学,2008.
    [82] Tay J H,Liu Q S,Liu Y.Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J].Journal of applied microbiology,2001,91(1):168-175.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.