胰腺癌间充质干细胞样肿瘤相关纤维母细胞功能研究及维甲酸对肿瘤相关纤维母细胞抑制性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤微环境是肿瘤周围复杂的细胞生态系统,与肿瘤细胞的生长,迁移,转移和抗药性都有密切关系。胰腺导管腺癌特征性组织病理学改变为间质内大量纤维结缔组织增生,产生这种组织学特征的分子生物学基础是肿瘤微环境内纤维母细胞活化、增生并产生大量细胞外基质。这种纤维母细胞因其对肿瘤细胞的多种支持作用称为肿瘤相关纤维母细胞(CAF)。关于CAF的来源、活化和对肿瘤的支持作用是胰腺导管腺癌肿瘤微环境研究中的重要课题。
     本研究从两方面初步探讨了CAF对胰腺导管腺癌细胞的促进作用。
     一、探讨了关于间充质干细胞样肿瘤相关纤维母细胞(MSCs-like CAF)对肿瘤细胞干细胞性和迁移力的作用。间充质干细胞(MSCs)是CAF的来源之一,它受到肿瘤细胞或微环境中炎症及缺氧环境释放的化学趋化因子的作用,通过血循环定位到肿瘤间质内,分化成CAF,一些CAF还保留部分间充质干细胞性。已知一些研究利用骨髓或脂肪来源的“正常”MSCs,发现其对肿瘤细胞有多方面作用,而肿瘤间质内的MSC样CAF在肿瘤微环境中作用还未明确。
     本研究采用outgrowth法原代培养胰腺导管腺癌CAF,通过检测CK19及CD45抗原表达排除原代培养细胞群中的上皮细胞和免疫细胞,由于考虑到胰腺癌中存在的上皮-间质转化现象,胰腺肿瘤细胞会丢失CK19抗原表达,所以应用肿瘤细胞和肿瘤相关纤维母细胞配对Kras突变检测法,排除原代培养CAF中肿瘤细胞污染。得到的细胞群通过MSCs表面标记物CD90/CD73/CD44/CD49a,利用流式细胞术分选出间充质干细胞样的CAF,证明其具有集落形成能力及向骨、软骨和脂肪的分化能力。
     "CD90+/CD73+/CD44+/CD49a+肿瘤相关纤维母细胞群对胰腺癌肿瘤细胞的作用:
     1增加肿瘤细胞干细胞性。
     在肿瘤细胞和CAF直接共同培养组和与CAF条件培养基间接共同培养组,均发现MSCs-CAF在增加肿瘤细胞干细胞团数量和肿瘤干细胞群CD44+/c-Met+比例方面均强于不具有间充质干细胞性的CAF,其中直接培养组的作用效果更明显。
     2增加肿瘤细胞迁移力。
     利用3D胶原滴共同培养方法,观察到在直接共同培养组和条件培养基间接共同培养组中,MSCs-CAF在增加肿瘤细胞迁移距离方面均强于不具有间充质干细胞性的CAF,其中直接培养组的作用效果更明显,肿瘤细胞呈现不连续的跳跃式生长,且在一例直接培养组中发现肿瘤细胞出现灶状生长。
     3MSCs-CAF分泌特殊的细胞因子。
     在检测的36种常见间质细胞分泌细胞因子中发现,MSCs-CAF和不具有间充质干细胞性的CAF均有MIF和Serpin E1分泌,且两组间差异不具统计学意义。CXCL-1,白介素-6(IL-6),白介素-8(IL-8)三种细胞因子在MSCs-CAF中特异表达或表达量高于不具有间充质干细胞性的CAF。粒细胞和巨噬细胞集落刺激因子(GM-CSF)在4例CAF中特异性表达于MSCs-CAF.
     第一部分结果显示胰腺导管腺癌间质中分离的具有间充质干细胞性的肿瘤相关纤维母细胞是一群对肿瘤实质细胞干细胞性和迁移力具有更强作用的细胞,对肿瘤细胞的作用不仅通过直接接触作用,还包括分泌的细胞因子,其分泌的特异性细胞因子可能是其独特作用的分子基础。
     二、研究关于维甲酸对CAF的抑制作用。有研究发现正常胰腺间质内纤维母细胞在受到炎症、低氧或肿瘤细胞分泌的多种细胞因子的刺激下,胞浆内Vitamin A脂滴的丢失和CAF活化有关。活化后的CAF对肿瘤细胞的生长和进展发挥多种支持作用。本研究试图应用Vitamin A的小分子亲脂性衍生物—维甲酸(RA)作用胰腺癌CAF,使其活性功能发生静止,探讨CAF对肿瘤细胞迁移力的支持作用以及全反式维甲酸(ATRA)和9-顺式-维甲酸(9-cis-RA)通过静止CAF功能后,对肿瘤细胞迁移力的间接抑制作用。
     本部分研究发现1.维甲酸对不同胰腺癌肿瘤细胞系有不同作用。ATRA和9-cis-RA对Aspc-1有增殖抑制作用,并且使肿瘤细胞大部分位于G1期,但对Aspc-1无促凋亡作用;对Panc-1在药物高浓度组(20μM)有促细胞早期凋亡作用,但晚期凋亡率与对照组相比无明显变化,且9-cis-RA比ATRA对Panc-1的促凋亡作用更明显,ATRA和9-cis-RA对Panc-1无增殖抑制作用。
     2.RA可以抑制CAF的活性状态。表现为RA作用后,CAF内脂滴增多,CAF活性相关蛋白α-SMA和FAP表达下降,细胞外基质产物collagen Ⅰ、fibronectin和laminin基因水平下降,以及细胞因子IL-6/8表达下降,但是RA对CAF的抑制作用不是通过促其凋亡产生的。
     3.RA可以抑制CAF产生的可溶性细胞因子,使其对肿瘤细胞迁移和上皮-间质转化(EMT)的促进作用减弱,所以RA间接抑制了肿瘤细胞的迁移和EMT。表现为RA作用后的CAF的条件培养基抑制了肿瘤细胞在3D胶原模型中的迁移距离和向远处迁移细胞数量,而且在3D模型中诱发的肿瘤细胞EMT现象被抑制,RA的作用减少了CAF条件培养基中IL-6的含量,再加入IL-6可恢复肿瘤细胞EMT表型,但RA对肿瘤细胞的迁移和EMT相关基因表达水平并没有直接作用,说明CAF条件培养基中被抑制的可溶性细胞因子减弱了肿瘤细胞迁移力。
     第二部分研究发现RA可以抑制肿瘤相关纤维母细胞的活性状态,表现为CAF相关活化蛋白、相关产物和细胞因子表达水平下降,但并不通过介导CAF的凋亡发挥作用,功能被抑制的CAF对肿瘤细胞的迁移力的支持作用减弱,表现为EMT过程的抑制,而涉及这一过程的是CAF分泌的可溶性细胞因子IL-6。
     综上所述,胰腺癌肿瘤微环境中的肿瘤相关纤维母细胞具有异质性,其中具有间充质干细胞性的CAF具有更强的促肿瘤增殖和迁移作用,并有独特的细胞因子分泌,而通过利用维甲酸对CAF的抑制作用研究发现,CAF通过分泌细胞因子促进肿瘤细胞迁移,维甲酸可以阻断这一途径而达到对肿瘤的抑制作用。
Tumor microenvironment is complex cellular ecological system arrounding tumor cells and supports the proliferation, migration, metastasis and drug resistance of tumor cells. The significant pathological characteristic of pancreatic ductal adenocarcinoma is desmoplasia. The molecular biological basis of this phenomenon is that fibroblast cells are activated, grow and produce huge extracellular matrix in tumor microenvironment. As potent supporters of tumor cells, such fibroblast cells are called cancer-associated fibroblast cells. Studies about the origins, activation status and supportive effect of CAFs to tumor cells are of vital importance to the knowledge of tumor microenvironment.
     There are two parts about the pro-carcinogenesis function of CAFs.
     1. Mesenchymal stem cells like CAFs (MSC-like CAFs) promoted sternness and migration of tumor cells. MSCs is one of origins of CAFs and is induced by chemokines secreted by tumor cells or produced in inflammation or hypoxic background in tumor microenvironment. Then they are recruited through circulation to tumor stroma and differentiated into CAFs. Some CAFs still have some mesenchymal sternness. It is reported that "normal" MSCs came from bone marrow or adipose supported tumor growth in many ways. While, the function of MSCs-like CAFs in tumor microenvironment is not clear yet.
     We cultured CAF of human pancreatic ductal adenocarcinoma by outgrowth method. Then the contamination of epithelial cells and immunocytes were excluded by immunohistochemistry stain of CK19and CD45. However, given the thoughts that there might be epithelial cells lost their epithelial antigen during the process of epithelial-mesenchymal transforms, the negative stain of CK19alone couldn't exclude the possibility of tumor parenchymal contamination. So we tested the Kras status in CAF and corresponding tumor tissues to make sure there was no Kras mutation in CAF cell population. Among CAFs, we sorted the cell population CD90+/CD73+/CD44+/CD49a+by flow cytometry, which had the potential to form colony and differentiate into bone, cartilage and adipose.
     The function of MSCs-CAFs to pancreatic cancer cells:
     1.1increase the sternness of tumor cells In groups of direct and indirect co-culture of tumor cells and CAFs, compared with the non-MSCs-CAFs, the MSCs-CAFs had a greater potential to increase the sphere forming number of tumor cells and the ratio of CD44+/c-Met+in tumor cell population. And the direct co-culture group had an even greater effect.
     1.2promote migration of tumor cells
     In groups of direct and indirect co-culture of tumor cells and CAFs, compared with the non-MSCs-CAFs, the MSCs-CAFs had a greater potential to promote migration of tumor cells in a3D collagen co-culture model. Tumor cells in the direct co-culture group showed discrete growth pattern, and had tumor foci in1case of directly co-culture group.
     1.3the distinct cytokines secreted by MSCs-CAFs
     We tested36common cytokines reported secreted by CAFs, among which there were some cytokines positively stained in our sample. MIF and Serpin E1secreted by MSCs-CAFs and non-MSCs-CAFs. CXCL-1, IL-6, IL-8were exclusively or predominantly expressed in MSCs-CAFs rather than non-MSCs-CAFs. And the GM-CSF was expressed only in MSCs-CAFs groups.
     From the above study, we found that MSCs-CAFs isolated from pancreatic cancer stroma was a cell population showed higher ability to drive stemness and migration of tumor cells. They exerted their function not only through direct contact with tumor cells, but also involved the roles of soluble cytokines they secreted. Those distinct cytokines might be the molecular basis of their special function to tumor cells.
     2. Inhibitory effect of retinoic acid to CAFs. Some researchers found that normal fibroblast cells in pancreas stroma were activated by stimulations such as inflammation, hypoxia and cytokines secreted by tumor cells. When they are activated,Vitamin A fat droplets in the plasma are lost, which is related with the activation status of CAFs. Activated CAFs supported tumor initiation and development in many ways. Our research utilized retinoic acid-small molecular lipophilic derivatives to inactivate CAFs, by which to investigate the function of CAFs to migration of tumor cells and the indirect inhibition effect of all-trans retinoic acid (ATRA) and9-cis-RA to pancreatic cancer cells. We found that2.1The effect of RA to different pancreatic cancer cells varied. There were inhibition effect of ATRA and9-cis-RA to proliferation of Aspc-1. And RAs treatment maintained Aspc-1in Gl phase. But there was no proapoptosis effect to Aspc-1. While, to Panc-1, high concentration (20μM) group of RAs promoted early phase of apoptosis, although there was no significant difference of late phase of apoptosis rate between experiment groups and control group. And the effect of9-cis-RA was more evident than that of ATRA to Panc-1. However, RAs didn't show proliferation inhibition of Panc-1.
     2.2RA could inactivate CAF. With the treatment of RAs, there were more fat droplets showed in CAFs plasma. And the expression level of CAF activation-related protein α-SMA and FAP were lower than control group, as so to ECM production gene, such as collagen Ⅰ, fibronectin and laminin, and cytokines as IL6/8. However, the inhibition effect of RAs was not through the promotion of apoptosis of CAFs.
     2.3RA could inhibit the soluble cytokines of CAFs, which promoted epithelial-mesenchymal transform (EMT) of tumor cells. By such, RA inhibited the migration and EMT of tumor cells indirectly. We found that incubation with the CAFs conditioned media previously treated with RAs, the migration distance and numbers of tumor cells crossing the borderline were less than control groups. And the EMT of tumor cells induced by3D collagen was inhibited, but RAs did no effect on migration and EMT of tumor cells directly. So the cytokines inhibited by RAs treatment in CAFs conditioned media was responsible for the migration of tumor cells.
     In this part, we found that RAs could inactivate CAFs, which were related with low level of activation-associated protein, ECM production, cell surface receptor and cytokines. Static CAFs showed weaker support to migration and EMT of tumor cells. Cytokines IL-6secreted by CAFs were involved in the process.
     In conclusion, the CAFs in pancreatic cancer microenvironment have a characteristics of heterogeneity, among which, MSCs-like CAFs have more potent ability to drive sternness and migration of tumor cells and secrete special cytokines. While through the study about inhibitory effect of retinoic acid, we found CAFs promote migration of tumor cells by secreting soluble cytokines. And retinoic acid can inhibit tumor migration and EMT by inactivation of CAFs.
引文
[1]. Bachem, M. G.,Schunemann, M.,Ramadani, M., etc. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells[J]. Gastroenterology, Apr,2005,128 (4):907-21.
    [2]. Liao, C. P.,Adisetiyo, H.,Liang, M., etc. Cancer-Associated Fibroblasts Enhance the Gland-Forming Capability of Prostate Cancer Stem Cells[J]. Cancer Research,2010,70 (18): 7294-7303.
    [3]. Hwang, R. F.,Moore, T.,Arumugam, T., etc. Cancer-Associated Stromal Fibroblasts Promote Pancreatic Tumor Progression[J]. Cancer Research,2008,68 (3):918-926.
    [4]. Polanska, U. M.,Orimo, A. Carcinoma-associated fibroblasts:Non-neoplastic tumour-promoting mesenchymal cells[J]. J Cell Physiol, Mar 4,2013.
    [5]. Erez, N.,Truitt, M.,Olson, P., etc. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner[J]. Cancer Cell, Feb 17,2010,17 (2):135-47.
    [6]. Zeisberg, E. M.,Potenta, S.,Xie, L., etc. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts[J]. Cancer Res, Nov 1,2007,67 (21):10123-8.
    [7]. Polyak, K.,Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits[J]. Nat Rev Cancer, Apr,2009,9 (4):265-73.
    [8]. Direkze, N. C.,Hodivala-Dilke, K.,Jeffery, R., etc. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts[J]. Cancer Res, Dec 1,2004,64 (23):8492-5.
    [9]. Rattigan, Y.,Hsu, J. M.,Mishra, P. J., etc. Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu[J]. Exp Cell Res, Dec 10,2010,316 (20): 3417-24.
    [10].Tu, S.,Bhagat, G.,Cui, G., etc. Overexpression of interleukin-lbeta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice[J]. Cancer Cell, Nov 4,2008,14 (5):408-19.
    [11].Quante, M.,Tu, S. P.,Tomita, H., etc. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth[J]. Cancer Cell, Feb 15,2011,19 (2): 257-72.
    [12].Gao, H.,Priebe, W.,Glod, J., etc. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium[J]. Stem Cells, Apr,2009,27 (4):857-65.
    [13].Zhang, L.,Tang, A.,Zhou, Y., etc. Tumor-conditioned mesenchymal stem cells display hematopoietic differentiation and diminished influx of Ca2+[J]. Stem Cells Dev, Jun 10,2012,21 (9):1418-28.
    [14].Zhou, Y.,Guan, X.,Wang, H., etc. Hypoxia induces osteogenic/angiogenic responses of bone marrow-derived mesenchymal stromal cells seeded on bone-derived scaffolds via ERK1/2 and p38 pathways[J]. Biotechnol Bioeng, Jan 7,2013.
    [15].Janeczek Portalska, K.,Leferink, A.,Groen, N., etc. Endothelial differentiation of mesenchymal stromal cells[J]. PLoS One,2012,7 (10):e46842.
    [16].McLean, K.,Gong, Y.,Choi, Y., etc. Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production[J]. J Clin Invest, Aug,2011,121 (8):3206-19.
    [17].Thiery, J. P. Epithelial-mesenchymal transitions in development and pathologies[J]. Curr Opin Cell Biol, Dec,2003,15 (6):740-6.
    [18].Kalluri, R.,Weinberg, R. A. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, Jun,2009,119 (6):1420-8.
    [19].Roorda, B. D.,ter Elst, A.,Kamps, W. A., etc. Bone marrow-derived cells and tumor growth: Contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells[J]. Critical Reviews in Oncology/Hematology,2009,69 (3):187-198.
    [20].Jotzu, C.,Alt, E.,Welte, G., etc. Adipose tissue-derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor-derived factors[J]. Anal Cell Pathol (Amst),2010,33 (2):61-79.
    [21].Ma, Y.,Hao, X.,Zhang, S., etc. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells[J]. Breast Cancer Res Treat, Jun, 2012,133 (2):473-85.
    [22].Heo, S. C.,Lee, K. O.,Shin, S. H., etc. Periostin mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth in a xenograft lung adenocarcinoma model[J]. Biochim Biophys Acta, Dec,2011,1813 (12):2061-70.
    [23].Cho, J. A.,Park, H.,Lim, E. H., etc. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells[J]. Int J Oncol, Jan,2012,40 (1):130-8.
    [24].Lis, R.,Touboul, C.,Mirshahi, P., etc. Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12[J]. Int J Cancer, Feb 1,2011,128 (3): 715-25.
    [25].Cao, H.,Xu, W.,Qian, H., etc. Mesenchymal stem cell-like cells derived from human gastric cancer tissues[J]. Cancer Lett, Feb 8,2009,274 (1):61-71.
    [26].Brune, J. C.,Tormin, A.,Johansson, M. C., etc. Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts[J]. Int J Cancer, Jul 15,2011,129 (2):319-30.
    [27].Yan, X. L.,Fu, C. J.,Chen, L., etc. Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via EGF/EGFR/Akt pathway[J]. Breast Cancer Res Treat, Feb,2012,132 (1):153-64.
    [28].Watari, N.,Hotta, Y.,Mabuchi, Y. Morphological studies on a vitamin A-storing cell and its complex with macrophage observed in mouse pancreatic tissues following excess vitamin A administration[J]. Okajimas Folia Anat Jpn, Mar,1982,58 (4-6):837-58.
    [29].Yokoi, Y.,Namihisa, T.,Kuroda, H., etc. Immunocytochemical detection of desmin in fat-storing cells (Ito cells)[J]. Hepatology, Jul-Aug,1984,4 (4):709-14.
    [30].Buniatian, G.,Hamprecht, B.,Gebhardt, R. Glial fibrillary acidic protein as a marker of perisinusoidal stellate cells that can distinguish between the normal and myofibroblast-like phenotypes[J]. Biol Cell,1996,87 (1-2):65-73.
    [31].Rockey, D. C.,Boyles, J. K.,Gabbiani, G., etc. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture[J]. J Submicrosc Cytol Pathol, Apr,1992,24 (2): 193-203.
    [32].Lee, H.-O.,Mullins, S. R.,Franco-Barraza, J., etc. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells[J]. BMC Cancer,2011,11 (1):245.
    [33].Polanska, U. M.,Acar, A.,Orimo, A. Experimental generation of carcinoma-associated fibroblasts (CAFs) from human mammary fibroblasts[J]. J Vis Exp,2011, (56):e3201.
    [34].Trovato-Salinaro, A.,Trovato-Salinaro, E.,Failla, M., etc. Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis[J]. Respir Res,2006, 7122.
    [35].Apte, M. V.,Haber, P. S.,Applegate, T. L., etc. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture[J]. Gut, Jul,1998,43 (1):128-33.
    [36].Bachem, M. G.,Schneider, E.,Gross, H., etc. Identification, culture, and characterization of pancreatic stellate cells in rats and humans[J]. Gastroenterology, Aug,1998,115 (2):421-32.
    [37].KIonowski-Stumpe, H.,Fischer, R.,Reinehr, R., etc. Apoptosis in activated rat pancreatic stellate cells[J]. Am J Physiol Gastrointest Liver Physiol, Sep,2002,283 (3):G819-26.
    [38].Sharon, Y.,Alon, L.,Glanz, S., etc. Isolation of Normal and Cancer-associated Fibroblasts from Fresh Tissues by Fluorescence Activated Cell Sorting (FACS)[J]. J Vis Exp,2013,(71).
    [39].Thomas, R. K.,Baker, A. C.,Debiasi, R. M., etc. High-throughput oncogene mutation profiling in human cancer[J]. Nat Genet, Mar,2007,39 (3):347-51.
    [40].Hezel, A. F.,Kimme)man, A. C.,Stanger, B. Z., etc. Genetics and biology of pancreatic ductal adenocarcinoma[J]. Genes Dev, May 15,2006,20 (10):1218-49.
    [41].Mueller, M. M.,Fusenig, N. E. Friends or foes-bipolar effects of the tumour stroma in cancer[J]. Nat Rev Cancer, Nov,2004,4 (11):839-49.
    [42].Pietras, K.,Pahler, J.,Bergers, G., etc. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting[J]. PLoS Med,Jan 29,2008, 5(1):e19.
    [43].Park, J. E.,Lenter, M. C.,Zimmermann, R. N., etc. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts[J]. J Biol Chem, Dec 17,1999,274 (51):36505-12.
    [44].Tropel, P.,Noel, D.,Platet, N., etc. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow[J]. Exp Cell Res, May 1,2004,295 (2):395-406.
    [45].Liu, J. C.,Lengner, C. J.,Gaur, T., etc. Runx2 protein expression utilizes the Runx2 P1 promoter to establish osteoprogenitor cell number for normal bone formation[J]. J Biol Chem, Aug 26,2011,286 (34):30057-70.
    [46].Morawski, M.,Bruckner, G.,Arendt, T., etc. Aggrecan:Beyond cartilage and into the brain[J]. Int J Biochem Cell Biol, May,2012,44 (5):690-3.
    [47].Ansar, M. M.,Esfandiariy, E.,Mardani, M., etc. A comparative study of aggrecan synthesis between natural articular chondrocytes and differentiated chondrocytes from adipose derived stem cells in 3D culture[J]. Adv Biomed Res,2012,124.
    [48].Amanatullah, D. F.,Lu, J.,Hecht,J., etc. Identification of a 3Kbp mechanoresponsive promoter region in the human cartilage oligomeric matrix protein gene[J]. Tissue Eng Part A, Sep,2012,18 (17-18):1882-9.
    [49].Agarwal, P.,Zwolanek, D.,Keene, D. R., etc. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure[J]. J Biol Chem, Jun 29, 2012,287 (27):22549-59.
    [50].Yu, S.,Matsusue, K.,Kashireddy, P., etc. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gammal (PPARgammal) overexpression[J]. J Biol Chem, Jan 3,2003,278 (1):498-505.
    [51].Tang, J.,Cui, J.,Chen, R., etc. A three-dimensional cell biology model of human hepatocellular carcinoma in vitro[J]. Tumour Biol, Jun,2011,32 (3):469-79.
    [52].Sun, P.,Xu, Y.,Du, X., etc. An engineered three-dimensional gastric tumor culture model for evaluating the antitumor activity of immune cells in vitro[J]. Oncol Lett, Feb,2013,5 (2): 489-494.
    [53].Wenger, A.,Kowalewski, N.,Stahl, A., etc. Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering[J]. Cells Tissues Organs,2005,181 (2):80-8.
    [54].Starzec, A.,Briane, D.,Kraemer, M., etc. Spatial organization of three-dimensional cocultures of adriamycin-sensitive and-resistant human breast cancer MCF-7 cells[J]. Biol Cell, Jul,2003,95 (5):257-64.
    [55].Myungjin Lee, J.,Mhawech-Fauceglia, P.,Lee, N., etc. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro[J]. Lab Invest, Mar 4,2013.
    [56].Navran, S. The application of low shear modeled microgravity to 3-D cell biology and tissue engineering[J]. Biotechnol Annu Rev,2008,14 275-96.
    [57].Jang, M.,Lee, S. T.,Kim, J. W., etc. A feeder-free, defined three-dimensional polyethylene glycol-based extracellular matrix niche for culture of human embryonic stem cells[J]. Biomaterials, May,2013,34 (14):3571-80.
    [58].Pineda, E. T.,Nerem, R. M.,Ahsan, T. Differentiation Patterns of Embryonic Stem Cells in Two-versus Three-Dimensional Culture[J]. Cells Tissues Organs, Feb 9,2013.
    [59].Shen, F. H.,Werner, B. C.,Liang, H., etc. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation:an in vitro and in vivo investigation[J]. Spine J, Jan, 2013,13 (1):32-43.
    [60].Dvorak, H. F. Tumors:wounds that do not heal. Similarities between tumor stroma generation and wound healing[J]. N Engl J Med, Dec 25,1986,315 (26):1650-9.
    [61].Vicovac, L.,Aplin, J. D. Epithelial-mesenchymal transition during trophoblast differentiation[J]. Acta Anat (Basel),1996,156 (3):202-16.
    [62].Zeisberg, M.,Hanai, J.,Sugimoto, H., etc. BMP-7 counteracts TGF-betal-induced epithelial-to-mesenchymal transition and reverses chronic renal injury[J]. Nat Med, Jul,2003,9 (7):964-8.
    [63].Shah, A. N.,Summy, J. M.,Zhang, J., etc. Development and characterization of gemcitabine-resistant pancreatic tumor cells[J]. Ann Surg Oncol, Dec,2007,14 (12):3629-37.
    [64].Ding, Q.,Yoshimitsu, M.,Kuwahata, T., etc. Establishment of a highly migratory subclone reveals that CD133 contributes to migration and invasion through epithelial-mesenchymal transition in pancreatic cancer[J]. Hum Cell, Mar,2012,25 (1):1-8.
    [65].Izumiya, M.,Kabashima, A.,Higuchi, H., etc. Chemoresistance is associated with cancer stem cell-like properties and epithelial-to-mesenchymal transition in pancreatic cancer cells[J]. Anticancer Res, Sep,2012,32 (9):3847-53.
    [66].Teixido, C.,Mares, R.,Aracil, M., etc. Epithelial-mesenchymal transition markers and HER3 expression are predictors of elisidepsin treatment response in breast and pancreatic cancer cell lines[J]. PLoS One,2013,8 (1):e53645.
    [67].Katz, S.,Balogh, P.,Nagy, N., etc. Epithelial-to-mesenchymal transition induced by Freund's adjuvant treatment in rat mesothelial cells:a morphological and immunocytochemical study[J]. Pathol Oncol Res, Jul,2012,18 (3):641-9.
    [68].Fuchs, I. B.,Lichtenegger, W.,Buehler, H., etc. The prognostic significance of epithelial-mesenchymal transition in breast cancer[J]. Anticancer Res, Nov-Dec,2002,22 (6A): 3415-9.
    [69].Bardi, G.,Johansson, B.,Pandis, N., etc. Karyotypic abnormalities in tumours of the pancreas[J]. Br J Cancer, May,1993,67 (5):1106-12.
    [70].Sugimoto, H.,Mundel, T. M.,Kieran, M. W., etc. Identification of fibroblast heterogeneity in the tumor microenvironment[J]. Cancer Biol Ther, Dec,2006,5 (12):1640-6.
    [71].Zuk, P. A.,Zhu, M.,Mizuno, H., etc. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, Apr,2001,7 (2):211-28.
    [72].Jones, E. A.,English, A.,Henshaw, K., etc. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis[J]. Arthritis Rheum, Mar,2004,50 (3):817-27.
    [73].Williams, J. T.,Southerland, S. S.,Souza, J., etc. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes[J]. Am Surg, Jan,1999, 65 (1):22-6.
    [74].Dominici, M.,Le Blanc, K.,Mueller, I., etc. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy,2006,8 (4):315-7.
    [75].Modder, U. I.,Roforth, M. M.,Nicks, K. M., etc. Characterization of mesenchymal progenitor cells isolated from human bone marrow by negative selection[J]. Bone, Mar,2012,50 (3): 804-10.
    [76].P, M.,S, H.,R, M., etc. Adult mesenchymal stem cells and cell surface characterization-a systematic review of the literature[J]. Open Orthop J,2011,5 (Suppl 2):253-60.
    [77].Romero, D.,O'Neill, C.,Terzic, A., etc. Endoglin regulates cancer-stromal cell interactions in prostate tumors[J]. Cancer Res, May 15,2011,71 (10):3482-93.
    [78].Morris, E.,Chrobak, I.,Bujor, A., etc. Endoglin promotes TGF-beta/Smadl signaling in scleroderma fibroblasts[J]. J Cell Physiol, Dec,2011,226 (12):3340-8.
    [79].Zhou, Y.,Hagood, J. S.,Lu, B., etc. Thy-1-integrin alphav beta5 interactions inhibit lung fibroblast contraction-induced latent transforming growth factor-betal activation and myofibroblast differentiation[J]. J Biol Chem, Jul 16,2010,285 (29):22382-93.
    [80].True, L. D.,Zhang, H.,Ye, M., etc. CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker[J]. Mod Pathol, Oct,2010,23 (10):1346-56.
    [81].Peng, Z.,Fernandez, P.,Wilder, T., etc. Ecto-5'-nucleotidase (CD73)-mediated extracellular adenosine production plays a critical role in hepatic fibrosis[J]. Nucleosides Nucleotides Nucleic Acids, Jun,2008,27 (6):821-4.
    [82].Vaculik, C.,Schuster, C.,Bauer, W., etc. Human dermis harbors distinct mesenchymal stromal cell subsets[J], J Invest Dermatol, Mar,2012,132 (3 Pt 1):563-74.
    [83].Rider, D. A.,Nalathamby, T.,Nurcombe, V., etc. Selection using the alpha-1 integrin (CD49a) enhances the multipotentiality of the mesenchymal stem cell population from heterogeneous bone marrow stromal cells[J]. J Mol Histol, Oct,2007,38 (5):449-58.
    [84].Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production[J].
    [85].Dorado, J.,Lonardo, E.,Miranda-Lorenzo, I., etc. Pancreatic cancer stem cells:new insights and perspectives[J]. J Gastroenterol, Aug,2011,46 (8):966-73.
    [86].Chuthapisith, S.,Eremin, J.,EI-Sheemey, M., etc. Breast cancer chemoresistance:emerging importance of cancer stem cells[J]. Surg Oncol, Mar,2010,19 (1):27-32.
    [87].Salnikov, A. V.,Liu, L.,Platen, M., etc. Hypoxia induces EMT in low and highly aggressive pancreatic tumor cells but only cells with cancer stem cell characteristics acquire pronounced migratory potential[J]. PLoS One,2012,7 (9):e46391.
    [88].Zubeldia, I. G.,Bleau, A. M.,Redrado, M., etc. Epithelial to mesenchymal transition and cancer stem cell phenotypes leading to liver metastasis are abrogated by the novel TGFbetal-targeting peptides P17 and P144[J]. Exp Cell Res, Feb 1,2013,319 (3):12-22.
    [89].Hermann, P. C.,Huber, S. L.,Herder, T., etc. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell, Sep 13,2007,1 (3):313-23.
    [90].Huang, P.,Wang, C. Y.,Gou, S. M., etc. Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma[J]. World J Gastroenterol, Jun 28,2008,14 (24):3903-7.
    [91].Li, C.,Heidt, D. G.,Dalerba, P., etc. Identification of pancreatic cancer stem cells[J]. Cancer Res, Feb 1,2007,67 (3):1030-7.
    [92].Marechal, R.,Demetter, P.,Nagy, N., etc. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma[J]. Br J Cancer, May 5,2009,100 (9):1444-51.
    [93].Olempska, M.,Eisenach, P. A.,Ammerpohl, O., etc. Detection of tumor stem cell markers in pancreatic carcinoma cell lines[J]. Hepatobiliary Pancreat Dis Int, Feb,2007,6 (1):92-7.
    [94].Li, C.,Wu, J. J.,Hynes, M., etc. c-Met is a marker of pancreatic cancer stem cells and therapeutic target[J]. Gastroenterology, Dec,2011,141 (6):2218-2227 e5.
    [95].Kim, H. S.,Yoo, S. Y.,Kim, K. T., etc. Expression of the stem cell markers CD133 and nestin in pancreatic ductal adenocarcinoma and clinical relevance[J]. Int J Clin Exp Pathol,2012,5 (8): 754-61.
    [96].Matsuda, Y.,Kure, S.,Ishiwata, T. Nestin and other putative cancer stem cell markers in pancreatic cancer[J]. Med Mol Morphol, Jun,2012,45 (2):59-65.
    [97].Liu, S.,Ginestier, C.,Ou, S. J., etc. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks[J]. Cancer Res, Jan 15,2011,71 (2):614-24.
    [98].Fujita, H.,Ohuchida, K.,Mizumoto, K., etc. Tumor-stromal interactions with direct cell contacts enhance proliferation of human pancreatic carcinoma cells[J]. Cancer Sci, Dec,2009, 100 (12):2309-17.
    [99].Haynesworth, S. E.,Baber, M. A.,Caplan, A. I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro:effects of dexamethasone and IL-1 alpha[J]. J Cell Physiol, Mar,1996,166 (3):585-92.
    [100]. Liu, C. H.,Hwang, S. M. Cytokine interactions in mesenchymal stem cells from cord blood[J]. Cytokine, Dec 21,2005,32 (6):270-9.
    [101]. Kim, D. H.,Yoo, K. H.,Choi, K. S., etc. Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell[J]. Cytokine, Jul 21, 2005,31 (2):119-26.
    [102]. Van Overstraeten-Schlogel, N.,Beguin, Y.,Gothot, A. Role of stromal-derived factor-1 in the hematopoietic-supporting activity of human mesenchymal stem cells[J]. Eur J Haematol, Jun, 2006,76 (6):488-93.
    [103]. Kindt, N.,Lechien, J.,Decaestecker, C., etc. Expression of macrophage migration-inhibitory factor is correlated with progression in oral cavity carcinomas[J]. Anticancer Res, Oct,2012,32 (10):4499-505.
    [104]. Wilson, J. M.,Coletta, P. L.,Cuthbert, R. J., etc. Macrophage migration inhibitory factor promotes intestinal tumorigenesis[J]. Gastroenterology, Nov,2005,129 (5):1485-503.
    [105]. Hagemann, T.,Wilson, J.,Kulbe, H., etc. Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK[J]. J Immunol, Jul 15,2005,175 (2):1197-205.
    [106]. Ren, Y.,Tsui, H. T.,Poon, R. T., etc. Macrophage migration inhibitory factor:roles in regulating tumor cell migration and expression of angiogenic factors in hepatocellular carcinoma [J]. Int J Cancer, Oct 20,2003,107 (1):22-9.
    [107]. Dewor, M.,Steffens, G.,Krohn, R., etc. Macrophage migration inhibitory factor (MIF) promotes fibroblast migration in scratch-wounded monolayers in vitro[J]. FEBS Lett, Oct 2,2007, 581 (24):4734-42.
    [108]. Guttridge, D. C.,Lau, A. L.,Cunningham, D. D. Protease nexin-1, a thrombin inhibitor, is regulated by interleukin-1 and dexamethasone in normal human fibroblasts[J]. J Biol Chem, Sep 5,1993,268 (25):18966-74.
    [109]. Fang, H.,Placencio, V. R.,DeClerck, Y. A. Protumorigenic activity of plasminogen activator inhibitor-1 through an antiapoptotic function[J]. J Natl Cancer Inst, Oct 3,2012,104 (19):1470-84.
    [110]. Hsu, H. S.,Lin, J. H.,Hsu, T. W., etc. Mesenchymal stem cells enhance lung cancer initiation through activation of IL-6/JAK2/STAT3 pathway[J]. Lung Cancer, Feb,2012,75 (2): 167-77.
    [111]. Gallo, M.,De Luca, A.,Lamura, L., etc. Zoledronic acid blocks the interaction between mesenchymal stem cells and breast cancer cells:implications for adjuvant therapy of breast cancer[J]. Ann Oncol, Mar,2012,23 (3):597-604.
    [112]. Gelbmann, C. M.,Leeb, S. N.,Vogl, D., etc. Inducible CD40 expression mediates NFkappaB activation and cytokine secretion in human colonic fibroblasts[J]. Gut, Oct,2003,52 (10):1448-56.
    [113]. Larsen, C. G.,Anderson, A. O.,Oppenheim, J. J., etc. Production of interleukin-8 by human dermal fibroblasts and keratinocytes in response to interleukin-1 or tumour necrosis factor[J]. Immunology, Sep,1989,68 (1):31-6.
    [114]. Belperio, J. A.,Keane, M. P.,Arenberg, D. A., etc. CXC chemokines in angiogenesis[J]. J Leukoc Biol, Jul,2000,68 (1):1-8.
    [115]. Lane, B. R.,Liu, J.,Bock, P. J., etc. Interleukin-8 and growth-regulated oncogene alpha mediate angiogenesis in Kaposi's sarcoma[J]. J Virol, Nov,2002,76 (22):11570-83.
    [116]. Acharyya, S.,Oskarsson, T.,Vanharanta, S., etc. A CXCL1 paracrine network links cancer chemoresistance and metastasis[J]. Cell, Jul 6,2012,150 (1):165-78.
    [117]. Kuo, P. L.,Shen, K. H.,Hung, S. H., etc. CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation [J]. Carcinogenesis, Dec,2012,33 (12):2477-87.
    [118]. Senst, C.,Nazari-Shafti, T.,Kruger, S., etc. Prospective dual role of mesenchymal stem cells in breast tumor microenvironment[J]. Breast Cancer Res Treat, Jan,2013,137 (1):69-79.
    [119]. Lim, J. Y.,Choi, B. H.,Lee, S., etc. Regulation of wound healing by granulocyte-macrophage colony-stimulating factor after vocal fold injury[J]. PLoS One,2013,8 (1):e54256.
    [120]. Vonderheide, R. H.,Bayne, L. J. Inflammatory networks and immune surveillance of pancreatic carcinoma[J]. Curr Opin Immunol, Feb 16,2013.
    [121]. Bayne, L. J.,Beatty, G. L.,Jhala, N., etc. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer[J]. Cancer Cell, Jun 12,2012,21 (6):822-35.
    [122]. Pylayeva-Gupta, Y.,Lee, K. E.,Hajdu, C. H., etc. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia[J]. Cancer Cell, Jun 12,2012,21 (6):836-47.
    [123]. Tsai, K. S.,Yang, S. H.,Lei, Y. P., etc. Mesenchymal stem cells promote formation of colorectal tumors in mice[J]. Gastroenterology, Sep,2011,141 (3):1046-56.
    [124]. Yan, X. L.,Jia, Y. L.,Chen, L., etc. Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression:Role of the S100A4-miR155-SOCS1-MMP9 axis[J]. Hepatology, Jan 12,2013.
    [125]. Massaro, G. D.,Massaro, D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats[J]. Nat Med, Jun,1997,3 (6):675-7.
    [126]. Wang, L.,Potter, J. J.,Rennie-Tankersley, L., etc. Effects of retinoic acid on the development of liver fibrosis produced by carbon tetrachloride in mice[J]. Biochim Biophys Acta, Jan,2007,1772 (1):66-71.
    [127]. Singh, B.,Murphy, R. F.,Ding, X. Z., etc. On the role of transforming growth factor-beta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells[J]. Mol Cancer, 2007,682.
    [128]. Pettersson, F.,Dalgleish, A. G.,Bissonnette, R. P., etc. Retinoids cause apoptosis in pancreatic cancer cells via activation of RAR-gamma and altered expression of Bcl-2/Bax[J]. Br J Cancer, Aug 27,2002,87 (5):555-61.
    [129]. Apte, M. V.,Wilson, J. S. Dangerous liaisons:pancreatic stellate cells and pancreatic cancer cells[J]. J Gastroenterol Hepatol, Mar,2012,27 Suppl 269-74.
    [130]. Hellemans, K.,Verbuyst, P.,Quartier, E., etc. Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids[J]. Hepatology, Jan,2004,39 (1):97-108.
    [131]. Chi, X.,Anselmi, K.,Watkins, S., etc. Prevention of cultured rat stellate cell transformation and endothelin-B receptor upregulation by retinoic acid[J]. Br J Pharmacol, Jun, 2003,139 (4):765-74.
    [132]. McCarroll, J. A.,Phillips, P. A.,Santucci, N., etc. Vitamin A inhibits pancreatic stellate cell activation:implications for treatment of pancreatic fibrosis[J]. Gut, Jan,2006,55 (1):79-89.
    [133]. Michael, A.,Hill, M.,Maraveyas, A., etc.13-cis-Retinoic acid in combination with gemcitabine in the treatment of locally advanced and metastatic pancreatic cancer-report of a pilot phase II study[J]. Clin Oncol (R Coll Radiol), Mar,2007,19 (2):150-3.
    [134]. Vickers, S. M.,Sampson, L. K.,Ying, W., etc. Receptor-dependent growth inhibition of human pancreatic cancer by 9-cis retinoic acid[J]. J Gastrointest Surg, Mar-Apr,1997,1 (2): 174-81; discussion 181.
    [135]. Nakagawa, T.,Shimizu, M.,Shirakami, Y., etc. Synergistic effects of acyclic retinoid and gemcitabine on growth inhibition in pancreatic cancer cells[J]. Cancer Lett, Jan 18,2009,273 (2): 250-6.
    [136]. Kawa, S.,Nikaido, T.,Aoki, Y., etc. Arotinoid mofarotene (RO40-8757) up-regulates p21 and p27 during growth inhibition of pancreatic cancer cell lines[J]. Int J Cancer, Sep 4,1997,72 (5):906-11.
    [137]. Tabata, C.,Kadokawa, Y.,Tabata, R., etc. All-trans-retinoic acid prevents radiation-or bleomycin-induced pulmonary fibrosis[J]. Am J Respir Crit Care Med, Dec 15,2006,174 (12): 1352-60.
    [138]. Okuno, M.,Moriwaki, H.,Imai, S., etc. Retinoids exacerbate rat liver fibrosis by inducing the activation of latent TGF-beta in liver stellate cells[J]. Hepatology, Oct,1997,26 (4):913-21.
    [139]. Wang, H.,Dan, Z.,Jiang, H. Effect of all-trans retinoic acid on liver fibrosis induced by common bile duct ligation in rats[J]. J Huazhong Univ Sci Technolog Med Sci, Oct,2008,28 (5): 553-7.
    [140]. Chen, L.,Xiao, Z.,Meng, Y., etc. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs[J]. Biomaterials, Feb,2012,33 (5):1437-44.
    [141]. Harma, V.,Virtanen, J.,Makela, R., etc. A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses[J]. PLoS One,2010,5 (5):e10431.
    [142]. Sullivan, N. J.,Sasser, A. K.,Axel, A. E., etc. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells[J]. Oncogene, Aug 20, 2009,28 (33):2940-7.
    [143]. Fernando, R. I.,Castillo, M. D.,Litzinger, M., etc. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells[J]. Cancer Res, Aug 1,2011,71 (15): 5296-306.
    [144]. Ranhotra, H. S. The interplay between retinoic acid receptor-related orphan receptors and human diseases[J]. J Recept Signal Transduct Res, Aug,2012,32 (4):181-9.
    [145]. Luesink, M.,Pennings, J. L.,Wissink, W. M., etc. Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia:triggering the differentiation syndrome[J]. Blood, Dec 24,2009,114 (27):5512-21.
    [146]. Falanga, A.,Toma, S.,Marchetti, M., etc. Effect of all-trans-retinoic acid on the hypercoagulable state of patients with breast cancer[J]. Am J Hematol, May,2002,70 (1):9-15.
    [147]. Park, E. Y.,Wilder, E. T.,Lane, M. A. Retinol inhibits the invasion of retinoic acid-resistant colon cancer cells in vitro and decreases matrix metalloproteinase mRNA, protein, and activity levels[J]. Nutr Cancer,2007,57 (1):66-77.
    [148]. Leder, A.,Kuo, A.,Cardiff, R. D., etc. v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis:effects of phorbol esters and retinoic acid[J]. Proc Natl Acad Sci U S A, Dec,1990,87 (23):9178-82.
    [149]. Li, J.,Orr, B.,White, K., etc. Chmp 1A is a mediator of the anti-proliferative effects of all-trans retinoic acid in human pancreatic cancer cells[J]. Mol Cancer,2009,87.
    [150]. Buchholz, M.,Kestler, H. A.,Holzmann, K., etc. Transcriptome analysis of human hepatic and pancreatic stellate cells:organ-specific variations of a common transcriptional phenotype[J]. J Mol Med (Berl), Oct,2005,83 (10):795-805.
    [151]. Nizamutdinova, I. T.,Guleria, R. S.,Singh, A. B., etc. Retinoic acid protects cardiomyocytes from high glucose-induced apoptosis through inhibition of NF-kappaB signaling pathway[J]. J Cell Physiol, Feb,2013,228 (2):380-92.
    [152]. Rao, J.,Qian, X.,Wang, P., etc. All-trans retinoic acid preconditioning protects against liver ischemia/reperfusion injury by inhibiting the nuclear factor kappa B signaling pathway[J]. J Surg Res, Apr,2013,180 (2):e99-e106.
    [153]. Froeling, F. E.,Feig, C.,Chelala, C., etc. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression[J]. Gastroenterology, Oct,2011,141 (4):1486-97,1497 e1-14.
    [154]. Hsu, H. C.,Tsai, W. H.,Chen, P. G., etc. In vitro effect of granulocyte-colony stimulating factor and all-trans retinoic acid on the expression of inflammatory cytokines and adhesion molecules in acute promyelocytic leukemic cells[J]. Eur J Haematol, Jul,1999,63 (1):11-8.
    [155]. Shibakura, M.,Niiya, K.,Kiguchi, T., etc. Simultaneous induction of matrix metalloproteinase-9 and interleukin 8 by all-trans retinoic acid in human PL-21 and NB4 myeloid leukaemia cells[J]. Br J Haematol, Aug,2002,118 (2):419-25.
    [156]. Shibakura, M.,Niiya, K.,Niiya, M., etc. Induction of CXC and CC chemokines by all-trans retinoic acid in acute promyelocytic leukemia cells[J]. Leuk Res, Jul,2005,29 (7):755-9.
    [157]. Gross, V.,Villiger, P. M.,Zhang, B., etc. Retinoic acid inhibits interleukin-1-induced cytokine synthesis in human monocytes[J]. J Leukoc Biol, Aug,1993,54 (2):125-32.
    [158]. Harant, H.,Lindley, I.,Uthman, A., etc. Regulation of interleukin-8 gene expression by all-trans retinoic acid[J]. Biochem Biophys Res Commun, May 25,1995,210 (3):898-906.
    [159]. Angelucci, C.,Maulucci, G.,Lama, G., etc. Epithelial-stromal interactions in human breast cancer:effects on adhesion, plasma membrane fluidity and migration speed and directness[J]. PLoS One,2012,7 (12):e50804.
    [160]. Soon, P. S.,Kim, E.,Pon, C. K., etc. Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells[J]. Endocr Relat Cancer,2013,20 (1): 1-12.
    [161].'Giannoni, E.,Bianchini, F.,Calorini, L., etc. Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness[J]. Antioxid Redox Signal, Jun 15,2011,14 (12):2361-71.
    [162]. Giannoni, E.,Bianchini, F.,Masieri, L., etc. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness[J]. Cancer Res, Sep 1,2010,70 (17):6945-56.
    [163]. Kikuta, K.,Masamune, A.,Watanabe, T., etc. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells[J]. Biochem Biophys Res Commun, Dec 17,2010,403 (3-4):380-4.
    [164]. Ji, Y. Y.,Wang, Z. D.,Li, Z. F., etc. Interference of suppressor of cytokine signaling 3 promotes epithelial-mesenchymal transition in MHCC97H cells[J]. World J Gastroenterol, Feb 14, 2013,19 (6):866-73.
    [165]. Li, Y.,Wang, L.,Pappan, L., etc. IL-lbeta promotes sternness and invasiveness of colon cancer cells through Zebl activation[J]. Mol Cancer,2012,1187.
    [166]. Muir, A. B.,Lim, D. M.,Benitez, A. J., etc. Esophageal epithelial and mesenchymal cross-talk leads to features of epithelial to mesenchymal transition in vitro[J]. Exp Cell Res, Apr 1, 2013,319 (6):850-9.
    [167]. Wang, H.,Wang, H. S.,Zhou, B. H., etc. Epithelial-mesenchymal transition (EMT) induced by TNF-alpha requires AKT/GSK-3beta-mediated stabilization of snail in colorectal cancer[J]. PLoS One,2013,8 (2):e56664.
    [168]. Liu, J.,Eischeid, A. N.,Chen, X. M. CollA1 production and apoptotic resistance in TGF-betal-induced epithelial-to-mesenchymal transition-like phenotype of 603B cells[J]. PLoS One,2012,7 (12):e51371.
    [169]. Yamada, D.,Kobayashi, S.,Wada, H., etc. Role of crosstalk between interleukin-6 and transforming growth factor-beta 1 in epithelial-mesenchymal transition and chemoresistance in biliary tract cancer[J]. Eur J Cancer, Jan 5,2013.
    [170]. Yu, J.,Ren, X.,Chen, Y., etc. Dysfunctional activation of neurotensin/IL-8 pathway in hepatocellular carcinoma is associated with increased inflammatory response in microenvironment, more epithelial mesenchymal transition in cancer and worse prognosis in patients[J]. PLoS One,2013,8 (2):e56069.
    [171]. Li, X. J.,Peng, L. X.,Shao, J. Y., etc. As an independent unfavorable prognostic factor, IL-8 promotes metastasis of nasopharyngeal carcinoma through induction of epithelial-mesenchymal transition and activation of AKT signaling[J]. Carcinogenesis, Jul,2012, 33 (7):1302-9.
    [172]. Xie, G.,Yao, Q.,Liu, Y., etc. IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures[J]. Int J Oncol, Apr,2012,40 (4):1171-9.
    [173]. Korkaya, H.,Kim, G. I.,Davis, A., etc. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+breast cancer by expanding the cancer stem cell population[J]. Mol Cell, Aug 24,2012,47 (4):570-84.
    [174]. Yadav, A.,Kumar, B.,Datta, J., etc. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway[J]. Mol Cancer Res, Dec,2011,9 (12):1658-67.
    [175]. Jiang, Y.,Jahagirdar, B. N.,Reinhardt, R. L., etc. Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature, Jul 4,2002,418 (6893):41-9.
    [176]. Bianco, P.,Robey, P. G.,Simmons, P. J. Mesenchymal stem cells:revisiting history, concepts, and assays[J]. Cell Stem Cell, Apr 10,2008,2 (4):313-9.
    [177]. Studeny, M.,Marini, F. C.,Champlin, R. E., etc. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors[J]. Cancer Res, Jul 1,2002,62 (13): 3603-8.
    [178]. Mishra, P. J.,Humeniuk, R.,Medina, D. J., etc. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells[J]. Cancer Res, Jun 1,2008,68 (11):4331-9.
    [179]. Kidd, S.,Spaeth, E.,Watson, K., etc. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma[J]. PLoS One, 2012,7 (2):e30563.
    [180]. Song, S.,Ewald, A. J.,Stallcup, W., etc. PDGFRbeta+perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival[J]. Nat Cell Biol, Sep,2005,7 (9): 870-9.
    [181]. McGrail, D. J.,Ghosh, D.,Quach, N. D., etc. Differential mechanical response of mesenchymal stem cells and fibroblasts to tumor-secreted soluble factors[J]. PLoS One,2012,7 (3):e33248.
    [182]. Wang, D.,Park, J. S.,Chu, J. S., etc. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor betal stimulation[J]. J Biol Chem, Oct 15,2004,279 (42):43725-34.
    [183]. Shinagawa, K.,Kitadai, Y.,Tanaka, M., etc. Stroma-directed imatinib therapy impairs the tumor-promoting effect of bone marrow-derived mesenchymal stem cells in an orthotopic transplantation model of colon cancer[J]. Int J Cancer, Jul 23,2012.
    [184]. Lis, R.,Touboul, C.,Raynaud, C. M., etc. Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties[J]. PLoS One,2012,7 (5):e38340.
    [185]. Klopp, A. H.,Lacerda, L.,Gupta, A., etc. Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells[J]. PLoS One,2010,5 (8):e12180.
    [186]. Nishimura, K.,Semba, S.,Aoyagi, K., etc. Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells[J]. Pathobiology, 2012,79 (6):290-306.
    [187]. Li, H. J.,Reinhardt, F.,Herschman, H. R., etc. Cancer-stimulated mesenchymal stem cells create a carcinoma stem-cell niche via Prostaglandin E2 signaling[J]. Cancer Discov, Jul 9,2012.
    [188]. El-Haibi, C. P.,Bell, G. W.,Zhang, J., etc. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy[J]. Proc Natl Acad Sci U S A, Oct 23,2012,109 (43): 17460-5.
    [189]. Xu, Q.,Wang, L.,Li, H., etc. Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta[J]. Int J Oncol, Sep,2012,41 (3): 959-68.
    [190]. Kabashima-Niibe, A.,Higuchi, H.,Takaishi, H., etc. Mesenchymal Stem Cells Regulate Epithelial-to-Mesenchymal Transition and Tumor Progression of Pancreatic Cancer Cells[J]. Cancer Sci, Nov 2,2012.
    [191]. Halpern, J. L.,Kilbarger, A.,Lynch, C. C. Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor[J]. Cancer Lett, Sep 1,2011,308 (1):91-9.
    [192]. Rhodes, L. V.,Antoon, J. W.,Muir, S. E., etc. Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk[J]. Mol Cancer,2010,9 295.
    [193]. Karnoub, A. E.,Dash, A. B.,Vo, A. P., etc. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis[J]. Nature,2007,449 (7162):557-563.
    [194]. Ye, H.,Cheng, J.,Tang, Y., etc. Human Bone Marrow-Derived Mesenchymal Stem Cells produced TGFbeta Contributes to Progression and Metastasis of Prostate Cancer[J]. Cancer Invest, Aug,2012,30 (7):513-8.
    [195]. Beckermann, B. M.,Kallifatidis, G.,Groth, A., etc. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma[J]. Br J Cancer, Aug 19,2008,99 (4):622-31.
    [196]. Suzuki, K.,Sun, R.,Origuchi, M., etc. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization[J]. Mol Med,2011,17 (7-8):579-87.
    [197]. Comsa, S.,Ciuculescu, F.,Raica, M. Mesenchymal stem cell-tumor cell cooperation in breast cancer vasculogenesis[J]. Mol Med Report, May,2012,5 (5):1175-80.
    [198]. Liu, Y.,Han, Z. P.,Zhang, S. S., etc. Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer[J]. J Biol Chem, Jul 15,2011,286 (28):25007-15.
    [199]. Zhu, W.,Huang, L.,Li, Y., etc. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo[J]. Cancer Lett, Feb 1,2012,315 (1): 28-37.
    [200]. Krampera, M.,Glennie, S.,Dyson, J., etc. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide[J]. Blood, May 1,2003,101 (9):3722-9.
    [201]. Tabera, S.,Perez-Simon, J. A.,Diez-Campelo, M., etc. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes[J]. Haematologica, Sep, 2008,93 (9):1301-9.
    [202]. Jiang, X. X.,Zhang, Y.,Liu, B., etc. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells[J]. Blood, May 15,2005,105 (10):4120-6.
    [203]. Nauta, A. J.,Kruisselbrink, A. B.,Lurvink, E., etc. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells[J]. J Immunol, Aug 15,2006,177 (4):2080-7.
    [204]. Sotiropoulou, P. A.,Perez, S. A.,Gritzapis, A. D., etc. Interactions between human mesenchymal stem cells and natural killer cells[J]. Stem Cells, Jan,2006,24 (1):74-85.
    [205]. Spaggiari, G. M.,Moretta, L. Cellular and molecular interactions of mesenchymal stem cells in innate immunity[J]. Immunol Cell Biol, Jan,2013,91 (1):27-31.
    [206]. Batten, P.,Sarathchandra, P.,Antoniw, J. W., etc. Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway:relevance to tissue engineering human heart valves[J]. Tissue Eng, Aug,2006,12 (8):2263-73.
    [207]. Casiraghi, F.,Perico, N.,Remuzzi, G. Mesenchymal stromal cells to promote solid organ transplantation tolerance[J]. Curr Opin Organ Transplant, Feb,2013,18 (1):51-8.
    [208]. Reinders, M. E.,de Fijter, J. W.,Roelofs, H., etc. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study[J]. Stem Cells Transl Med, Feb,2013,2 (2):107-11.
    [209]. Groh, M. E.,Maitra, B.,Szekely, E., etc. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells[J]. Exp Hematol, Aug,2005,33 (8): 928-34.
    [210]. Sato, K.,Ozaki, K.,Oh, I., etc. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells[J]. Blood, Jan 1,2007,109 (1):228-34.
    [211]. Meisel, R.,Zibert, A.,Laryea, M., etc. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation[J]. Blood, Jun 15,2004,103 (12):4619-21.
    [212]. Aggarwal, S.,Pittenger, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood, Feb 15,2005,105 (4):1815-22.
    [213]. Patel, S. A.,Meyer, J. R.,Greco, S. J., etc. Mesenchymal stem cells protect breast cancer cells through regulatory T cells:role of mesenchymal stem cell-derived TGF-beta[J]. J Immunol, May 15,2010,184 (10):5885-94.
    [214]. Han, Z.,Tian, Z.,Lv, G., etc. Immunosuppressive effect of bone marrow-derived mesenchymal stem cells in inflammatory microenvironment favours the growth of B16 melanoma cells[J]. J Cell Mol Med, Nov,2011,15 (11):2343-52.
    [215]. Cheng, J.,Li, L.,Liu, Y., etc. Interleukin-lalpha induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells[J]. Mol Med Rep, Nov, 2012,6 (5):955-60.
    [216]. Meads, M. B.,Gatenby, R. A.,Dalton, W. S. Environment-mediated drug resistance:a major contributor to minimal residual disease[J]. Nat Rev Cancer, Sep,2009,9 (9):665-74.
    [217]. Sanchez, C. G.,Penfornis, P.,Oskowitz, A. Z., etc. Activation of autophagy in mesenchymal stem cells provides tumor stromal support[J]. Carcinogenesis, Jul,2011,32 (7): 964-72.
    [218]. De Boeck, A.,Pauwels, P.,Hensen, K., etc. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling[J]. Gut, Apr 25,2012.
    [219]. Roodhart, J. M.,Daenen, L. G.,Stigter; E. C., etc. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids[J]. Cancer Cell, Sep 13,2011,20 (3):370-83.
    [220]. Kastner, P.,Mark, M.,Chambon, P. Nonsteroid nuclear receptors:what are genetic studies telling us about their role in real life?[J]. Cell, Dec 15,1995,83 (6):859-69.
    [221]. Fisher, G. J.,Voorhees, J. J. Molecular mechanisms of retinoid actions in skin[J]. FASEB J, Jul,1996,10 (9):1002-13.
    [222]. Imai, T.,Jiang, M.,Kastner, P., etc. Selective ablation of retinoid X receptor alpha in hepatocytes impairs their lifespan and regenerative capacity[J]. Proc Natl Acad Sci U S A, Apr 10, 2001,98 (8):4581-6.
    [223]. Duester, G. Retinoic acid synthesis and signaling during early organogenesis[J]. Cell, Sep 19,2008,134 (6):921-31.
    [224]. Arnhold, T.,Tzimas, G.,Wittfoht, W., etc. Identification of 9-cis-retinoic acid, 9,13-di-cis-retinoic acid, and 14-hydroxy-4,14-retro-retinol in human plasma after liver consumption[J]. Life Sci,1996,59 (12):PL169-77.
    [225]. Buck, J.,Derguini, F.,Levi, E., etc. Intracellular signaling by 14-hydroxy-4,14-retro-retinol[J]. Science, Dec 13,1991,254 (5038):1654-6.
    [226]. Rhinn, M.,Dolle, P. Retinoic acid signalling during development[J]. Development, Mar, 2012,139 (5):843-58.
    [227]. Marshall, H.,Morrison, A.,Studer, M., etc. Retinoids and Hox genes[J]. FASEB J, Jul, 1996,10 (9):969-78.
    [228]. Maire, A.,Alvarez, S.,Shankaranarayanan, P., etc. Retinoid receptors and therapeutic applications of RAR/RXR modulators[J]. Curr Top Med Chem,2012,12 (6):505-27.
    [229]. Chen, J. Y.,Penco, S.,Ostrowski, J., etc. RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation[J]. EMBO J, Mar 15,1995,14 (6):1187-97.
    [230]. Benoit, G. R.,Flexor, M.,Besancon, F., etc. Autonomous rexinoid death signaling is suppressed by converging signaling pathways in immature leukemia cells[J]. Mol Endocrinol, Jul, 2001,15 (7):1154-69.
    [231]. Lin, F.,Xiao, D.,Kolluri, S. K., etc. Unique anti-activator protein-1 activity of retinoic acid receptor beta[J]. Cancer Res, Jun 15,2000,60 (12):3271-80.
    [232]. Greenhalgh, D. A.,Welty, D. J.,Player, A., etc. Two oncogenes, v-fos and v-ras, cooperate to convert normal keratinocytes to squamous cell carcinoma[J]. Proc Natl Acad Sci U S A, Jan,1990,87 (2):643-7.
    [233]. Li, M.,Indra, A. K.,Warot, X., etc. Skin abnormalities generated by temporally controlled RXRalpha mutations in mouse epidermis[J]. Nature, Oct 5,2000,407 (6804):633-6.
    [234]. Guo, J.,Xiao, B.,Lou, Y., etc. Antitumor effects of all-trans-retinoic acid on cultured human pancreatic cancer cells[J]. J Gastroenterol Hepatol, Feb,2006,21 (2):443-8.
    [235]. Guo, J. M.,Xiao, B. X.,Lou, Y. R., etc. The effects of all-trans-retinoic acid on cell cycle and alkaline phosphatase activity in pancreatic cancer cells[J]. Med Chem, Sep,2006,2 (5): 457-61.
    [236]. Sun, S. Y.,Yue, P.,Hong, W. K., etc. Induction of Fas expression and augmentation of Fas/Fas ligand-mediated apoptosis by the synthetic retinoid CD437 in human lung cancer cells[J]. Cancer Res, Nov 15,2000,60 (22):6537-43.
    [237]. Li, H.,Kolluri, S. K.,Gu, J., etc. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3[J]. Science, Aug 18,2000,289 (5482): 1159-64.
    [238]. Toma, S.,Raffo, P.,Nicolo, G., etc. Biological activity of all-trans-retinoic acid with and without tamoxifen and alpha-interferon 2a in breast cancer patients[J]. Int J Oncol, Nov,2000, 17 (5):991-1000.
    [239]. Toma, S.,Raffo, P.,Isnardi, L., etc. Associations of retinoids, tamoxifen and alpha-interferon 2a in human breast cancer[J]. Int J Oncol, Mar,1997,10 (3):597-607.
    [240]. Chiesa, M. D.,Passalacqua, R.,Michiara, M., etc. Tamoxifen vs Tamoxifen plus 13-cis-retinoic acid vs Tamoxifen plus Interferon alpha-2a as first-line endocrine treatments in advanced breast cancer:updated results of a phase Ⅱ, prospective, randomised multicentre trial[J]. Acta Biomed, Dec,2007,78 (3):204-9.
    [241]. Yang, K. L.,Chang, W. T.,Chuang, C. C., etc. Antagonizing TGF-beta induced liver fibrosis by a retinoic acid derivative through regulation of ROS and calcium influx[J]. Biochem Biophys Res Commun, Jan 18,2008,365 (3):484-9.
    [242]. Radaeva, S.,Wang, L.,Radaev, S., etc. Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1[J]. Am J Physiol Gastrointest Liver Physiol, Oct,2007,293 (4):G809-16.
    [243]. Esteban-Pretel, G.,Marin, M. P.,Renau-Piqueras, J., etc. Vitamin A deficiency alters rat lung alveolar basement membrane:reversibility by retinoic acid[J]. J Nutr Biochem, Mar,2010, 21 (3):227-36.
    [244]. Jaster, R.,Hilgendorf, I.,Fitzner, B., etc. Regulation of pancreatic stellate cell function in vitro:biological and molecular effects of all-trans retinoic acid[J]. Biochem Pharmacol, Aug 15, 2003,66 (4):633-41.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.