正常人小脑蚓部亚区的静息态功能连接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分正常人小脑蚓部亚区静息态功能连接的侧别差异研究目的:
     运用静息态功能磁共振成像(functional magnetic resonance imaging, fMRI)技术,通过分析感兴趣区与全脑其它体素间的功能连接,研究正常人小脑蚓部不同亚区的功能连接模式,比较左侧与右侧小脑蚓部亚区功能连接模式的差异,从而阐明小脑蚓部亚区的功能连接模式是否存在侧别差异。
     材料与方法:
     选择符合入组标准的正常青年志愿者90例,男性45例,年龄:19-23岁,平均21.7±2.4岁;女性45例,年龄:19-26岁,平均22.3±1.7岁;男、女性志愿者年龄与性别之间无统计学差异(P>0.05)。采用GE3.0T磁共振扫描仪对所有被试者行静息态fMRI扫描。应用基于Matlab的SPM8及REST软件进行预处理、功能连接计算和统计分析。预处理包括时间校正、头动校正、空间标准化、空间平滑、去线性漂移、低频滤波和去除协变量。在标准化后的3D结构像上,通过手绘方式得到每侧小脑蚓部的7个亚区(双侧共14个亚区),将其作为感兴趣区(ROI)进行功能连接分析,得到功能连接模式图。统计分析采用单样本t-检验,分别得到男、女被试小脑蚓部左、右侧种子点的功能连接模式图。将左、右侧ROI的功能连接模式图分别叠加到|Ch2bet结构模板进行显示,用已知的神经解剖学标记来描述与所选择种子点有显著相关的区域。观察有统计学意义的团块(cluster)的大小、所在脑区。分别对男、女性左、右侧ROI的功能连接模式进行对比,得到重叠率及叠加图。
     结果:
     1.除男性ROI5正相关脑区的重叠率较低(54.41%)以外,其余小脑蚓部左右侧ROI正相关脑区重叠率女性为77.21%-92.44%,男性为77.42%-89.62%。
     2.小脑蚓部左、右侧ROI负相关脑区重叠率女性为81.00%-93.29%,男性为74.00%-93.24%。
     3.叠加图显示小脑蚓部左、右侧ROI的功能连接图重合情况较好,仅有男性左、右侧ROI5正相关脑区的重合欠佳。
     结论:
     1.无论男性还是女性,正常人小脑蚓部同一亚区的功能连接模式无显著侧别差异,提示小脑蚓部功能连接分布模式无明显偏侧化。
     2.正常人小脑蚓部同一亚区左、右侧种子点的功能连接模式的细微差别可能是由于左、右侧种子点的位置不能完全对应所致。
     第二部分正常人小脑蚓部亚区静息态功能连接的性别差异研究
     目的:
     运用静息态fMRI技术,采用基于体素的静息态功能连接分析,研究男性及女性小脑蚓部亚区功能连接模式的差异。
     材料与方法:
     选择符合入组标准的90例正常志愿者,采用GE3.0T磁共振扫描仪进行静息态fMRI检查,基于本文第一部分的研究结果,将左、右侧相同的ROI合并,共得到7个ROI,对其与全脑所有体素的时间序列做相关分析,得到每个ROI的功能连接模式图。数据预处理、功能连接计算和统计分析应用SPM8和REST软件进行。采用单样本t-检验进行组内分析。将功能连接模式图叠加到Ch2bet结构模板进行显示,用已知的神经解剖学标记来描述与所选定的七个种子点有显著相关的区域。观察有统计学意义的团块(cluster)的大小、所在脑区及其峰值坐标(MNI坐标)。记录相关脑区的体积及相关强度(用t检验统计值“T”表示,T值越大,相关性越强)。对男、女性7个ROI的功能连接模式图进行分析和对比,得到重叠率及叠加图并分析其功能连接模式的异同。
     结果:
     1.男性与女性小脑蚓部各亚区功能连接正相关脑区的重叠率为20.71%-74.87%。负相关脑区的重叠率为49.63%-78.13%。
     2.女性小脑蚓部Ⅰ-Ⅷ区都与感觉运动网络相关,以Ⅳ、V区相关性最强;Ⅸ和Ⅹ区与默认网络有相关性;小脑蚓部各个亚区均与丘脑和海马有相关性;Ⅰ-Ⅷ区与壳核、苍白球和岛叶后部有相关性;Ⅰ-Ⅶ区与听觉网络有相关性;Ⅳ-X区与视觉网络有相关性,以Ⅳ、Ⅴ区和Ⅸ区相关性最强;Ⅳ-Ⅶ、Ⅸ和X区均与杏仁核有相关性。
     3.男性小脑蚓部各亚区的功能连接模式与女性有相似之处,但脑区范围及相关强度较女性弱。男性小脑蚓部Ⅰ-Ⅶ区都与感觉运动网络相关,以Ⅳ、V区相关性最强;Ⅸ和Ⅹ区与默认网络有相关性;Ⅰ-Ⅶ区与壳核、苍白球和岛叶后部有相关性;Ⅰ-ⅨX区均与丘脑有相关性;各亚区与听觉网络均无相关性;Ⅳ-Ⅹ区与视觉网络有相关性,以Ⅳ、Ⅴ区和Ⅸ区相关性最强;小脑蚓部所有亚区均与海马有相关性;Ⅳ-Ⅶ与杏仁核有相关性。
     4.女性小脑蚓部Ⅰ-Ⅷ区与默认网络负相关;Ⅰ-Ⅴ区与尾状核头负相关;Ⅳ和X区与岛叶负相关;Ⅰ-Ⅶ和Ⅸ与眶额皮层负相关;小脑蚓部所有亚区与注意网络负相关;Ⅸ和Ⅹ区与感觉运动网络负相关。
     5.男性小脑蚓部Ⅰ-Ⅷ区与默认网络负相关;Ⅰ-Ⅲ区与尾状核头负相关;与岛叶无负相关;Ⅰ-Ⅶ、Ⅸ和Ⅹ与眶额皮层负相关;小脑蚓部所有亚区与注意网络负相关;Ⅸ和Ⅹ区与感觉运动网络负相关。
     6.男性与女性小脑蚓部功能连接模式的共同点:小脑蚓部Ⅰ-Ⅶ区都与感觉运动网络相关,且Ⅳ、Ⅴ区相关性最强;Ⅸ和Ⅹ区与默认网络有相关性;Ⅰ-Ⅶ区与壳核、苍白球和岛叶后部有相关性;Ⅰ-Ⅸ区均与丘脑有相关性;Ⅳ-Ⅹ区与视觉网络有相关性,以Ⅳ、Ⅴ区和Ⅸ区相关性最强;所有亚区均与海马有相关性;Ⅳ-Ⅶ与杏仁核有相关性。小脑蚓部Ⅰ-Ⅷ区与默认网络负相关;Ⅰ-Ⅲ区与尾状核头负相关;Ⅰ-Ⅶ和Ⅸ区与眶额皮层负相关;所有亚区与注意网络负相关;Ⅸ和Ⅹ区与感觉运动网络负相关。
     结论:
     1.小脑蚓部不同亚区具有不同的功能连接模式,其中Ⅰ-Ⅶ区主要与感觉运动网络有关,而Ⅳ和Ⅹ区主要与默认网络有关;
     2.尽管男性与女性小脑蚓部各亚区的功能连接模式相似,但相关脑区的范围和相关程度存在差别,即女性大于男性。
Section I
     Lateral differences in resting-state functional connectivity of vermis subregions in healthy subjects
     Objective:
     To investigate the differences in the pattern of functional connectivity (FC) between the left and right vermis subregions in healthy subjects using the resting-state functional magnetic resonance imaging
     Subjects and Methods:
     Ninety healthy subjects (45men with age ranged from19to23years,45women with age ranged from19to26years) were recruited in this study. GE3.0T MR Scanner was used to obtain resting-state fMRI data. The fMRI data were processed with the software of REST and SPM8. By the seed-based voxel-wise method, we analyzed the time course correlations between7pairs of subregions of cerebellar vermis with the other voxels of the whole brain. Within-group analysis was performed with single sample t-test. FC maps were overlapped onto the Ch2bet standard structural template to observe the coordinate of each brain region and its size of cluster. Comparison of the FC pattern of left and right ROI was made to get the overlapping precent and overlapping figures.
     Results:
     1. The overlapping percent of positive correlation of left and right ROI ranged from77.21%to92.44%for females,77.42%-89.62%for males, except for the overlapping percent of ROI5was54.41%.
     2. The overlapping percent of negative correlation ranged from81.00%to93.29%for females, and74.00%-93.24%for males.
     3. The overlapping figure demonstrated well overlapped of the FC pattern of the left and right ROIs, except for ROI5of male subjects.
     Conclusion:
     1. The FC pattern of the left and right ROIs of cerebellar vermis did not have significant difference.
     2. There were small non-overlapping regions for each pair of the ROIs, which might be resulted from subtle differences in the location of each pair of ROIs.
     Section Ⅱ
     Gender differences in resting-state functional connectivity of vermis subregions in healthy subjects Objective:
     To investigate the consistencies and differences of FC pattern of vermis subregions between male and female subjects using resting-state functional magnetic resonance imaging.
     Subjects and Methods:
     Ninety healthy subjects (45men with age ranged from19to23years,45women with age ranged from19to26years) were recruited in this study. GE3.0T MR Scanner was used to obtain resting-state fMRI data. The fMRI data were processed with the software of REST and SPM8. By seed-based voxel-wise method, we analyzed the time course correlations between7subregions of cerebellar vermis with the other voxels of the whole brain. Within-group analysis was performed with single sample t-test. FC maps were overlapped onto the Ch2bet standard structural template to observe the coordinate of each brain region and its size of cluster. Comparisons of the FC patterns of each vermis subregion between male and female subjects were made to get the overlapping precent and overlapping figures.
     Results:
     1. The overlapping percent of positive correlation ranged from20.71%to 74.87%for male and female subjects, and negative correlation was49.63%-78.13%.
     2. Positive correlations of females:lobules Ⅰ-Ⅷ, especially lobules Ⅳ and Ⅴ, were correlated with the sensorimotor network; lobules Ⅰ-Ⅷ were correlated with the putamen, pallidum and posterior insula; all the7ROIs were correlated with the thalamus and hippocampus; lobules Ⅰ-Ⅶ were correlated with the acoustic network; lobules Ⅳ-Ⅹ were correlated with the visual network with the strongest in lobules Ⅳ, Ⅴ and Ⅸ; lobules Ⅳ-Ⅶ, Ⅸ and Ⅹ were correlated with the amygdala; and lobules Ⅸ and Ⅹ were correlated with the default mode network.
     3. Positive correlation of males:lobules Ⅰ-Ⅶ, especially lobules Ⅳ and Ⅴ, were correlated with the sensorimotor network; lobules Ⅰ-Ⅶ were correlated with the putamen, pallidum and posterior insula; lobules Ⅰ-Ⅸ were correlated with the thalamus; lobules Ⅳ-Ⅹ were correlated with the visual network, with the strongest in lobules Ⅳ, Ⅴ and Ⅸ; all the subregions were correlated with the hippocampus; lobules Ⅳ-Ⅶ were correlated with the amygdala; and lobules Ⅸ and Ⅹ were correlated with the default mode network.
     4. Negative correlation of females:lobules Ⅰ-Ⅷ were anti-correlated with the default mode network; lobules Ⅰ-Ⅴ were anti-correlated with the head of caudate; lobules Ⅸ and Ⅹ were anti-correlated with the insula; lobules Ⅰ-Ⅶ and Ⅸ were anti-correlated with the orbitofrontal cortex; all the subregions were anti-correlated with the attention network; and lobules Ⅸ and Ⅹ were anti-correlated with the sensorimotor network.
     5. Negative correlation of males:lobules Ⅰ-Ⅷ were anti-correlated with the default mode network; lobules Ⅰ-Ⅲ were anti-correlated with the head of caudate; lobules Ⅰ-Ⅶ, Ⅸ and Ⅹ were anti-correlated with the orbitofrontal cortex; all the subregions were anti-correlated with the attention network; and lobules Ⅸ and Ⅹ were anti-correlated with the sensorimotor network.
     6. The common FC patterns of females and males:lobules Ⅰ-Ⅶ, especially lobules Ⅳ and Ⅴ, were correlated with the sensorimotor network; lobules Ⅰ-Ⅶ were correlated with the putamen, pallidum and posterior insula; lobules Ⅰ-Ⅸ were correlated with the thalamus; lobules Ⅳ-Ⅹ were correlated with the visual network, with the strongest in lobules Ⅳ, Ⅴ and IX; all the subregions were correlated with the hippocampus; lobules Ⅳ-Ⅶ were correlated with the amygdala; and lobules Ⅸ and Ⅹ were correlated with the default mode network. Lobules Ⅰ-Ⅷ were anti-correlated with the default mode network; lobules Ⅰ-Ⅲ were anti-correlated with the head of caudate; lobules Ⅰ-Ⅶ and IX were anti-correlated with the orbitofrontal cortex; all the subregions were anti-correlated with the attention network; and lobules Ⅸ and Ⅹ were anti-correlated with the sensorimotor network.
     Conclusion:
     1. The FC patterns of the subregions of cerebellar vermis were different from each other. Lobules Ⅰ-Ⅶ were correlated with the sensorimotor network, but lobules Ⅸ and Ⅹ were correlated with the default mode network.
     2. The FC patterns of subregions of cerebellar vermis of males were similar to those of females; however, the extent of significant brain regions and the strength of correlations of females were larger and stronger than those of males.
引文
[1]Timmann D, Drepper J, Frings M, Maschke M, Richter S, Gerwig M, Kolb FP. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex.2010;46(7):845-57.
    [2]Murdoch BE. The cerebellum and language:historical perspective and review. Cortex.2010;46(7):858-68.
    [3]Marvel CL, Desmond JE. The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex.2010;46(7):880-95.
    [4]Claeys KG, Orban GA, Dupont P, Sunaert S, Van Hecke P, De Schutter E. Involvement of multiple functionally distinct cerebellar regions in visual discrimination:a human functional imaging study. Neuroimage. 2003;20(2):840-54.
    [5]Haslinger B, Erhard P, Weilke F, Ceballos-Baumann AO, Bartenstein P, Grafin von Einsiedel H, Schwaiger M, Conrad B, Boecker H. The role of lateral premotor-cerebellar-parietal circuits in motor sequence control:a parametric fMRI study. Brain Res Cogn Brain Res.2002; 13(2):159-68.
    [6]Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage.1999; 10:233-60.
    [7]Pierson R, Corson PW, Sears LL, Alicata D, Magnotta V, Oleary D, Andreasen NC. Manual and semiautomated measurement of cerebellar subregions on MR images. Neuroimage.2002; 17(1):61-76.
    [8]Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain. 1999;122(Pt2):329-38.
    [9]Ross JS, Tkach J, Ruggieri PM, Lieber M, Lapresto E. The mind's eye: functional MR imaging evaluation of golf motor imagery. AJNR Am J Neuroradiol.2003;24(6):1036-44.
    [10]Spencer RM, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements:an fMRI study. Neuroimage. 2007;36(2):378-87.
    [11]Voogd J, Barmack NH. Oculomotor cerebellum. Prog Brain Res. 2006;151:231-68.
    [12]Nyberg L, McIntosh AR, Cabeza R, Nilsson LG, Houle S, Habib R, Tulving E. Network analysis of positron emission tomography regional cerebral blood flow data:ensemble inhibition during episodic memory retrieval. J Neurosci. 1996;16(11):3753-9.
    [13]Kirschen MP, Davis-Ratner MS, Milner MW, Chen SH, Schraedley-Desmond P, Fisher PG, Desmond JE. Verbal memory impairments in children after cerebellar tumor resection. Behav Neurol.2008;20(1-2):39-53.
    [14]Bengtsson SL, Ehrsson HH, Forssberg H, Ullen F. Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences. Eur J Neurosci.2004;19(9):2591-602.
    [15]Tavano A, Fabbro F, Borgatti R. Language and social communication in children with cerebellar dysgenesis. Folia Phoniatr Logop.2007;59(4):201-9.
    [16]Chan RC, Huang J, Di X. Dexterous movement complexity and cerebellar activation:a meta-analysis. Brain Res Rev.2009;59(2):316-23.
    [17]Sullivan EV, Rose J, Pfefferbaum A. Effect of vision, touch and stance on cerebellar vermian-related sway and tremor:a quantitative physiological and MRI study. Cereb Cortex.2006; 16(8):1077-86.
    [18]Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF. Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans:a functional magnetic resonance imaging study. Neurosci Lett.2003;335(3):202-6.
    [19]Dimitrova A, Kolb FP, Elles HG, Maschke M, Gerwig M, Gizewski E, Timmann D. Cerebellar activation during leg withdrawal reflex conditioning:an fMRI study. Clin Neurophysiol.2004;115(4):849-57.
    [20]Bledsoe J, Semrud-Clikeman M, Pliszka SR. A magnetic resonance imaging study of the cerebellar vermis in chronically treated and treatment-naiVe children with attention-deficit/hyperactivity disorder combined type. Biol Psychiatry. 2009;65(7):620-4.
    [21]Hoeft F, Lightbody AA, Hazlett HC, Patnaik S, Piven J, Reiss AL. Morphometric spatial patterns differentiating boys with fragile X syndrome, typically developing boys, and developmentally delayed boys aged 1 to 3 years. Arch Gen Psychiatry.2008;65(9):1087-97.
    [22]Kaufmann WE, Cooper KL, Mostofsky SH, Capone GT, Kates WR, Newschaffer CJ, Bukelis I, Stump MH, Jann AE, Lanham DC. Specificity of cerebellar vermian abnormalities in autism:a quantitative magnetic resonance imaging study. J Child Neurol.2003;18(7):463-70.
    [23]Okugawa G, Sedvall G, Nordstrom M, Andreasen N, Pierson R, Magnotta V, Agartz I. Selective reduction of the posterior superior vermis in men with chronic schizophrenia. Schizophr Res.2002;55(1-2):61-7.
    [24]Brun CC, Nicolson R, Lepore N, Chou YY, Vidal CN, DeVito TJ, Drost DJ, Williamson PC, Rajakumar N, Toga AW, Thompson PM. Mapping brain abnormalities in boys with autism. Hum Brain Mapp.2009;30(12):3887-900.
    [25]Levitt JJ, McCarley RW, Nestor PG, Petrescu C, Donnino R, Hirayasu Y, Kikinis R, Jolesz FA, Shenton ME. Quantitative volumetric MRI study of the cerebellum and vermis in schizophrenia:clinical and cognitive correlates. Am J Psychiatry.1999;156(7):1105-7.
    [26]Biswal B, Yetkin F.Z, Haughton V.M, Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med.1995;34:537-41
    [27]Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A.2006;103(37):13848-53.
    [28]Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci USA. 2009; 106(31):13040-5.
    [29]Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci.2009;29(26):8586-94.
    [30]Greg Allen, Roderick McColl, Holly Barnard, Wendy K. Ringe, James Fleckenstein, C. Munro Cullum. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. NeuroImage.2005;28:39-48
    [31]Oldfield R.C. The assessment and analysis of handedness:the Edinburgh inventory. Neuropsychologia.1971;9:97-113.
    [32]Fox M.D, Snyder A.Z, Vincent J.L, Corbetta M, Van Essen D.C, Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA.2005; 102:9673-8.
    [33]Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith, Sean Ho, James C. Gee, Guido Gerig. User-guided 3D active contour segmentation of anatomical structures:Significantly improved efficiency and reliability. NeuroImage.2006;31:1116-28
    [34]Press, W.H. Numerical Recipes in C. Cambridge University Press, Cambridge.1992.
    [35]Dietrichs E. Clinical manifestation of focal cerebellar disease as related to the organization of neural pathways. Acta Neurol Scand Suppl.2008; 188:6-11.
    [36]Raichle M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA.2001;98:676-82.
    [37]Long XY, Zuo XN, Kiviniemi V, Yang Y, Zou QH, Zhu CZ, Jiang TZ, Yang H, Gong QY, Wang L, Li KC, Xie S, Zang YF Default mode network as revealed with multiple methods for resting-state functional MRI analysis. J Neurosci Methods.2008;171(2):349-55.
    [38]Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol. 2000;21(9):1636-44.
    [39]Song M, Zhou Y, Li J, Liu Y, Tian L, Yu C, Jiang T. Brain spontaneous functional connectivity and intelligence. Neuroimage.2008;41 (3):1168-76.
    [40]Hasson U, Nusbaum HC, Small SL. Task-dependent organization of brain regions active during rest. Proc Natl Acad Sci U S A.2009; 106(26):10841-6.
    [41]Schafer RJ, Constable T. Modulation of functional connectivity with the syntactic and semantic demands of a Noun Phrase Formation Task:a possible role for the Default Network. Neuroimage.2009;46(3):882-90.
    [42]Andermann E, Andermann F, Joubert M, Melancon D, Karpati G, Carpenter S.Three familial midline malformtion syndromes of the central nervous system: agenesis of the corpus callosum and anterior horn-cell disease; agenesis of cerebellar vermis; and atrophy of the cerebellar vermis. Birth Defects Original Article Series.1975; 11:269-93.
    [43]Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate:saccades. Journal of Neurophysiology. 1998;80:1911-31.
    [44]Penhune VB, Zattore RJ, Evans AC. Cerebellar contributions to motor timing:a PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience.1998; 10:752-65.
    [45]Sans A, Boix C, Colome R, Campistol J.The contribution of the cerebellum to cognitive function in childhood. Rev Neurol.2002;35(3):235-7.
    [46]Jiang, T., He, Y., Zang, Y., Weng, X. Modulation of functional connectivity during the resting state and the motor task. Hum. Brain Mapp.2004;22:63-71.
    [47]De Luca M, Smith S, De Stefano N, Federico A., Matthews P.M. Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp. Brain Res. 2005;167:587-94.
    [48]Mantini D, Perrucci M.G, Del Gratta C, Romani G.L, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. U. S. A.2007; 104:13170-5.
    [49]Kiviniemi V, Kantola JH, Jauhiainen J, Hyvarinen A, Tervonen O. Independent component analysis of non-deterministic fMRI signal sources. Neuroimage.2003; 19:253-60.
    [50]Van De Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE. Functionalconnectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp.2004;22:165-78.
    [51]Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc 2005;B360:1001-13.
    [52]Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A.2005;102(27):9673-8.
    [53]Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain:a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA.2003; 100:253-8.
    [54]Fransson P. Spontaneous low-frequency BOLD signal fluctuations:An fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp.2005;26:15-29.
    [55]Fox, MD, Snyder AZ., Zacks JM, Raichle ME. Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nature Neurosci.2006;9:23-5.
    [56]Nir Y, Hasson U, Levy I, Yeshurun Y, Malach R. Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 2006;30:1313-24.
    [57]Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol.2006;96(6):3517-31.
    [58]Maguire EA. Neuroimaging studies of autobiographical event memory. Philos. Trans R. Soc. Lond. Biol Sci.2001;356:1441-51.
    [59]Cabeza R, Prince SE, Daselaar SM, Greenberg DL, Budde M, Dolcos F, LaBar KS, Rubin DC. Brain activity during episodic retrieval of autobiographical and laboratory events:an fMRI study using a novel photo paradigm. J Cogn Neurosci.2004; 16(9):1583-94.
    [60]Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci.2002;3:201-15.
    [61]Fox MD, Corbetta M, Snyder AZ., Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad. Sci. USA.2006; 103:10046-51.
    [62]Shulman G.L, Fiez JA., Corbetta M, Buckner RL, Miezin FM, Raichle ME, Petersen SE. Common blood flow changes across visual tasks:Ⅱ. Decreases in cerebral cortex. J. Cogn. Neurosci.1997;9:648-63.
    [63]Song M, Liu Y, Zhou Y, Wang K, Yu C, Jiang T. Default network and intelligence difference. Conf Proc IEEE Eng Med Biol Soc.2009;2009:2212-5.
    [64]Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL. The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A.2008;105(10):4028-32.
    [65]Wittenberg GM, Tsien JZ. An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci. 2002;25(10):501-5.
    [66]Heinemann U, Schmitz D, Eder C, Gloveli T. Properties of entorhinal cortex projection cells to the hippocampal formation. Ann N Y Acad Sci. 2000;911:112-26.
    [67]Igloi K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N. Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc Natl Acad Sci U S A.2010; 107(32):14466-71.
    [68]Reitz C, Brickman AM, Brown TR, Manly J, DeCarli C, Small SA, Mayeux R. Linking hippocampal structure and function to memory performance in an aging population. Arch Neurol.2009;66(11):1385-92.
    [69]Raji CA, Lopez OL, Kuller LH, Carmichael OT, Becker JT. Age, Alzheimer disease, and brain structure. Neurology.2009;73(22):1899-905.
    [70]Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, Buckner RL:Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol.2006;96:3517-31.
    [71]Decety J. The neurodevelopment of empathy in humans. Dev Neurosci. 2010;32(4):257-67..
    [72]Amaral DG. The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biol. Psychiatry.2002;51(1):11-7.
    [73]Amaral DG, Behniea H, Kelly JL. Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience. 2003; 118(4):1099-120.
    [74]Anderson AK, Phelps EA. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature.2001;411(6835):305-9.
    [75]Hariri AR, Bookheimer SY. Mazziotta JC. Modulating emotional responses: effects of a neocortical network on the limbic system. NeuroReport. 2000;11(1):43-8.
    [76]Lieberman MD, Jarcho J.M. Berman S, Naliboff BD, Suyenobu BY, Mandelkern M, Mayer EA. The neural correlates of placebo effects:a disruption account. NeuroImage.2004;22(1):447-55.
    [77]Garrett AS, Maddock RJ. Separating subjective emotion from the perception of emotion-inducing stimuli:an fMRI study. Neuroimage. 2006;33(1):263-74.
    [78]Decety J. The neurodevelopment of empathy in humans. Dev Neurosci. 2010;32(4):257-67.
    [79]Ballmaier M, Toga AW, Blanton RE, Sowell ER, Lavretsky H, Peterson J, Pham D, Kumar A. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients:an MRI-based parcellation of the prefrontal cortex. Am J Psychiatry.2004;161(1):99-108.
    [80]Rolls, E.T., Grabenhorst, F., Parris, B.A.,2008. Warm pleasant feelings in the brain. Neuroimage.41,1504-13.
    [81]de Asis JM, Stern E, Alexopoulos GS, Pan H, Van Gorp W, Blumberg H, Kalayam B, Eidelberg D, Kiosses D, Silbersweig DA:Hippocampal and anterior cingulate activation deficits in patients with geriatric depression. Am J Psychiatry 2001;158:1321-23
    [82]Olson IR, Plotzker A, Ezzyat Y. The Enigmatic temporal pole:a review of findings on social and emotional processing. Brain.2007;130(Pt 7):1718-31.
    [83]Thompson SA, Patterson K, Hodges JR. Left/right asymmetry of atrophy in semantic dementia:behavioral-cognitive implications. Neurology. 2003;61:1196-203.
    [84]Blaizot X, Mansilla F, Insausti AM, Constans JM, Salinas-Alaman A, Pro-Sistiaga P, Mohedano-Moriano A, Insausti R. The human parahippocampal region:I. Temporal pole cytoarchitectonic and MRI correlation. Cereb Cortex. 2010;20(9):2198-212.
    [85]Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol.2003;89:634-9.
    [86]Gonzalo-Ruiz A, Leichnetz GR. Connections of the caudalcerebellar interpositus complex in a new world monkey (Cebus apella).Brain Res. Bull. 1990;25:919-27.
    [87]Bosco G, Eian J, Poppele RE. Phase-specific sensory representations in spinocerebellar activity during stepping:evidence for a hybrid kinematic/kinetic framework. Exp Brain Res.2006;175(1):83-96.
    [88]Nashner LM. Adapting reflexes controlling the human posture. Exp Brain Res.1976;26(1):59-72.
    [89]Leicht R, Schmidt RF. Somatotopic studies on the vermal cortex of the cerebellar anterior lobe of unanesthetized cats. Exp Brain Res.1977;27:479-90.
    [90]Chambers WW, Sprague JM. Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J Comp Neurol. 1955;103:105-29.
    [91]Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain. 1999;122(Pt2):329-38.
    [92]Ouchi Y, Okada H, Yoshikawa E, Futatsubashi M, Nobezawa S. Absolute changes in regional cerebral blood flow in association with upright posture in humans:an orthostatic PET study. J Nucl Med.2001;42(5):707-12.
    [93]Sullivan EV, Rose J, Pfefferbaum A. Physiological and focal cerebellar substrates of abnormal postural sway and tremor in alcoholic women. Biol Psychiatry.2010;67(l):44-51.
    [94]Hui KK, Liu J, Marina O, Napadow V, Haselgrove C, Kwong KK, Kennedy DN, Makris N. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage.2005;27(3):479-96.
    [95]Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF. Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans:a functional magnetic resonance imaging study. Neurosci Lett.2003;335(3):202-6.
    [96]Ness TJ, Follett KA, Piper J, Dirks BA. Characterization of neurons in the area of the medullary lateral reticular nucleus responsive to noxious visceral and cutaneous stimuli. Brain Res.1998;802(1-2):163-74.
    [97]Saab CY, Willis WD. Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp Brain Res.2001; 140(1):122-6.
    [98]Casey KL, Minoshima S, Berger KL, Koeppe RA, Morrow TJ, Frey KA.Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol. 1994;71(2):802-7.
    [99]Casey KL, Minoshima S, Morrow TJ, Koeppe RA. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol.1996;76(1):571-81.
    [100]Svensson P, Minoshima S, Beydoun A, Morrow TJ, Casey KL. Cerebral processing of acute skin and muscle pain in humans. J Neurophysiol. 1997;78(1):450-60.
    [101]Chan RC, Huang J, Di X. Dexterous movement complexity and cerebellar activation:a meta-analysis. Brain Res Rev.2009;59(2):316-23.
    [102]Noda H, Fujikado T. Involvement of Purkinje cells in evoking saccadic eye movements by microstimulation of the posterior cerebellar vermis of monkeys. J Neurophysiol.1987;57(5):1247-61.
    [103]Fujikado T, Noda H. Saccadic eye movements evoked by micro-stimulation of lobule Ⅶ of the cerebellar vermis of macaque monkeys. J Physiol.1987;394:573-94.
    [104]Voogd J, Barmack NH. Oculomotor cerebellum. Prog Brain Res. 2006;151:231-68.
    [105]Krauzlis RJ, Miles FA. Role of the oculomotor vermis in generating pursuit and saccades:effects of microstimulation. J Neurophysiol. 1998;80(4):2046-62.
    [106]Crispino L, Bullock TH. Cerebellum mediates modality-specific modulation of sensory responses of midbrain and forebrain in rat. Proc Natl Acad Sci U S A.1984;81(9):2917-20.
    [107]Krauzlis RJ, Lisberger SG. Visual motion commands for pursuit eye movements in the cerebellum. Science.1991;253:568-71.
    [108]Penhune VB, Zattore RJ, Evans AC. Cerebellar contributions to motor timing:a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci.1998,10:752-65.
    [109]Petrides M. The role of the mid-dorsolateral prefrontal cortex in working memory. Exp Brain Res.2000; 133(1):44-54.
    [110]Warburton E, Wise RJ, Price CJ, Weiller C, Hadar U, Ramsay S, Frackowiak RS. Noun and verb retrieval by normal subjects Studies with PET. Brain.1996;119(Pt1):159-79.
    [111]Treserras S, Boulanouar K, Conchou F, Simonetta-Moreau M, Berry I, Celsis P, Chollet F, Loubinoux I. Transition from rest to movement:brain correlates revealed by functional connectivity. Neuroimage.2009;48(1):207-16.
    [112]Dow, RS.; Moruzzi, G. The physiology and pathology of the cerebellum. The University of MinnesotaPress; Minneapolis:1958.
    [113]Parsons LM, Denton D, Egan G, MacKinley M, Shade R, Lancaster J, Fox PT. Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci U S A 2000;97:2332-6.
    [114]Jantzen K.J, Steinberg FL, Kelso JA. Brain networks underlying human timing behavior are influenced by prior context. Proc Natl Acad Sci USA. 2004; 101:6815-20. [115] Desmond JE, Gabrieli JDE, Wagner AD, Ginier BL, Glover GH. Lobular
    patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci.1997;17:9675-85.
    [116]Liu Y, Pu Y, Gao J-H, Parsons LM, Xiong J, Liotti M, Bower JL, Fox PT. The human red nucleus and lateral cerebellum in supporting roles for sensory information processing. Hum Brain Mapp.2000; 10:147-59.
    [117]Schmahmann JD:Disorders of the cerebellum:ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci.2004; 16:367-378
    [118]Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J:The cerebellum and event timing. Ann N Y Acad Sci.2002;978:302-17
    [119]Rubia K, Smith A:The neural correlates of cognitive time management:a review. Acta Neurobiol Exp (Wars).2004;64:329-40
    [120]Schmahmann JD:Disorders of the cerebellum:ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci.2004; 16:367-78
    [121]Desmond, J.E., Fiez, J.A. Neuroimaging studies of the cerebellum: language, learning, and memory. Trends Cogn. Neurosci.1998;2(9):355-62.
    [122]Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C. Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci USA. 2002;99(12):8406-11.
    [123]Steinlin M. Cerebellar disorders in childhood:cognitive problems. Cerebellum.2008;7(4):607-10.
    [124]Parvizi J, Anderson SW, Martin CO, Damasio H, Damasio AR. Pathological laughter and crying:a link to the cerebellum. Brain.2001;124(Pt 9):1708-19.
    [125]Reiman EM. The application of positron emission tomography to the study of normal and pathologic emotions. J Clin Psychiatry.1997;16:4-12.
    [126]Dimitrova A, Kolb FP, Elles HG, Maschke M, Gerwig M, Gizewski E, Timmann D. Cerebellar activation during leg withdrawal reflex conditioning:an fMRI study. Clin Neurophysiol.2004; 115(4):849-57.
    [127]Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM. The neurobiological consequences of early stress and childhood maltreatment. Neuroscience and Biobehavioral Reviews.2003;27:33-44.
    [128]Carrion VG, Weems CF, Watson C, Eliez S, Menon V, Reiss AL. Converging evidence for abnormalities of the prefrontal cortex and evaluation of midsagittal structures in pediatric posttraumatic stress disorder:an MRI study. Psychiatry Res.2009;172(3):226-34.
    [129]Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus and amygdala of cats and rats. Biol. Psychiatry.1978; 13:501-29.
    [130]Snider RS, Maiti A. Cerebellar contributions to the Papez circuit. J. Neurosci. Res.1976;2:133-46.
    [131]Phelps, E.A. Human emotion and memory:interactions of the amygdala and hippocampal complex. Current Opinion Neurobiology.2004; 14,198-202.
    [132]Zald, D.H. The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Brain Research Reviews.2003;41:88-123.
    [133]BantickS.J., Wise, R.G, Ploghaus, A., Clare, S., Smith, S.M., Tracey, I. Imaging how attention modulates pain in humans using functional MRI. Brain. 2002; 125:310-9.
    [134]Urry, H.L., van Reekum, C.M., Johnstone, T., Kalin, N.H., Thurow, M.E., Schaefer, H.S., et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. Journal of Neuroscience. 2006;26:4415-25.
    [135]Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL. Amygdala-frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci. 2007;2(4):303-12.
    [136]Okugawa G, Sedvall GC, Agartz I. Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry. 2003; 160(9):1614-7.
    [137]Ichimiya T, Okubo Y, Suhara T, Sudo Y. Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry. 2001;49(l):20-7.
    [138]McDonald AJ, Shammah-Lagnado SJ, Shi C, Davis M. Cortical afferents to the extended amygdala. Ann N Y Acad Sci.1999;877:309-38.
    [139]Shi C, Cassell M. Cortical, thalamic, and amygdaloid projections of rat temporal cortex. J Comp Neurol.1997;382:153-75.
    [140]McDonald AJ. Cortical pathways to the mammalian amygdala. Prog Neurobiol.1998;55:257-332.
    [141]Vertes RP. Hippocampal theta rhythm:a tag for short-term memory. Hippocampus.2005;15(7):923-35.
    [142]Gupta P, Tisdale J. Word learning, phonological short-term memory, phonotactic probability and long-term memory:towards an integrated framework. Philos Trans R Soc Lond B Biol Sci.2009;364(1536):3755-71.
    [143]McDonald AJ, Shammah-Lagnado SJ, Shi C, Davis M. Cortical afferents to the extended amygdala. Ann N Y Acad Sci.1999;877:309-38.
    [144]Shi C, Cassell M. Cortical, thalamic, and amygdaloid projections of rat temporal cortex. J Comp Neurol.1997;382:153-75.
    [145]McDonald AJ. Cortical pathways to the mammalian amygdala. Prog Neurobiol.1998;55:257-332.
    [146]Remple MS, Henry EC, Catania KC. Organization of somatosensory cortex in the laboratory rat (Rattus norvegicus):evidence for two lateral areas joined at the representation of the teeth. J Comp Neurol.2003;467:105-18.
    [147]Benison AM, Rector DM, Barth DS. Hemispheric mapping of secondary somatosensory cortex in the rat. J Neurophysiol.2007;97:200-7.
    [148]Bamiou DE, Musiek FE, Luxon LM. The insula (Island of Reil) and its role in auditory processing. Literature review. Brain Res Brain Res Rev. 2003;42:143-54.
    [149]Krista M. Rodgers, Alexander M. Benison, Andrea Klein, Daniel S. Barth. Auditory, Somatosensory, and Multisensory Insular Cortex in the Rat. Cerebral Cortex.2008;18:2941-51
    [150]Guldin WO, Markowitsch HJ. Cortical and thalamic afferent connections of the insular and adjacent cortex of the rat. J Comp Neurol.1983;215:135-53.
    [151]Small DM, Zald DH, Jones-Gotman M, Zatorre RJ, Pardo JV, Frey S, Petrides M. Human cortical gustatory areas:a review of functional neuroimaging data. Neuroreport.1999; 10:7-14.
    [152]De Araujo IET, Rolls ET, Kringelbach ML, McGlone F, Phillips N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci.2003;18:2059-68.
    [153]Adolphs R, Tranel D, Damasio AR. Dissociable neural systems for recognizing emotions. Brain Cogn.2003;52:61-9.
    [154]Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell MC. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci. 2002;5(9):900-4.
    [155]Ostrowsky K, Magnin M, Ryvlin P, Isnard J, Guenot M, Maugiere F. Representation of pain and somatic sensation in the human insula:a study of responses to direct electrical cortical stimulation. Cereb Cortex. 2002; 12:376-85.
    [156]Deen B, Pitskel NB, Pelphrey KA. Three Systems of Insular Functional Connectivity Identified with Cluster Analysis. Cereb Cortex.2010 Nov 19.
    [157]Mufson EJ, Mesulam M-M. Insula of the old world monkey. Ⅱ:afferent cortical input and comments on the claustrum. J Comp Neurol.1982;212:23-37.
    [158]Mesulam M-M, Mufson EJ. Insula ofthe old worldmonkey. Ⅲ:efferent cortical output and comments on function. J Comp Neurol.1982b;212:38-52.
    [159]Vogt BA, Pandya DN. Cingulate cortex of the rhesus monkey:Ⅱ. Cortical afferents. J Comp Neurol.1987;262:271-89.
    [160]Luppino G, Matelli M, Camarda R, Rizzolatti G. Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol.1993;338:114-40.
    [161]Draganski B, Kherif F, Kloppel S, Cook PA, Alexander DC, Parker GJ, Deichmann R, Ashburner J, Frackowiak RS. Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci. 2008;28(28):7143-52.
    [162]Stephane Lehericy, Eric Bardinet, Leon Tremblay, Pierre-Francois Van de Moortele, Jean-Baptiste Pochon, Didier Dormont, Dae-Shik Kim, Jerome Yelnik, Kamil Ugurbil. Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cerebral Cortex.2006;16:149-61
    [163]Lehericy S, Benali H, Van de Moortele PF, Pelegrini-Issac M, Waechter T, Ugurbil K, Doyon J. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA. 2005;102(35):12566-71.
    [164]Paulus KS, Magnano I, Conti M, Galistu P, D'Onofrio M, Satta W, et al. Pure post-stroke cerebellar cognitive affective syndrome:a case report. Neurol Sci.2004;25:220-4.
    [165]Docking KM, Ward EC, Murdoch BE. Language outcomes subsequent to treatment of brainstem tumor in childhood. NeuroRehabilitation. 2005;20:107-24.
    [166]Reiss A, Eliez S, Schmitt J, Lai Z, Jones W, Bellugi U. Neuroanatomy of Williams syndrome:a high-resolution MRI study. Journal of Cognitive Neuroscience.2000; 12:65-73.
    [167]Steinlin M. Cerebellar disorders in childhood:cognitive problems. Cerebellum.2008;7(4):607-10.
    [168]Riva D, Giorgi C. The cerebellum contributes to higher functions during development. Evidence from a series of children surgically treated for posterior fossa tumors. Brain 2000; 123:1051-61.
    [169]Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lovblad KO, Luthy AR, et al. long-term sequelae after posterior fossa tumour resection during childhood. Brain.2003; 126:1998-2008.
    [170]Kessler RC, Adler L, Barkley R, Biederman J, Conners CK, Dernier O, Faraone SV, Greenhill LL, Howes MJ, Secnik K, Spencer T, Ustun TB, Walters EE, Zaslavsky AM:The prevalence and correlates of adult ADHD in the United States:results from the National Comorbidity Survey Replication. Am J Psychiatry.2006; 163:716-23.
    [171]Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL:Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002; 288:1740-48
    [172]Bussing R, Grudnik J, Mason D, Wasiak M, Leonard C:ADHD and conduct disorder:an MRI study in a community sample. World J Biol Psychiatry. 2002;3:216-20
    [173]Castellanos FX, Giedd JN, Berquin PC, Walter JM, Sharp W, Tran T, Vaituzis AC, Blumenthal JD, Nelson J, Bastain TM, Zijdenbos A, Evans AC, Rapoport JL:Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry.2001;58:289-95.
    [174]Hill DE, Yeo RA, Campbell RA, Hart B, Vigil J, Brooks W:Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children. Neuropsychology.2003; 17:496-506.
    [175]Mostofsky SH, Reiss AL, Lockhart P, Denckla MB:Evaluation of cerebellar size in attention-deficit hyperactivity disorder. J Child Neurol. 1998; 13:434-9.
    [176]Mackie S, Shaw P, Lenroot R, Pierson R, Greenstein DK, Nugent TF 3rd, Sharp WS, Giedd JN, Rapoport JL. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164(4):647-55.
    [177]Bauman ML, Kemper TL. Limbic and cerebellar abnormalities are also present in an autistic child of normal intelligence. Neurology.1990;40:359.
    [178]Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL: Hypoplasia of cerebellar vermal lobules Ⅵ and Ⅶ in autism. N Engl J Med. 1988;318:1349-1354.
    [179]Courchesne E. An MRI study of autism:the cerebellum revisited. Neurology.1999;52(5):1106-7.
    [180]Levitt JG, Blanton R, Capetillo-Cunliffe L, Guthrie D, Toga AW, McCracken JT. Cerebellar vermis lobules Ⅷ-Ⅹ in autism. Prog Neuropsychopharmacol Biol Psychiatry.1999;23(4):625-33.
    [181]Brun CC, Nicolson R, Lepore N, Chou YY, Vidal CN, DeVito TJ, Drost DJ, Williamson PC, Rajakumar N, Toga AW, Thompson PM. Mapping brain abnormalities in boys with autism. Hum Brain Mapp.2009;30(12):3887-900.
    [182]Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism:a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry. 2008;23(4):289-99.
    [183]Mazzocco MM, Kates WR, Baumgardner TL, Freund LS, Reiss AL: Autistic behaviors among girls with fragile X syndrome. J Autism Dev Disord. 1997;27:415-35.
    [184]Hoeft F, Lightbody AA, Hazlett HC, Patnaik S, Piven J, Reiss AL. Morphometric spatial patterns differentiating boys with fragile X syndrome, typically developing boys, and developmentally delayed boys aged 1 to 3 years. Arch Gen Psychiatry.2008;65:1087-97.
    [185]Gothelf D, Furfaro JA, Hoeft F, Eckert MA, Hall SS, O'Hara R, Erba HW, Ringel J, Hayashi KM, Patnaik S, Golianu B, Kraemer HC, Thompson PM, Piven J, Reiss AL. Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol 2008;63:40-51.
    [186]Reiss A, Eliez S, Schmitt J, Lai Z, Jones W, Bellugi U. Neuroanatomy of Williams syndrome:a high-resolution MRI study. Journal of Cognitive Neuroscience.2000; 12:65-73.
    [187]Schmitt JE, Eliez S, Warsofsky IS, Bellugi U, Reiss AL. Enlarged cerebellar vermis in Williams syndrome. J Psychiatr Res.2001;35(4):225-9.
    [188]Dewan M. J., Pandurangi A. K, Lee S. H. Cerebellar morphology in chronic schizophrenic patients:A controlled computed tomography study. Psychiatry Res.1983;10:97-103.
    [189]Sandyk R, Kay SR, Merriam EA. Atrophy of the cerebellar vermis: Relevance to the symptoms of schizophrenia. J. Neurosci.1991;57:205-12.
    [190]Levitt JJ, McCarley RW, Nestor PG, Petrescu C, Donnino R, Hirayasu Y, Kikinis R, Jolesz FA, Shenton ME:Quantitative volumetric MRI study of the cerebellum and vermis in schizophrenia:clinical and cognitive correlates. Am J Psychiatry 1999; 156:1105-7.
    [191]Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC:An MRI study of cerebellar vermis morphology in patients with schizophrenia:evidence in support of the cognitive dysmetria concept. Biol Psychiatry.1999;46:703-11.
    [192]Jacobsen LK, Giedd JN, Berquin PC, Krain AL, Hamburger SD, Kumra S, Rapoport JL:Quantitative morphology of the cerebellum and fourth ventricle in childhood-onset schizophrenia.Am J Psychiatry.1997; 154:1663-9.
    [193]Sullivan EV, Deshmukh A, Desmond JE, Mathalon DH, Rosenbloom MJ, Lim KO, Pfefferbaum A:Contribution of alcohol-abuse to cerebellar volume deficits in men with schizophrenia. Arch Gen Psychiatry.2000;57:894-902.
    [194]Okugawa G, Sedvall GC, Agartz I. Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry. 2003;160(9):1614-7.
    [195]Ichimiya T, Okubo Y, Suhara T, Sudo Y. Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry. 2001;49(1):20-7.
    [196]Anderson JS, Druzgal TJ, Lopez-Larson M, Jeong EK, Desai K, Yurgelun-Todd D. Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum Brain Mapp.2011;32(6):919-34.
    [197]Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations:are anti-correlated networks introduced? Neuroimage.2009;44(3):893-905.
    [198]Paulson PE, Minoshima S, Morrow TJ, Casey KL. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain.1998;76(1-2):223-9.
    [199]Lee KH, Farrow TF, Parks RW, Newton LD, Mir NU, Egleston PN, Brown WH, Wilkinson ID, Woodruff PW. Increased cerebellar vermis white-matter volume in men with schizophrenia. J Psychiatr Res. 2007;41(8):645-51.
    [200]Reiss AL, Freund L, Tseng JE, Joshi PK. Neuroanatomy in fragile X females:the posterior fossa. Am J Hum Genet.1991;49(2):279-88.
    [201]Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence:a longitudinal morphometric MRI study. Neuroimage.2010;49(1):63-70.
    [1]Bloedel JR and Bracha V. Duality of cerebellar motor and cognitive functions. In Schmahmann JD, International Review of Neurobiology:The Cerebellum and Cognition. San Diego:Academic Press.1997;613-34.
    [2]Manto MU. On the cerebello-cerebral interactions. Cerebellum.2006;5(4):286-8.
    [3]Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci.1986; 100:443-54.
    [4]Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science.1994;266:458-61.
    [5]Kossorotoff M, Gonin-Flambois C, Gitiaux C, Quijano S, Boddaert N, Bahi-Buisson N, Barnerias C, Dulac O, Brunelle F, Desguerre I. A cognitive and affective pattern in posterior fossa strokes in children:a case series. Dev Med Child Neural.2010;52(7):626-31.
    [6]Callu D, Viguier D, Laroussinie F, Puget S, Boddaert N, Kieffer V, Piana H, Escolano S, Renier D, Sainte-Rose C, Grill J, Dellatolas G. Cognitive and academic outcome after benign or malignant cerebellar tumor in children. Cogn Behav Neurol. 2009;22(4):270-8.
    [7]Tavano A, Borgatti R. Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex.2010;46(7):907-18.
    [8]Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75(11):1524-31.
    [9]Habas C. Functional imaging of the deep cerebellar nuclei:a review. Cerebellum. 2010;9(1):22-8.
    [10]Heyder K, Suchan B, Daum I. Cortico-subcortical contributions to executive control. Acta Psychol.2004; 115:271-89.
    [11]Lie CH, Specht K, Marshall JC. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. NeuroImage.2006;30:1038-49.
    [12]Lazeron RH, Rombouts SA, Machielsen WC, Scheltens P, Witter MP, Uylings HB. Visualizing brain activation during planning:the tower of London test adapted for functional MR imaging. AJNR.2000;21:1407-14.
    [13]Frings M, Dimitrova A, Schorn CF, Ellis HG, Hein-Kropp C, Grizewski GR. Cerebellar involvement in verb generation:an fMRI study. Neurosci Lett. 2006;409:19-23.
    [14]Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Psychol.2005;35:773-9.
    [15]Lang CE, Bastian AJ. Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol.2002;87:1336-47.
    [16]Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1524-31.
    [17]Lagarde J, Hantkie O, Hajjioui A, Yelnik A.Neuropsychological disorders induced by cerebellar damage. Ann Phys Rehabil Med.2009;52(4):360-70.
    [18]Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R. Neuropsy-chological disturbances in cerebellar infarcts. Acta Neurol Scand.2000; 102:363-70.
    [19]Fabbro F, Tavano A, Corti S, Bresolin N, De Fabritiis P, Borgatti R. Long-term neuropsychological deficits after cerebellar infarctions in two young adult twins. Neuropsychologia.2004;42:536-45.
    [20]Hokkanen LS, Kauranen V, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarct. Eur J Neurol.2006;13:161-70.
    [21]Lalonde R, Botez-Marquard T. Neuropsychological deficits in patients with chronic or acute cerebellar lesions. J Neuroling.2000; 13:117-28.
    [22]Heyder K, Suchan B, Daum I. Cortico-subcortical contributions to executive control. Acta Psychol.2004;115:271-89.
    [23]Daum I, Ackermann H, Schugens MM, Lutzenberger W, Dichgans J, Birbaumer M. The cerebellum and cognitive functions in humans. Behav Neurosci. 1993;107:411-9.
    [24]Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain.1998;121:561-79.
    [25]Bleek C, Peters M. Learning performance of rats with cerebellar lesions. Acta Biol Med Ger.1974;32:517-25.
    [26]Fukushima K. Roles of the cerebellum in pursuit-vestibular interactions. Cerebellum.2003;2(3):223-32.
    [27]Freeman JH Jr, Nicholson DA. Developmental changes in eye-blink conditioning and neuronal activity in the cerebellar interpositus nucleus. J Neurosci. 2000;20(2):813-9.
    [28]Hauge SA, Tracy JA, Baudry M, Thompson RF. Selective changes in AMPA receptors in rabbit cerebellum following classical conditioning of the eyelid-nictitating membrane response. Brain Res.1998;803(1-2):9-18.
    [29]Ioffe ME, Chernikova LA, Ustinova K.I. Role of cerebellum in learning postural tasks. Cerebellum.2007;6(1):87-94.
    [30]Fiez JA, Peterson SE, Cheney MK, Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain 1992; 115:155-78.
    [31]Molinari M, Leggio M, Solida A, Siorra R, Misciagna S, Silveri MC. Cerebellum and procedural learning:evidence from focal cerebellar lesion. Brain. 1997; 120:1753-63.
    [32]Justus TC, Ivry RB. The cognitive neuropsychology of the cerebellum. Int Rev Psychiatry.2001; 13:276-82.
    [33]Quintero-Gallego EA, Gomez CM, Casares EV, Marquez C, Perez-Santamana FJ. Declarative and procedural learning in children and adolescents with posterior fossa tumors. Behav Brain Funct.2006;2:1-9.
    [34]Drepper J, Timmann D, Kolb FP, Diener HC. Non-motor associative learning in patients with isolated degenerative cerebellar disease. Brain.1999; 122:87-97.
    [35]Appollonio IM, Grafman J, Schwartz V, Massaquoi S, Hallett M. Memory in patients with cerebellar degeneration. Neurology.1993;43:1536-44.
    [36]Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1524-31.
    [37]Wechsler D. Wechsler Memory Scale-Revised (WMS-R). San Antonio:The Psychological Corporation; 1987.
    [38]Baddeley AD. Working memory. New York:Oxford University Press; 1986.
    [39]Paulesu E, Frith CD, Frackowiak RSJ. The neural correlates of the verbal component of working memory. Nature.1993;362:342-5.
    [40]Chein JM, Fissell K, Jacobs S, Fiez JA. Functional heterogeneity within Broca's area during verbal working memory. Physiol Behav.2002;77:635-9.
    [41]Ziemus B, Baumann O, Luerding R, Schlosser R, Schruier G, Bogdahn U. Impaired working-memory after cerebellar infarcts paralleled by changes in BOLD signal of a cortico-cerebellar circuit. Neuropsychologia.2007; 15:2016-24.
    [42]Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006; 129:306-20.
    [43]Bellebaum C, Daum I. Cerebellar involvement in executive control. Cerebellum. 2007;6:184-92.
    [44]Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1524-31.
    [45]Jonides J, Smith EE, Koeppe RA. Spatial working memory in humans as revealed by PET. Nature 1993;363:623-5.
    [46]Akshoomoff NA, Courchesne E. ERP evidence for a shifting attention deficit in patients with damage to the cerebellum. J Cogn Neurosci.1994;6:388-99.
    [47]Courchesne E, Townsend J, Akshooomoff NA, Saitoh A, Lincoln AJ, James HE, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci.1994; 108:848-65.
    [48]Gottwald B, Mihajlovic Z, Wilde B, Mehdorn HM. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia.2003;41:1452-60.
    [49]Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci.2002;3:201-15.
    [50]Sarter M, Givens B, Bruno JP. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev.2001;35:146-60.
    [51]Exner C, Weniger G, Irle E. Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology.2004;63:2132-5.
    [52]Golla H, Thier P, Haarmeier T. Disturbed overt but normal covert shifts of attention in adult cerebellar patients. Brain.2005; 128:1525-35.
    [53]Hokkanen LS, Kauranen V, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarct. Eur J Neurol.2006;13:161-70.
    [54]Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science.1997;275:1940-7.
    [55]Jovicich J, Peters RJ, Koch C, Braun J, Chang L, Ernst T. Brain areas specific for attentional load in a motion-tracking task. J Cogn Sci.2001; 15:1048-58.
    [56]Nebel K, Wiese H, Stude P, De Greiff A, Diener HC, Keidel M. On the neural basis of focused and divided attention. Brain Res Cogn Brain Res.2005;25:760-6.
    [57]Botez-Marquard T, Leveille J, Botez MI. Neuropsychological functioning in unilateral cerebellar damage. Can J Neurol Sci.1994;21:353-7.
    [58]Silveri MC, Misciagna S, Terrezza G Right side neglect in right cerebellar lesion. J Neurol Neurosurg Psychiatry.2001;71:114-7.
    [59]Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK. Cognitive impairments in cerebellar infarcts. Neurosci Behav Psychol.2005;35:773-9.
    [60]Hokkanen LS, Kauranen V, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarct. Eur J Neurol.2006;13:161-70.
    [61]Molinari M, Petrosini L, Misciagna S, Leggio MG Visuospatial abilities in cerebellar disorders. J Neurol Neurosurg Psychiatry.2004;75:235-40.
    [62]Marien P, Wackenier P, De Surgeloose D, De Deyn PP, Verhoeven J. Developmental coordination disorder:disruption of the cerebello-cerebral network evidenced by SPECT. Cerebellum.2010;9(3):405-10.
    [63]Lee TM, Liu HL, Hung KN, Pu J, Ng YB, Mak AK. The cerebellum's involvement in the judgment of spatial orientation:a functional magnetic resonance imaging study. Neuropsychologia.2005;43:1870-7.
    [64]Taragis GA, Richter W, Kim SG, Pellizzer G, Andersen P, Ugurbil K, et al. Functional magnetic resonance imaging in mental rotation and memory scanning:a multidimensional scaling analysis of brain activation patterns. Brain Res Rev. 1998;26:106-12.
    [65]Ross JS, Tkach J, Ruggieri PM, Lieber M, La Presto G. The mind's eye: functional MR imaging evaluation of golf motor imagery. Am J Neuroradiol. 2003;24:1036-44.
    [66]Petersen SE, Fox PT, Posner MI, Mintun MA, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585-9.
    [67]Petersen SE, Fox PT, Posner MI, Mintun MA, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;1:153-70.
    [68]Marien P, Engelborgh S, De Deyn PP. Cerebellar neurocognition:a new avenue. Acta Neurol Belg.2001; 101:96-109.
    [69]Fiez JA, Peterson SE, Cheney MK, Raichle ME. Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain. 1992;115:155-78.
    [70]Neau JP, Arroyo-Anllo E, Bonnaud V, Ingrand P, Gil R. Neuropsychological disturbances in cerebellar infarcts. Acta Neurol Scand.2000;102(6):363-70. [71] Gronholm P, Rinne JO, Vorobyev V, Leine M. Naming of newly learned objects: a PET activation study. Cogn Brain Res.2005;25:359-71.
    [72]Zettin M, Cappa SF, D'Amico A, Rago R, Perino C. Agrammatic speech production after a right cerebellar haemorrhage. Neurocase.1997;3:375-80.
    [73]Justus T. The cerebellum and English grammatical morphology:evidence from production, comprehension, and grammaticality judgments. J Cogn Neurosci. 2004; 16:1115-30.
    [74]Marien P, Engelborghs S, Pickut B, De Deyn PP. Aphasia following cerebellar damage:fact or fallacy? J Neuroling.2000; 13:145-71.
    [75]Marien P, Saerens J, Nanhoe R, Moens E, Nagels G, Pickut B. Cerebellar induced aphasia:case report of cerebellar induced pre-frontal aphasic language phenomena supported by SPECT findings. J Neurol Sci.1996; 144:34-43.
    [76]Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum:a review and new hypothesis. Brain Lang.2001;79:580-600.
    [77]Xiang H, Lin C, Ma X, Zhang Z, Bower JM, Weng X. Involvement of the cerebellum in semantic discrimination:an fMRI study. Hum Brain Mapp. 2003;18:208-14.
    [78]Lalonde R and Botez-Marquard T. Neuropsychological deficits of patients with chronic or acute cerebellar lesions. Journal of Neurolinguistics.2000;13:117-28.
    [79]Stoodley CJ. The Cerebellum and Cognition:Evidence from Functional Imaging Studies. Cerebellum.2011 Mar 4.
    [80]Marien P, Engelborghs S, Fabbro F, and DeDeyn PP. The lateralized linguistic cerebellum:A review and a new hypothesis. Brain and Language.2001;79:580-600.
    [81]Silveri MC and Misciagna S. Language, memory and the cerebellum. Journal of Neurolinguistics,2000; 13:129-43.
    [82]Cook M, Murdoch BE, Cahill L, Whelan B-M. Higher-level language deficits resulting from left primary cerebellar lesions. Aphasiology.2004; 18:771-84.
    [83]. Lauterbach EC, Harris JB, Bina WF 3rd. Mood and neurobehavioral correlates of cerebellar lesions. Cogn Behav Neurol.2010;23(2):63-73.
    [84]Hernaez-Goni P, Tirapu-Ustarroz J, Iglesias-Fernandez L, Luna-Lario P. The role of the cerebellum in the regulation of affection, emotion and behaviour]. Rev Neurol. 2010;51(10):597-609.
    [85]Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain 1998;121:561-79.
    [86]Abel CG, Stein G, Galarregui M, Garretto N, Mangone C, Genovese O, Allegri RF, Sica RE. Social cognition and theory of mind assessment in non-demented patients with isolated cerebellar degeneration. Arq Neuropsiquiatr. 2007;65(2A):304-12.
    [87]Schmahmann J, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum:results from the clinic. Cerebellum.2007;6:254-67.
    [88]Duggal HS. Cognitive affective psychosis syndrome in a patient with sporadic olivopontocerebellar atrophy. J Neuropsychiatry Clin Neurosci.2005; 17:260-1.
    [89]Paulus KS, Magnano I, Conti M, Galistu P, D'Onofrio M, Satta W. Pure post-stroke cerebellar cognitive affective syndrome:a case report. Neurol Sci. 2004;25:220-4.
    [90]Greve KW, Stanford MS, Sutton C, Foundas AL. Cognitive and emotional sequelae of cerebellar infarct:a case-report. J Int Neuropsychol Soc.1999; 14:455-69.
    [91]Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci.2001; 15:700-12.
    [92]Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto LL, Hichwa RD, Robinson RG. The cerebellum and emotional experience. Neuropsychologia. 2007;45(6):1331-41.
    [93]Ichimiya T, Okubo Y, Suhara T. Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry.2001;49:20-7.
    [94]Beyer JL, Krishnan KR. Volumetric brain imaging findings in mood disorders. Bip Dis.2002;4:89-104.
    [95]Schmahmann JD. Disorders of the cerebellum:ataxia, dysmetria of thought and the cerebellar cognitive affective syndrome. J Neuropsy-chiatry Clin Neurosci. 2004;16:367-78.
    [96]Pollack IF. Posterior fossa syndrome. Int Rev Neurobiol.1997;41:411-32.
    [97]Doxey D, Bruce D, Sklar F, Swift D, Shapiro K. Posterior fossa syndrome: identifiable risk factors and irreversible complications. Pediatr Neurosurg. 1999;31:131-6.
    [98]Daly DD, Love JG Akinetic mutism. Neurology.1958;8:238-42.
    [99]Fujisawa H, Yonaha H, Okumoto K, Uehara HIT, Nagata Y, Suehiro E. Mutism after evacuation of acute subdural hematoma of the posterior fossa. Child Nerv Syst. 2005;21:234-6.
    [100]Al-Anazi A, Hassounah M, Sheikh B, Barayan S. Cerebellar mutism caused by arteriovenous malformation of the vermis. Br J Neurosurg.2001; 15:47-50.
    [101]Drost G, Verrips A, Thijssen HOM, Gabreels FJM. Cerebellar involvement as a rare complication of pneumococcal meningitis. Neuropediatrics.2000;31:97-9.
    [102]Mewasingh LD, Kadhim H, Christophe C, Christiaens FJ, Dan B. Nonsurgical cerebellar mutism (anarthria) in two children. PediatrNeurol.2003;28:59-63.
    [103]Levinsohn L, Cronin-Golomb A, Schmahmann JD. Neuropsycho-logical consequences of cerebellar tumor resection in children:cerebellar cognitive affective syndrome in a paediatric population. Brain.2000:1041-50.
    [104]Baillieux H, Weyns F, Paquier PF, De Deyn PP, Marien P. Posterior fossa syndrome after a vermian stroke:a new case and review of the literature. Pediatr Neurosurg.2007;43:386-95.
    [105]Riva D, Giorgi C. The cerebellum contributes to higher functions during development. Evidence from a series of children surgically treated for posterior fossa tumours. Brain.2000; 123:1051-61.
    [106]Doxey D, Bruce D, Sklar F, Swift D, Shapiro K. Posterior fossa syndrome: identifiable risk factors and irreversible complications. PediatrNeurosurg. 1999;31:131-6.
    [107]Catsman-Berrevoets C, Van Dongen HR, Mulder PGH, Geuze D, Paquier PF, Lequin MH. Tumor type and size are high risk factors for the syndrome of cerebellar mutism and subsequent dysarthria. J Neurol Neurosurg Psychiatry.1999;67:755-7.
    [108]Dailey AT, McKhann GM, Berger MS. The pathophysiology of oral pharyngeal apraxia and mutism following posterior fossa tumor resection in children. J Neurosurg.1995;83:467-75.
    [109]Crutchfield JS, Sawaya R, Meyers C, Moore BD. Postoperative mutism in neurosurgery. J Neurosurg 1994;81:115-21.
    [110]Aguiar PH, Plese JP, Ciquini O, Marino R. Transient mutism following posterior fossa approach to cerebellar tumors in children:a critical review of the literature. Child Nerv Syst.1995;11:306-10.
    [111]Asamoto M, Ito H, Suzuki N, Oiwa Y, Saito K, Haraoka J. Transient mutism after posterior'fossa surgery. Child Nerv Syst 1994; 10:275-8.
    [112]Catsman-Berrevoets CE, Van Dongen HR, Zwetsloot CP. Transient loss of speech followed by dysarthria after removal of posterior fossa tumor. Dev Med Child Neurol.1992:34:1102-17.
    [113]Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum:a review and new hypothesis. Brain Lang.2001;79:580-600.
    [114]Ersahin Y, Yararbas U, Duman Y, Mutluer S. Single photon emission tomography following posterior fossa surgery in patients with and without mutism. Child Nerv Syst.2002; 18:318-25.
    [115]Watson PJ. Nonmotor functions of the cerebellum. Psychol Bull. 1978;85:944-67.
    [116]Ivry R, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136-52.
    [117]Ivry RB, Diener HC. Impaired velocity perception in patients with lesions of the cerebellum. J Cogn Neurosci.1991;3:355-66.
    [118]Hetherington R, Dennis M, Spiegler B. Perception and estimation of time in long term survivors of childhood posterior fossa tumors. J Int Neuropsychol Soc. 2000;6:682-92.
    [119]Spencer MC, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and continuous timed movements:an fMRI study. NeuroImage.2007;36:378-87.
    [120]Jueptner M, Rijntjes M, Weiller C. Localization of a cerebellar timing process using PET. Neurology.1995;45:1540-5.
    [121]Zettin M, Cappa SF, D'Amico A, Rago R, Perino C. Agrammatic speech production after a right cerebellar haemorrhage. Neurocase.1997;3:375-80.
    [122]Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum:a review and new hypothesis. Brain Lang.2001;79:580-600.
    [123]Richter S, Gerwig M, Asian B, Wilhelm H, Schloss B, Dimitrova A, et al. Cognitive functions in patients with MR defined chronic focal cerebellar lesions. J Neurol.2007;254:1193-203.
    [124]Schweizer TA, Levine B, Rewilak D, O'Conner C, Turner G, Alexander MP. Rehabilitation of executive functioning after focal damage to the cerebellum. Neurorehabil Neural Repair.2008;22(1):72-7.
    [125]Baillieux H, De Smet HJ, Lesage G, Paquier PF, Marien P. Neurobehavavioral alterations in an adolescent following posterior fossa tumor resection. Cerebellum 2006;5:289-95.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.