青木关岩溶流域水—土系统碳氮同位素特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶系统是陆地生态系统的重要组成部分,包括植被、土壤和水文等子系统,其资源环境问题越来越受到人们的关注。由于岩溶流域特殊的地质背景,使得岩溶水—土系统具有独特的生态环境特征,直接制约着当地社会经济的发展。碳氮元素是土壤营养物质和地下水溶质的重要组成部分,直接参与生物地球化学作用。生物地球化学过程中的同位素分馏使得稳定碳氮同位素能够示踪碳氮元素在水—土系统中的迁移转化,为研究岩溶流域水土流失、岩溶作用和岩溶水水质演变提供了重要手段。本文以重庆青木关岩溶流域为例,利用稳定碳氮同位素研究流域水—土系统碳氮分布、变化和来源,探讨自然与人为因素的影响。
     青木关流域岩溶管道流的水文变化对降雨响应迅速,导致其水化学具有较强的动态变化特征。流域地表水和地下水的地球化学主要受地质背景控制,受白云岩溶蚀、石膏溶解(较高的634s值)和硫化物氧化影响(较低pH值)的侧向裂隙水水化学为Mg·Ca-SO4型,而受灰岩溶蚀控制下的地表径流、岩溶裂隙泉、洞穴裂隙水和地下河水等均呈弱碱性,水化学组成以Ca2+和HC03-为主,属于岩溶水。地下河水地球化学介于裂隙水和地表水之间,显示其受地表水和裂隙水共同补给,且以裂隙水为主。不同植被类型下的土壤水化学也不同,其中灌丛和旱地土壤水为Ca-HCO3型,退耕还林地土壤水为Ca-HCO3·SO4型,而草地和针叶林地土壤水为Ca-SO4型,它们同土壤理化性质密切相关。岩溶水地球化学的形成和变化既受地质背景和岩溶作用强度的控制,又受外界自然和人为因素的综合影响,包括降雨冲刷淋溶作用与稀释效应、土地利用类型和农田施肥时令以及其它人为因素。
     不同植被下的土壤碳氮含量及其同位素均具有横向和垂向差异。土壤水溶性有机碳和有机氮含量为草地≈针叶林地>退耕还林地>灌丛地>旱地,并随着深度增加而降低,且与土壤pH值成反比。不同植被下土壤溶解无机氮以硝态氮为主,其大小为耕地土>灌丛土>退耕还林土>草地土>林地土,且随深度的增加,硝态氮含量升高,具有累积效应。表层土壤氮同位素与植物体氮同位素具有显著相关性,使得不同植被类型下的土壤氮同位素具有很大差异。土壤有机氮同位素垂直变异特征表现为,40 cm以上的土壤主要受植物残体影响而贫化15N,且变化较大;40 cm以下土壤受较强的矿化作用影响而富集15N,变化较小。除受植被影响外,土壤有机氮同位素还广泛受到土壤质地、结构、pH值、有机质含量、碳氮比和农业施肥活动等因素共同影响。灌丛地、旱地和退耕还林地土壤水具有较高DIC浓度和δ13 CDIC值,均值分别达230.66 mg/L和-9.62%‰,158.09 mg/L和-9.93‰,115.46 mg/L和-10.5‰,其DIC主要来自碳酸盐岩的溶蚀和土壤CO2的溶解。它们的δ13 CDIC值与DIC浓度却呈正相关关系,且雨季偏高,旱季偏低。针叶林地和草地的DIC浓度和δ13 CDIC值均较低,分别为17.79 mg/L和-15.68‰,14.81 mg/L和-16.10‰,其DIC主要来自土壤CO2的溶解。
     除侧向裂隙水的DIC较低(38.34 mg/L)外,洞穴裂隙水、地下河水、岩溶裂隙泉和地表径流都具有较高的DIC浓度,均值分别为330.62 mg/L、326.74 mg/L、290.94 mg/L和198.13mg/L。侧向裂隙水和洞穴裂隙水的DIC浓度在雨季高于旱季,表现为土壤CO2效应。地下河水和地表径流的DIC浓度在雨季有所降低,表现为降雨稀释效应。岩溶水的δ13 CDIC值变化范围为-13.60‰~-5.89‰,指示其溶解无机碳主要来源于碳酸盐岩和土壤CO2。雨季,岩溶水的δ13 CDIC值较旱季偏低2‰~4‰,其DIC更多为土壤CO2成因。受其他酸(如有机酸等)参与岩溶作用影响,岩溶水的δ13 CDIC值会相对偏高,其DIC来自碳酸盐岩本身的比例增加。岩溶裂隙泉、洞穴裂隙水和地下河水δ13 CDIC值与DIC浓度具有反相关关系,雨季偏低,旱季偏高。地表径流δ13 CDIC值与DIC浓度没有明显的相关性,显示其受多种因素控制。
     流域雨水的NO3-浓度为5.09 mg/L,δ15NN03为2.92‰,其硝态氮主要来自干沉降或煤炭等燃烧排放的NOx。岩溶水中的NO3-的形成主要与区内人类活动有关,在无人类活动影响下,岩溶水的δ15NNO3值约为4‰,其NO3-主要来自矿化的土壤有机氮;受污水或粪便影响的岩溶水则具有较高的N03-浓度和δ~(15)NNO3值。在旱季,地表径流的NO3-浓度和δ15NNO3值分别为2.56mg/L和4.7‰,指示其硝态氮主要来源于土壤有机氮;而在雨季,地表径流的NO3-浓度和δ15NNO3值分别为7.87 mg/L和6.81%o,其硝态氮主要来源为合成化肥和有机化肥的混合。地下河水的NO3-浓度变化范围为15.84-63.5 mg/L,其δ15NNO3值为4.42‰~12.24‰,总体上表现为雨季较低,其硝态氮主要来自矿化的土壤有机氮与合成化肥的混合;而旱季较高,其硝态氮主要来源为土壤有机氮和污水或粪便的混合。
     根据青木关流域下水系统地球化学特征,结合δ13 CDIC、δ1NNO3口δ34S,判断流域岩溶作用方式以CaCO3—CO2—H2O岩溶动力系统溶蚀为主,而硫酸和硝酸参与流域碳酸盐岩溶蚀作用较弱。另外,流域碳酸盐岩溶蚀在一定程度上受到了有机酸的影响。根据流域水化学计算得出流域发生岩溶作用的碳酸盐岩的化学分子式为(Ca0.85Mg0.15)CO3,并利用水化学—径流量方法估算出了流域岩溶作用产生的碳酸盐岩溶蚀速率和大气CO2沉降率分别为115.31 t/(km2·a)和46.07 t/(km2.a),高于我国南方岩溶区碳酸盐岩溶蚀速率以及由此产生的大气CO2沉降速率。
Karst system is a particular terrestrial ecosystem, including vegetation, soil and water subsystems, and its related resources and environmental issues have been increasingly concerned by public. For the special geological background of karst catchment, the karst soil and water systems have unique characteristics of ecological environment, which exerts great influence on the local socio-economic development. Both carbon and nitrogen elements directly involved in biogeochemical role are the most important components of soil nutrient and groundwater solute. The isotopic fractionation during biogeochemical processes allows carbon and nitrogen isotopes to trace the migration and transformation process of carbon and nitrogen elements in soil and water systems, which provides an important means to study the soil erosion, carbonate dissolution and evolution of groundwater quality for karst catchment. In this thesis, Qingmuguan karst catchment in Chongqing, China, was taken as study area, aiming at using stable carbon and nitrogen isotopic techniques to characterize the contents and variations of carbon and nitrogen elements, identify their primary sources in karst soil and water systems and explore the impacts of natural and anthropic factors on them.
     The response of conduit stream discharge in Qingmuguan karst catchment to rainfall was very fast and dramatic, which leads to the strong dynamic variations of groundwater hydrochemistry. The geochemistry of both surface and subsurface water in the catchment were significantly controlled by the geological background. For instance, the geochemical type of lateral fissure water was the Mg-Ca-SO4 type, affected by the dissolution of dolomite and gypsum (higherδ34S value) and sulfide oxidation (lower pH value); while surface stream, karst fissure spring, cave fissure water and subterranean stream were alkalescent with the hydrochemical type of Ca-HCO3, belonging to karst water, primarily controlled by the dissolution of limestone. The values of hydrochemical indicators of subterranean stream ranged between those of fissure water and surface water, suggesting it was influenced mainly by fissure water and partly by fissure surface water. The soil water of shrub land and dry land was the Ca-HCO3 type, and that of afforestation farmland was the Ca-HCO3·SO4 type, while both grassland and coniferous forest had the Ca-SO4-type soil water. Hydrochemical variations of the karst surface and subsurface water were influenced by many factors, such as the geological background and karstification intensity, the flushing eluviation and dilution effects of rainfall, the land use and seasonal farmland fertilization and other anthropogenic inputs.
     The content and isotopic composition of soil carbon and nitrogen under different vegetation varied both laterally and vertically. Soil water soluble cabon and nitrogen were different and tended to decrease in the order as:grassland>coniferous forest land>afforestation farmland>shrub land>dry land. Both of them decreased from top to bottom in soil profile and were correlated negatively with soil pH value. NO3--N was the main species of dissolved inorganic nitrogen, and its content decreased from dry land, shrub land, afforestation land, grassland to coniferous forest land successively, but increased with soil depth increase, showing the cumulative effect. Surface soil organic nitrogen isotope (δ15Norg) showed positive relationship with those of covering plant leaves, which makes the soil organic nitrogen under defferent vegetations different. Soilδ15Norg values were lower and showed significant vertical disparities between 0 and 40 cm. Below 40 cm depth, soil 815Norg values increased significantly due to intensive mineralization and decomposition of residual soil organic matter. Apart from the 15N-depleted plant litterfall, soilδ15N was also affected synthetically by soil texture, structure, pH, organic matter content, C/N ratio, agricultural fertilizing activities, and so on. Soil water of shrub land, dry land and afforestation farmland had higher DIC concentrations andδ13CDIC values, with mean values of 230.66 mg/L and-9.62%o,158.09 mg/L and-9.93%o,115.46 mg/L and-10.5%o, respectively. Their DIC mainly originated from the dissolution of carbonate rocks and soil CO2. For these soil water,δ13CDIC values showed positive correlation with DIC concentration, and were higher in the rainy season but lower in the dry season. Howerver, soil water of grassland and coniferous forest land had lower DIC concentrations andδ13CDIC values, with mean values of 17.79 mg/L and-15.68%o,14.81 mg/L and-16.10%o, respectively. Their DIC mainly came from the dissolution of soil CO2.
     The lateral fissure water had lower DIC concentrations with average of 38.34 mg/L, while the cave fissure water, subterranean conduit stream, karst fissure spring and surface stream had higher DIC concentrations with mean values of 330.62 mg/L,326.74 mg/L,290.94 mg/L and 198.13 mg/L, respectively. DIC concentrations of both lateral fissure water and cave fissure water were higher in the rainy season than those in the dry season, while those of subterranean conduit stream and surface stream tended to decrease during the rainy season.δ13CDIC values of karst water ranged from-13.60%o to -5.89%o, suggesting the dissolved inorganic carbon mainly derived from carbonate rocks and soil CO2. During the rainy season,δ13CDIC values were generally 2%o-4‰lower than those in the dry season.decrease, indicating more DIC produced by soil CO2, but the relatively higherδ13CDIC values reflected that other acids (incl. organic acids, etc.) might involve in the weathering of carbonate rocks to some extent, which resulted in that the proportion of DIC from carbonate rocks increased. For karst fissure water, cave fissure water and subterranean conduit stream,δ13CDIC values showed negative correlation with DIC concentrations, and tended to be higher in the dry season but lower in the rainy season. However, there was no significant correlation betweenδ13CDIC values and DIC concentrations for surface stream,reflectingδ13CDIC was controlled by many factors.
     The mean NO3- concentration of atmospheric precipitation was 5.09 mg/L with meanδ15NNO3 value of 2.92%o, indicating its NO3-originated primarily from the dry precipitation or NOx from coal combustion. The NO3- of karst water generally associated with the human activities. With fewer influence of human activities,δ15NNO3 values were around 4%o, indicating NO3" mainly originated from the mineralized organic nitrogen. The input of sewage or waste could make the karst water have higher NO3- concentrations andδ15NNO3 values. In the dry season, surface stream had lower NO3- concentrations (mean,2.56 mg/L) andδ15NNO3 values (mean,4.74%o), suggesting its nitrate was mainly from soil organic nitrogen. However, it had higher NO3- concentrations (mean,7.87 mg/L) andδ15NNO3 values (mean,6.81‰) in the rainy season, indicating its main nitrate source was the mixture of inoganic and organic fertilizers. NO3- concentrations of subterranean conduit stream were in the range of 15.84-63.5 mg/L withδ15NNO3 values of 4.42‰~12.24%o. In the rainy season,δ15NNO3 values of it tended to be lower, reflecting its nitrate mainly came from the mixture of soil organic nitrogen and inorganic fertilizers. But its nitrate maily derived from the mixture of soil organic nitrogen and sewage or manure during dry season according to higherδ15NNO3 values.
     According to the geochemistry of groundwater, conbined withδ13CDIC,δ15NNO3 andδ34S, it can be inferred that the karstification pattern was the dissolution of carbonate rocks (mainly limestone) more significantly by carbonic acid but less by sulfuric and nitric acid in Qingmuguan karst catchment. Additionally, the organic acid from the soil system might facilitate the weathering of carbonic rocks, resulting in higher 813CDIC of groundwater. Based on the hydochemistry of groundwater in the Qingmuguan catchment, the chemical formula of dissolved carbonate rock could be calculated as (Ca0.85Mg0.15)C03. Dissolution rate of carbonate rock of Qingmuguan catchment had been esminated to be 115.31 t/(km2·a) using of hydrochemistry-runoff methods and the flux of atmospheric CO2 consumpution by carbonate dissolution was 46.07 t/(km2·a). Both dissolution rate of carbonate rock and its consumpution of atmospheric CO2 were much higher than the average of South China.
引文
[1]袁道先.我国西南岩溶石山的环境地质问题[J].世界科技研究与发展,1997,49(5):41-43.
    [2]袁道先,曹建华.岩溶动力学的理论与实践[M].北京:科学出版社,2008.
    [3]袁道先,朱德浩,翁金桃,等.中国岩溶学[M].北京:地质出版社,1994:127-164.
    [4]Ford D, Williams P. Karst hydrogeology and geomorphology[M]. Chichester:Wiley & Sons, 2007.
    [5]杨立铮.中国南方地下河分布特征[J].中国岩溶,1985,1(1):92-100.
    [6]袁道先.论岩溶水的不均匀性.In:岩溶地区水文地质及工程地质工作经验汇编[M].北京:地质出版社,1978:1-19.
    [7]曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44.
    [8]何永彬,张信宝,文安邦.西南喀斯特山地的土壤侵蚀研究探讨[J].生态环境学报,2009,18(6):2393-2398.
    [9]袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988.
    [10]Schaer J P, Stettler R, Aragno P O, et al. Geologie du creux du van et des gorges de l'areuse. In:Nature au creux du van[M]. Editions du Club Jurassien,1998:143-215.
    [11]Sasowsky I, Wicks C. Groundwater flow and contaminant transport in carbonate aquifers[M]. Rotterdam:Balkema,2000.
    [12]袁道先,薛禹群,傅家谟,等.我西南岩溶地区地下河面临变成“下水道”威胁加强保护和污染治理需从国家层面尽快做出决策[J].科学新闻,2007,(14):7-9.
    [13]蒲俊兵,袁道先,覃政教,等.我国西南岩溶区水环境问题[J].科学(上海),2010,62(2):32-37.
    [14]Joos F. Imbalance in the budget[J]. Nature,1994,370:181-182.
    [15]Schindler D W. The mysterious missing sink[J]. Nature,1999,398:105-106.
    [16]袁道先.碳循环与全球岩溶[J].第四纪研究,1993,(1):1-6.
    [17]Jiang Z C,Yuan D X. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 1999,22(1):33-35.
    [18]Yuan D X. The carbon cycle in karst[J]. Annual of Geomorphology,1997,108:91-102.
    [19]Zhang C, Yuan D X, Cao J H. Analysis on the environmental sensitivities of typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China[J]. Environmental Geology, 2005,47(5):615-619.
    [20]Liu Z H, Li Q, Sun H L, et al. Seasonal,diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China:Soil CO2 and dilution effects[J]. Journal of Hydrology,2007,337:207-223.
    [21]曹建华,潘根兴,袁道先,等,岩溶地区土壤溶解有机碳的季节动态及环境效应[J].生态环境,2005,14(2):224-229.
    [22]章程.不同土地利用土下溶蚀速率季节差异及其影响因素——以重庆金佛山为例[J].地质论评,2010,56(1):136-140.
    [23]Perrin A-S, Probst A, Probst J-L. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments:Implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta,2008,72:3105-3123.
    [24]刘丛强,蒋颖魁,陶发祥,等.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J].地球化 学,2008,37(4):404-414.
    [25]Li S L, Calmels D, Han G L, et al. Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: Examples from Southwest China[J]. Earth and Planetary Science Letters,2008,270:189-199.
    [26]White W B. Conceptual models for carbonate aquifers[J]. Ground Water,1969,7(3):15-21.
    [27]Goldscheider N, Drew D. Methods in karst hydrogeology[M]. London:Taylor & Francis, 2007.
    [28]White W B. Conceptual models for karstic aquifers[J]. Speleogenesis and Evolution of Karst Aquifers,2003,1(1):1-6.
    [29]Ford D C, Williams P W. Karst geomorphology and hydrology[M]. London:Unwin Hyman, 1989:601.
    [30]Fritz P, Fontes J C, Frape S K, et al. The isotope geochemistry of carbon in groundwater at Stripa[J]. Geochimica et Cosmochimica Acta,1989,53(8):1765-1775.
    [31]Clark I D, Friz P. Environmental isotopes in hydrogeology[M]. Boca Raton, Florida:CRC Press/Lewis Publishers,1997.
    [32]Lee S E, Krothe N C. A four-component mixing model for water in a karst terrain in South-central Indiana, USA:Using solute concentration and stable isotopes as tracers[J]. Chemical Geology,2001,179:129-143.
    [33]Vogel J C. Variability of carbon isotope fractionation during photosynthesis. In:Ehleringer J R, Farquhar H A E (ed.) Stable isotopes and plant carbon-water relations[M]. San Diego, CA: Academic Press,1993:29-38.
    [34]Zhang J, Quay P, Wilbur D. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta,1995,59(1):107-114.
    [35]Deinese P, Langmuir D, Harmon R S. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate waters[J]. Geochimica et Cosmochimica Acta,1974,38: 1147-1164.
    [36]潘根兴,何师意,曹建华,等.桂林丫吉村表层岩溶土壤系统中613C值的变异[J].科学通报,2001,46(22):1919-1922.
    [37]Li S L, Liu C Q, Li J, et al. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China:Isotopic and chemical constraints[J]. Chemical Geology,2010,277:301-309.
    [38]曹建华,潘根兴,袁道先.柠檬酸对石灰岩溶蚀动力模拟及岩溶意义[J].中国岩溶,2001,20(1):1-4.
    [39]刘再华,袁道先,何师意.不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义——以我国几个典型岩溶地区为例[J].地质学报,1997,71(3):281-288.
    [40]李思亮,刘丛强,陶发祥,等.碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用[J].地球化学,2004,33(2):165-170.
    [41]Zhao M, Zeng C, Liu Z H, et al. Effect of different land use/land cover on karst hydrogeochemistry:A paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology,2010,388(1-2):121-130.
    [42]杨琰,蔡鹤生,刘存富,等.NO3-中15N和18O同位素新技术在岩溶地区地下水氮污染研究中的应用——以河南林州食管癌高发区研究为例[J].中国岩溶,2004,23(3):206-212.
    [43]Kendall C. Tracing nitrogen sources and cycling in catchments. In:Kendall C, McDonnell J J (eds.), Isotope tracers in catchment hydrology[M]. Blackwell:Scientific Publications,1998: 519-576.
    [44]Kohl D H, Shearer G, Commoner B. Fertilizer nitrogen:Contribution to nitrate in surface in a corn belt watershed[J]. Science,1971,174:1331-1334.
    [45]Kohl D H, Commoner B, Shearer G B. Use of variations in natural nitrogen isotope abundance for environmental studies-a questionable approach[J]. Science,1972,177: 453-456.
    [46]Hauck R, Bartholomew W, Bremner J, et al. Use of variations in natural nitrogen isotope abundance for environmental studies:A questionable approach[J]. Science,1972,177: 453-454.
    [47]Kreitler C W. Determining the source of nitrate in groundwater by nitrogen isotope studies. In: Report of investigation 83[M]. Austin, TX:Bureau of Economic Geology, University of Texas at Austin,1975:57.
    [48]Kreitler C W. Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in texas[J]. Journal of Hydrology,1979,42(1-2):147-170.
    [49]Kreitler C W, Browning L A. Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers:Natural sources versus human pollution[J]. Journal of Hydrology,1983,61: 285-301.
    [50]Mariotti A, Letolle R. Application de l'etude isotopique de l'azote en hydrologieet en hydrogeologie-analyse des resultats obtenus sur un exemple precis:Le bassin de melarchez (Seine-et-marne, France)[J]. Journal of Hydrology,1977,33:157-172.
    [51]Gormly J R, Spalding R J. Sources and concentrations of nitrate nitrogen in groundwater of the central platte region, Nebraska[J]. Ground Water,1979,17:291-301.
    [52]Heaton T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:A review[J]. Chemical Geology,1986,59(1):87-102.
    [53]Hubner H. Isotope effects of nitrogen in the soil and biosphere. In:Fritz P,Fontes J C (eds.), Handbook of environmental isotope geochemistry, the terrestrial environment[M]. Amsterdam:Elsevier,1986:361-425.
    [54]Komor S C, Anderson H W. Nitrogen isotopes as indicators of nitrate sources in Minnesota sand-plain aquifers[J]. Ground Water,1993,31(2):260-270.
    [55]Broadbent F E, Rauschkolb R S, Lewis K A, et al. Spatial variability in nitrogen-15 and total nitrogen in some virgin and cultivated soils[J]. Soil Science Society of America Journal, 1980,44:524-527.
    [56]Dealey M T. Investigation of nitrate-nitrogen concentrations in the Equus beds aquifer, Southeast Reno County, Kansas[M]. Equus Beds Groundwater Management District No.2, Water Quality Investigation 95-01,1995.
    [57]Bottcher J, Strebel O, Voerkelius S, et al. Using stable isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal of Hydrology,1990,114:413-424.
    [58]Michalski G, Savarino J, Bohlke J K, et al. Determination of the total oxygen isotopic composition of nitrate and the calibration of a A17O nitrate reference material[J]. Analytical Chemistry,2002,74:4989-4993.
    [59]Victoria L. Multi-isotope approach (δ15N,δ34S,δ13C,δ18O,δD, and 87Sr/86Sr) of nitrate contaminated groundwaters by agricultural and stockbreeder activities (part English,part Spanish,part Catalonian)[D]. Barcelona:University of Barcelona,2004.
    [60]Widory D, Kloppmann W, Chery L, et al. Nitrate in groundwater:An isotopic multi-tracer approach[J]. Journal of Contaminant Hydrology,2004,72:165-188.
    [61]邵益生,纪杉.水文地质勘察技术发展状况与展望[J].工程勘察,1992,(4):37-41.
    [62]焦鹏程.环境氮同位素方法示踪石家庄市地下水中硝酸盐来源[J].地球学报,1996,17(Supp):181-188.
    [63]王东升.氮同位素比(15N/14N)在地下水氮污染研究中的应用基础[J].地球学报,1997,18(2):220-223.
    [64]张翠云,张胜,李政红,等.利用氮同位素技术识别石家庄市地下水硝酸盐污染源[J].地球科学进展,2004,19(2):183-191.
    [65]肖化云,刘丛强.氮同位素示踪贵州红枫湖河流季节性氮污染[J].地球与环境,2004,32(1):71-75.
    [66]李思亮,刘丛强,肖化云,等.δ15N在贵阳地下水氮污染来源和转化过程中的辨识应用[J].地球化学,2005,34(3):257-262.
    [67]吴登定,姜月华,贾军远,等.运用氮氧同位素技术判别常州地区地下水氮污染源[J].水文地质上程地质,2006,33(3):11-15.
    [68]Abu Maila Y, EI-Nahal I, Al-Agha M R. Seasonal variations and mechanisms of groundwater nitrate pollution in the Gaza Strip[J]. Environmental Geology,2004,47(1):84-90.
    [69]Boyer D, Pasquarell G. Nitrate concentrations in karst springs in an extensively grazed area[J]. Water Resources Bulletin,1995,1(4):29-36.
    [70]Burri E, Castiglioni B, Sauro U. Karst and agriculture in the world[J]. International Journal of Speleology,1999,28B(1-4):185.
    [71]Gulbahar N, Elhatip H. Estimation of environmental impacts on the water quality of the tahtalidam watershed in Izmir, Turkey[J]. Environmental Geology,2005,47(5):725-728.
    [72]Guo F, Jiang G H,Yuan D X. Major ions in typical subterranean rivers and their anthropogenic impacts in southwest karst areas, China[J]. Environmental Geology,2007,53(3):533-541.
    [73]Jiang Y J, Zhang C, Yuan D X, et al. Impact of land use change on groundwater quality in a typical karst watershed of Southwest China:A case study of the xiaojiang watershed, Yunnan province[J]. Hydrogeology Journal,2008,16(4):727-735.
    [74]Katz B G. Sources of nitrate contamination and age of water in large karstic springs of Florida[J]. Environmental Geology,2004,46:689-706.
    [75]Katz B G, Bohlke J K, Hornsby H D. Timescales for nitrate contamination of spring waters, Northern Florida, USA[J]. Chemical Geology,2001,179:167-186.
    [76]Katz B G, Chelette A R, Pratt T R. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville karst plain, USA[J]. Journal of Hydrology, 2004,289:36-61.
    [77]Pulido-Bosch A, Molina L, Navarrete F, et al. Nitrate content in the groundwater of the campo de dalias (almeria). In:Pulido-Bosch A (ed.) Some spanish karstic aquifers[M]. Granada: University of Granada Press,1993:83-94.
    [78]Wells E R, Krothe N C. Seasonal fluctuation in δ15N of groundwater nitrate in a mantled karst aquifer due to macropore transport of fertilizer-derived nitrate[J]. Journal of Hydrology,1989, 112:191-201.
    [79]Lqbal M Z, Krothe N C, Spalding R F. Nitrogen isotope indicators of seasonal source variability to groundwater[J]. Environmental Geology,1997,32(3):210-217.
    [80]Panno S, Hackley K, Hwang H, et al. Determination of the sources of nitrate contamination in karst springs using isotopic and chemical indicators[J]. Chemical Geology,2001,179:13-28.
    [81]Liu C Q, Li S L, Lang Y C, et al. Using δ15N and δ18O values to identify nitrate sources in karst groundwater, Guiyang, Southwest China[J]. Environmental Science & Technology, 2006,40(22):6928-6933.
    [82]Li S L, Liu C Q, Lang Y C, et al. Tracing the sources of nitrate in karstic groundwater in Zunyi, Southwest China:A combined nitrogen isotope and water chemistry approach[J]. Environmental Earth Sciences,2010,60:1415-1423.
    [83]Jiang Y J, Wu Y X, Yuan D X, et al. Human impacts on karst groundwater contamination deduced by coupled nitrogen with strontium isotopes in the Nandong underground river system in Yunan, China[J]. Environmental Science & Technology,2009,43(20):7676-7683.
    [84]汪智军,杨平恒,旷颖仑,等.基于15N同位素示踪技术的地下河硝态氮来源时空变化特征分析[J].环境科学,2009,30(12):3548-3554.
    [85]王松,裴建国,梁建宏.利用氮氧同位素研究桂林寨底地下河硝酸盐来源[J].地质灾害与环境保护,2010,21(4):54-56,81.
    [86]杨平恒,罗鉴银,彭稳,等.在线技术在岩溶地下水示踪试验中的应用——以青木关地下河系统岩口落水洞至姜家泉段为例[J].中国岩溶,2008,27(3):19-24.
    [87]杨平恒.岩溶管道含水介质中的水文地球化学特征及悬浮颗粒物运移规律——以重庆青木关地下河系统为例[D].重庆:西南大学,2010.
    [88]刘仙.基于BASINS/HSPF模型的岩溶槽谷区地下水模拟研究——以重庆青木关地下河系统为例[D].重庆:西南大学,2009.
    [89]贺秋芳,杨平恒,袁文昊,等.微生物与化学示踪岩溶地下水补给源和途径[J].水文地质工程地质,2009,36(3):33-37.
    [90]袁文昊,贺秋芳,杨平恒,等.典型岩溶槽谷地下河水化学时空变化特征及影响因素初探——以重庆青木关地下河系统为例[J].西南大学学报(自然科学版),2009,31(6):160-164.
    [91]杨平恒,旷颖仑,袁文吴,等.降雨条件下典型岩溶流域地下水中的物质运移[J].环境科学,2009,30(11):3249-3255.
    [92]杨平恒,罗鉴银,袁道先,等.降雨条件下岩溶槽谷泉水的水文地球化学特征[J].水利学报,2009,40(1):67-74.
    [93]贺秋芳.青木关地下河岩溶系统中的氮循环及其相关微生物作用与失踪研究[D].重庆:西南大学,2009.
    [94]扈志勇,杨梅.岩溶区土壤氮流失及其对地下水的污染[J].人民长江,2008,39(18):32-34.
    [95]扈志勇,杨平恒,杨梅,等.川东槽谷区岩溶泉水物理化学动态特征及其环境效应研究——以重庆青木关岩溶槽谷姜家泉为例[J].现代地质,2009,23(6):1167-1173.
    [96]张强.岩溶地下水脆弱性风险性评价[D].重庆:西南大学,2009:56.
    [97]Silva S R, Kendall C, Wilkison D H, et al. A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios[J]. Journal of Hydrology,2000, 228:22-36.
    [98]杨琰,蔡鹤生,刘存富,等.地下水中NO3-的15N和18O同位素测试新技术——密封石英管燃烧法[J].水文地质工程地质,2005,(2):20-24.
    [99]袁道先.岩溶学词典[M].北京:地质出版社,1988.
    [100]苟鹏飞,蒋勇军,扈志勇,等.典型岩溶地下河系统暴雨条件下水文水化学动态变化研究[J].水文地质工程地质,2010,37(5):20-25,37.
    [101]Zhao D, Seip H, Zhang D. Pattern and cause of acidic deposition in the Chongqing region, Sichuan province, China[J]. Water, Air,& Soil Pollution,1994,77(1):27-48.
    [102]刘再华,Dreybrodt W.岩溶作用动力学与环境[M].北京:地址出版社,2007.
    [103]杨平恒,袁道先,袁文昊,等.以PCA揭示降雨期间岩溶地下水文地球化学的形成[J].科学通报,2010,55(9):788-797.
    [104]赵劲松,张旭东,袁星,等.土壤溶解性有机质的特性与环境意义[J].应用生态学报,2003,14(126-130).
    [105]Kalbitz K, Solinger S, Park J-H, et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Science,2000,165(4):277-304.
    [106]Nadelhoffer K J, Fry B. Nitrogen isotope studies in forest ecosystems. In:Lajtha K, Michener R H (eds.), Stable isotopes in ecology and environmental science[M]. Boston: Blackwell Scientific Publications,1994:22-44.
    [107]Robinson D.δ15N as an integrator of the nitrogen cycle[J]. Trends in Ecology & Evolution, 2001,16(3):153-162.
    [108]Hogberg P.15N natural abundance in soil-plant systems[J]. New Phytologist,1997,137(2): 179-203.
    [109]Liu W G, Wang Z. Nitrogen isotopic composition of plant-soil in the loess plateau and its responding to environmental change[J]. Chinese Science Bulletin,2009,54(2):272-279.
    [110]Liu X Z, Wang G A, Li J Z, et al. Nitrogen isotope composition characteristics of modern plants and their variations along an altitudinal gradient in dongling mountain in beijing[J]. Science in China Series D-Earth Sciences,2010,53(1):128-140.
    [111]Fang Y T, Yoh M, Koba K, et al. Nitrogen deposition and nitrogen cycling along an urban-rural transect in Southern China[J]. Global Change Biology,2010, doi: 10.1111/j.1365-2486.2010.02283.x.
    [112]刘丛强.生物地球化学过程与地表物质循环——西南喀斯特流域侵蚀与生源要素循环[M].北京:科学出版社,2007.
    [113]李阳兵,王世杰,李瑞玲.岩溶生态系统的土壤[J].生态环境,2004,13(3):434-438.
    [114]Murphy D V, Macdonald A J, Stockdale E A, et al. Soluble organic nitrogen in agricultural soils[J]. Biology and Fertility of Soils,2000,30:374-387.
    [115]Jardine P M, Weber N L, Mccarthy J F. Mechanisms of dissolved organic carbon adsorption on soil[J]. Soil Science Society of America Journal,1989,53:1378-1385.
    [116]Gergorich E G, Ellert B H, Drury C, et al. Fertilization effects on soil organic matter turnover and corn residue c storage[J]. Soil Science Society of America Journal,1996,66:472-476.
    [117]Li C G, Han X G, Huang J H, et al. A review of affecting factors of soil nitrogen mineralization in forest ecosystems[J]. Acta Ecologica Sinica,2001,21(7):1187-1195.
    [118]Nadelhoffer K J, Fry B. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter[J]. Soil Sciences Society of America Journal,1988,52:1633-1640.
    [119]Hogberg P, Hogbom L, Schinkel H, et al.15N abundance of surface soils, roots and mycorrhizas in profiles of european forest soils[J]. Oecologia,1996,108(2):207-214.
    [120]Boeckx P, Paulino L, Oyarztjn C, et al. Soil δ15N patterns in old-growth forests of southern chile as integrator for N-cycling[J]. Isotopes in Environmental and Health Studies,2005, 41(3):249-259.
    [121]袁道先.地球系统的碳循环和资源环境效应[J].第四纪研究,2001,21(3):223-232.
    [122]Houghton R A, Woodwell G M. Global climate change[J]. American Journal of Science, 1989,260:18-26.
    [123]刘再华,Groves C,袁道先,等.水-岩-气相互作用引起的水化学动态变化研究——以桂林岩溶试验场为例[J].水文地质工程地质,2003,30(4):13-18.
    [124]韩贵琳,刘丛强.贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J].地球科学进展,2005,20(4):394-406.
    [125]Han G L, Liu C Q. Water geochemistry controlled by carbonate dissolution:A study of the river waters draining karst-dominated terrain, Guizhou province, China[J]. Chemical Geology,2004,204:1-21.
    [126]Chen J S, Chu X L. Sulphur isotope composition of triassic marine sulfates of South China[J]. Chemical Geology,1988,72(2):155-161.
    [127]洪业汤,张鸿斌,朱詠煊,等.中国煤的硫同位素组成特征及燃煤过程硫同位素分馏[J].中国科学B辑,1992,(8):868-873.
    [128]Li X D, Masuda H, Kusakabe M, et al. Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan basin, China[J]. Geochemical Journal,2006,40(4):309-332.
    [129]肖化云,刘丛强,李思亮.贵阳地区夏季雨水硫和氮同位素地球化学特征[J].地球化学,2003,32(3):248-254.
    [130]Hinsinger P, Plassard C, Tang C, et al. Origins of root-mediated ph changes in the rhizosphere and their responses to environmental constraints:A review[J]. Plant Soil,2003, 248(1):43-59.
    [131]Drever J I, Stillings L L. The role of organic acids in mineral weathering[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997,120(1-3):167-181.
    [132]曹建华,潘根兴,袁道先.不同植物凋落物对土壤有机碳淋失的影响及岩溶效应[J].第四纪研究,2000,20(4):360-366.
    [133]贾鹏.利用N和Sr同位素示踪农业区岩溶地下河系统硝酸盐污染来源[D].重庆:西南大学,2010.
    [134]胡进武,王增银,周炼,等.岩溶水锶元素水文地球化学特征[J].中国岩溶,2004,23(1):37-42.
    [135]郎赟超,刘丛强,韩贵琳,等.喀斯特水文系统水-岩反应及污染特征:贵阳市区地表/地下水化学与锶同位素研究[J].第四纪研究,2005,25(5):655-662.
    [136]刘小龙,刘丛强,李思亮,等.碳与锶同位素在六盘水地下水研究中的应用[J].生态学杂志,2010,29(5):978-984.
    [137]Jiang Y J. Strontium isotope geochemistry of groundwater affected by human activities in Nandong underground river system, China[J]. Applied Geochemistry,2010, doi: 10.1016/j.apgeochem.2010.12.010.
    [138]刘再华.碳酸盐岩岩溶作用对大气CO2沉降的贡献[J].中国岩溶,2000,19(4):293-300.
    [139]Galy A, France-Lanord C. Weathering processes in the ganges-brahmaputra basin and the riverine alkalinity budget[J]. Chemical Geology,1999,159:31-60.
    [140]Freyer H D. Seasonal trends of NH4+ and NO3- nitrogen isotope composition in rain collected at Julich, Germany[J]. Tellus,1978,30:83-92.
    [141]Heaton T H E.15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa[J]. Atmospheric Environment,1987,21:843-852.
    [142]Elliott E M, Brush G S. Sedimented organic nitrogen isotopes in freshwater wetlands record long-term changes in watershed nitrogen source and landuse[J]. Environmental Science & Technology,2006,26(40):2910-2916.
    [143]Heaton T H E.15N/14N ratios of NOx from vehicle engines and coal-fired power station[J]. Tellus,1990,42B:304-307.
    [144]Kendall C, Elliott E M,Wankel S D. Tracing anthropogenic inputs of nitrogen to ecosystems. In:Michener R, Lajtha K (eds.), Stable isotopes in ecology and environment science(2nd ed)[M]. Blackwell:Scientific Publications,2007:375-499.
    [145]Mengis M, Schiff S L, Harris M, et al. Multiple geochemical and isotope approaches for assessing groundwater NO3- elimination in a riparian zone[J]. Ground Water,1999,37(3): 448-459.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.