基质金属蛋白酶-2通过分解纤连蛋白促进整合素αvβ3-介导的肿瘤细胞的黏附与迁移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤细胞向周边组织中的侵袭,是肿瘤细胞转移的初始步骤,也是一个高度受控和多因子参与的复杂过程。这一过程包括癌细胞的趋化性迁移、细胞膜的伸展活性的引导、细胞与胞外基质之间粘附的能力以及蛋白酶的水解作用。在此过程中整合素家族以及基质金属蛋白酶家族对肿瘤细胞的黏附与迁移均发挥着重要的作用。
     基质金属蛋白酶(MMPs)能够调节肿瘤的微环境,而与普通组织相比,基质金属蛋白酶的表达和活化在几乎所有的人类癌症中都有所增长。基质金属蛋白酶-2(MMP-2)是肿瘤细胞迁移过程中的关键调节者,也调节着肿瘤细胞的行为。整合素涉及到癌症发展分类(从基底膜的穿透、间质组织的侵袭、进入到循环系统,到血流中与血小板和内皮细胞的相互作用、外渗以及转移灶的产生)中的多个阶段。对于肿瘤细胞在其常态环境内的过度增殖并向间质侵袭的过程的改变,它们必须将水解蛋白酶活化来“挖掘”基底膜以获得提高能动性的行为。这种转变需要伴随整合素的表达上的改变。这样,基质金属蛋白酶和整合素之间就存在着必然联系。在以往的报道中,整合素αvβ3在肿瘤细胞黏附过程中扮演着的关键的角色,并且通过促进MMP-2的活化进而调节肿瘤细胞的迁移过程。然而,过去的报道中却少有MMP-2在肿瘤细胞αvβ3活化和αvβ3介导的黏附和迁移过程中的影响。在本研究中,我们侧重于对肿瘤细胞侵袭性迁移的初始阶段中MMP-2与整合素αvβ3二者之间的表达的位置关系的分析,从不同的视角分析二者之间可能存在的另一种相互作用关系。
     在本文的研究中,我们将肿瘤细胞接种于琼脂糖迁移模型中,并在该模型上进行了肿瘤细胞迁移过程中的观察,且利用该模型进行了肿瘤细胞定向迁移过程中的免疫荧光实验,以观察MMP-2与整合素αvβ3之间的时空关系。运用静止黏附实验、迁移和Transwell侵袭实验进一步研究肿瘤细胞黏附与迁移过程中,活化的MMP-2与整合素αvβ3之间的关系。我们发现,MMP-2能够先于整合素αvβ3定位于铺展过程中的肿瘤细胞的侵袭前缘。实验中,我们通过运用MMP-2抑制剂抑制了整合素αvβ3介导的肿瘤细胞的粘附和迁移。通过纤连蛋白分解实验,我们发现MMP-2将纤连蛋白裂解成多个小片段后,能够促进肿瘤细胞的粘附和迁移能力。这些结果揭示出,MMP-2可能通过对胞外基质的降解引导着整合素αvβ3的簇集,并指导着肿瘤细胞的迁移方向。
     综合以上结论,我们对基质金属蛋白酶MMP-2对整合素αvβ3的调节机制做出了这样的推断:活化的MMP-2首先募集于肿瘤细胞的侵袭前缘,然后将纤连蛋白分解为若干较小的纤连蛋白产物。这些纤连蛋白片段进而促进了整合素αvβ3在分解后的纤连蛋白产物处的募集,从而促进肿瘤细胞的黏附和迁移能力。
The invasion of tumor cells in the surrounding tissue is the initial steps of tumor cell metastasis, also a complex process of highly controlled and multiple factors involved in. This process requires chemotactic migration of cancer cells, steered by protrusive activity of the cell membrane and its attachment to the extracellular matrix, and also protease hydrolysis. Integrin family, and matrix metalloproteinases family play an important role in the process of tumor cell adhesion and migration.
     Matrix metalloproteinases (MMPs) can regulate the tumour microenvironment, and their expression and activation is increased in almost all human cancers compared with normal tissue. Matrix metalloproteinase-2(MMP-2) is a key regulator in the migration of tumor cells and regulates tumor cell behaviors. Integrins have been implicated in the various steps of cancer progression ranging from penetration of basement membranes, invasion of stromal tissues, entry into the circulation, to interactions with platelets and endothelial cells in the blood stream, extravasation, and outgrowth of metastatic lesions. For tumor cells to change from hyperproliferation within their normal environment towards invasive growth into the stromal compartment, they must activate proteolytic enzymes to digest basement membranes and acquire enhanced motile behavior.Integrin αvβ3has been reported to play a critical role in cell adhesion and to regulate the migration of tumor cells by promoting MMP-2activation. However, little is known about the effects of MMP-2on integrin αvβ3activity and integrin αvβ3mediated adhesion and migration of tumor cells.
     In this study, tumor cells were seeded using an agarose drop model and/or subjected to in vitro immunofluorescence, adhesion, migration and invasion assays to investigate the relationship between active MMP-2and integrin αvβ3in the adhesion and migration of tumor cells. We found that MMP-2was localized at the invasive front of spreading cells before integrin αvβ3. Integrin αvβ3mediated adhesion and migration of tumor cells were inhibited by a MMP-2inhibitor. MMP-2cleaved fibronectin into small fragments, which promoted the adhesion and migration of tumor cells. The results shows that MMP-2cleaved fibronectin into small fragments to enhance αvβ3mediated adhesion and migration of tumor cells. These results indicate that MMP-2may guide the direction of tumor cell migration.
     Based on the above conclusions, we propose the following mechanism for the initial steps of invasion based on tumor cell adhesion and migration. Active MMP-2is first recruited to the leading edge of invasive tumor cells and cleaves fibronectin into shorter fibronectin products. The fibronectin fragments promote avb3integrin recruitment to the area of cleaved fibronectin products to facilitate tumor cell adhesion and migration. Collectively, avb3integrin-mediated adhesion and migration of tumor cells is regulated, at least in part, by MMP-2via fibronectin cleavage.
引文
1. Yamaguchi H, Wyckoff J, Condeelis J. (2005) Cell migration in tumors. Curr Opin Cell Biol; 17:559-564.
    2. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer; 2:563-572.
    3. Hideki Yamaguchi, Jeffrey Wyckoff, John Condeelis (2005) Cell migration in tumors. Current Opinion in Cell Biology 17:559-564.
    4. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC. (2006) Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia:defining the stages of invadopodia formation and function. Cancer Res; 66:3034-3043.
    5. Danen EH (2005) Integrins:regulators of tissue function and cancer progression. Curr Pharm Des; 11:881-891.
    6. Deryugina El, Quigley JP. (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev; 25:9-34.
    7. Fu X, Parks WC, Heinecke JW. (2008) Activation and silencing of matrix metalloproteinases. Semin Cell Dev Biol; 19:2-13.
    8. Haass NK, Smalley KS, Li L, Herlyn M. (2005) Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res; 18:150-159.
    9. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, etal. (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol; 153:893-904.
    10. Lopez-Otin C, Overall CM. (2002) Protease degradomics:a new challenge for proteomics. Nat Rev Mol Cell Biol; 3:509-519.
    11. Luo BH, Carman CV, Springer TA. (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol; 25:619-647.
    12. McCawley LJ, Matrisian LM. (2000) Matrix metalloproteinases:multifunctional contributors to tumor progression. Mol Med Today; 6:149-156.
    13. Murphy G, Nagase H. (2008) Progress in matrix metalloproteinase research. Mol Aspects Med; 29:290-308.
    14. Nagase H, Visse R, Murphy G. (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res; 69:562-573.
    15. Nagase H, Woessner JF, Jr. (1999) Matrix metalloproteinases. J Biol Chem; 274: 21491-21494.
    16. Page-McCaw A, Ewald AJ, Werb Z. (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol; 8:221-233.
    17. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ. (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1,2, and 3. J Cell Biol; 149:1309-1323.
    18. Bjorklund M, Koivunen E (2005) Gelatinase-mediated migration and invasion of cancer cells. Biochim Biophys Acta; 1755:37-69.
    19. Mitra A, Chakrabarti J, Chatterjee A. (2003) Binding of alpha5 monoclonal antibody to cell surface alpha5betal integrin modulates MMP-2 and MMP-7 activity in B16F10 melanoma cells. J Environ Pathol Toxicol Oncol; 22:167-178.
    20. Elena I. Deryugina, Boris I. Ratnikov, Tanya I. Postnova, Dmitri V. Rozanov, and Alex Y. Strongin. (2002) Processing of Integrin a v Subunit by Membrane Type 1 Matrix Metalloproteinase Stimulates Migration of Breast Carcinoma Cells on Vitronectin and Enhances Tyrosine Phosphorylation of Focal Adhesion Kinase THE JOURNAL OF BIOLOGICAL CHEMISTRY; 277(12):9749-9756.
    21. Blood, C.H., and Zetter, B.R. (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim. Biophys. Acta; 1032,89-118.
    22. Ann F. Chambers, Alan C. Groom, Ian C.MacDonald (2002) Dissemination and growth of cancer cells in metastatic sites. Nature Rev.2:563-572.
    23. Meyer T, Hart IR (1998) Mechanisms of tumour metastasis. Eur J Cancer; 34(2):214|221.
    24. Friedl P, Wolf K. (2003) Tumour-cell invasion and migration:Diversity and escape mechanisms. Nat Rev Cancer; 3:362-374.
    25. Varani J, Orr W, Ward PA. (1978) A comparison of the migration patterns of normal and malignant cells in two assay systems. Am J Pathol; 90:159-171.
    26. Alfano D, Franco P, Vocca I, Gambi N, Pisa V, Mancini A, Caputi M, Carriero MV, Iaccarino I, Stoppelli MP. (2005) The urokinase plasminogen activator and its receptor:Role in cell growth and apoptosis. Thromb Haemost; 93:205-211.
    27. Friedl P. (2004) Prespecification and plasticity:Shifting mechanisms of cell migration. Curr Opin Cell Biol; 16:14-23.
    28. Meenakshi A. Chellaiah. (2006) Regulation of podosomes by integrin avb3 and Rho GTPase-facilitated phosphoinositide signaling. European Journal of Cell Biology; 85:311-317
    29. Hanahan, D.& Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57-70.
    30. Bissell, M. J.& Radisky, D. (2001) Putting tumours in context. Nature Rev. Cancer 1,46-54.
    31. Mikala Egeblad, Zena Werb (2002) New functions for the matrix metalloprothnases in cancer progression. Nature Rev.2:161-174.
    32. Hideaki Nagase and J. Frederick Woessner, Jr. (1999) Matrix Metalloproteinases THE JOURNAL OF BIOLOGICAL CHEMISTRY; 274:21491-21494.
    33. Park DW, Ryu HS, Choi DS, Park YH, Chang KH, Min CK. (2001) Localization of matrix metalloproteinases on endometrial cancer cell invasion in vitro. Gynecol Oncol; 82:442-449.
    34. Jourquin J, Tremblay E, Decanis N, Charton G, Hanessian S, Chollet AM, Le Diguardher T, Khrestchatisky M, Rivera S. (2003) Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur J Neurosci; 18:1507-1517.
    35. Le DM, Besson A, Fogg DK, Choi KS, Waisman DM, Goodyer CG, Rewcastle B, Yong VW. (2003) Exploitation of astrocytes by glioma cells to facilitate invasiveness:A mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascade. J Neurosci; 23:4034-4043.
    36. Yong VW, Power C, Forsyth P, Edwards DR. (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci; 2:502-511.
    37. Behrendtsen O, Werb Z. (1997) Metalloproteinases regulate parietal endoderm differentiating and migrating in cultured mouse embryos. Dev Dyn 208:255-265.
    38. Whittaker M, Floyd CD, Brown P, Gearing AJ. (1999) Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev; 99:2735-2776.
    39. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer; 2:161-174.
    40. Curran S, Murray GI (2000) Matrix metalloproteinases:molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer; 36:1621-1630.
    41. Deryugina El, Ratnikov BI, Strongin AY. (2003) Prinomastat, a hydroxamate inhibitor of matrix metalloproteinases, has a complex effect on migration of breast carcinoma cells. Int J Cancer; 104:533-541.
    42. Hijova E. (2005) Matrix metalloproteinases:their biological functions and clinical implications. Bratisl Lek Listy; 106:127-132.
    43. Hofmann UB, Eggert AA, Blass K, Brocker EB, Becker JC. (2003) Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation. Cancer Res; 63:8221-8225.
    44. Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, etal. (1999) Structure of human pro-matrix metalloproteinase-2:activation mechanism revealed. Science; 284:1667-1670.
    45. Mott JD, Werb Z. (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol; 16:558-564.
    46. Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC. (1997) The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol; 137:1445-1457.
    47. Seiki M, Mori H, Kajita M, Uekita T, Itoh Y.2003. Membrane-type 1 matrix metalloproteinase and cell migration. Biochem; Soc Symp 70:253-262.
    48. Takino T, Miyamori H, Watanabe Y, Yoshioka K, Seiki M, Sato H. (2004) Membrane type 1 matrix metalloproteinase regulates collagen-dependent mitogen-activated protein/extracellular signal-related kinase activation and cell migration. Cancer Res; 64:1044-1049.
    49. Upadhyay J, Shekarriz B, Nemeth JA, Dong Z, Cummings GD, Fridman R, Sakr W, Grignon DJ, Cher ML. (1999) Membrane type 1-matrix metalloproteinase (MT1-MMP) and MMP-2 immunolocalization in human prostate:Change in cellular localization associated with highgrade prostatic intraepithelial neoplasia. Clin Cancer Res; 5:4105-4110.
    50. Zigrino P, Drescher C, Mauch C. (2001) Collagen-induced proMMP-2 activation by MT1-MMP in human dermal fibroblasts and the possible role of alpha2betal integrins. Eur J Cell Biol; 80:68-77.
    51. Coker ML, Doscher MA, Thomas CV, Galis ZS, Spinale FG. (1999). Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am J Physiol; 277(Pt 2):H777-H787.
    52. Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K, Gearing A. (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain:Activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res; 893(1/2):104-112.
    53. Hideaki Nagase and J. Frederick Woessner, Jr. (1999) Matrix Metalloproteinases THE JOURNAL OF BIOLOGICAL CHEMISTRY; 274:21491-21494.
    54. Sternlicht, M. D.& Werb, Z. (2001) How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol.17,463-516.
    55. Zuo J, Ferguson TA, Hernandez YJ, Stetler-Stevenson WG, Muir D. (1998) Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J Neurosci; 18:5203-5211.
    56. Deryugina El, Bourdon MA, Luo GX, Reisfeld RA, Strongin A. (1997.) Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci; 110(Pt 19):2473-2482.
    57. Morrison, C. J. et al. (2001) Cellular activation of MMP-2 (Gelatinase A) by MT2-MMP occurs via a TIMP-2- independent pathway. J. Biol. Chem.276, 47402-47410
    58. Edwards, D. R. (2001)in Matrix Metalloproteinase Inhibitors in Cancer Therapy (eds Clendeninn, N. J.& Appelt, K.) 67-84 (Humana Press, Totowa, New Jersey).
    59. Wang, Z., Juttermann, R.& Soloway, P. D. (2000) TIMP-2 is required for efficient activation of proMMP-2 in vivo. J. Biol. Chem.275,26411-26415.
    60. Streuli, C. (1999) Extracellular matrix remodelling and cellular differentiation. Curr. Opin. Cell. Biol.11,634-640.
    61. Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler- Stevenson, W. G.& Quaranta, V. (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277,225-228.
    62. Xu, J. et al. (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol.154, 1069-1080.
    63. Manes, S. et al. (1997) Identification of insulin-like growth factorbinding protein-1 as a potential physiological substrate for human stromelysin-3. J. Biol. Chem.272,25706-25712.
    64. Manes, S. et al. (1999) The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J. Biol. Chem.274,6935-6945.
    65. Whitelock, J. M., Murdoch, A. D., Iozzo, R. V.& Underwood, P. A. (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem.271,10079-10086.
    66. Peschon, J. J. et al. (1998) An essential role for ectodomain shedding in mammalian development. Science 282,1281-1284.
    67. Yu, Q.& Stamenkovic, I. (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev.14,163-176.
    68. Levi, E. et al. (1996) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc. Natl Acad. Sci. USA 93, 7069-7074.
    69. Codony-Servat, J., Albanell, J., Lopez-Talavera, J. C., Arribas, J.& Baselga, J. (1999) Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res.59,1196-1201.
    70. Vecchi, M., Rudolph-Owen, L. A., Brown, C. L., Dempsey, P. J.& Carpenter, G. (1998) Tyrosine phosphorylation and proteolysis. Pervanadate-induced, metalloproteasedependent cleavage of the ErbB-4 receptor and amphiregulin. J. Biol. Chem.273,20589-20595.
    71. Nath, D., Williamson, N. J., Jarvis, R.& Murphy, G. (2001) Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J. Cell Sci. 114,1213-1220.
    72. Noe, V. et al. (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J. Cell Sci.114,111-118.
    73. Kajita, M. et al. (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell Biol.153,893-904.
    74. Deryugina, E. I., Ratnikov, B. I., Postnova, T. I., Rozanov, D. V.& Strongin, A. Y. (2001) Processing of integrin aV subunit by MT1-MMP stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of FAK. J. Biol. Chem. Nov 27; [epub ahead of print].
    75. Yang, W. et al. (2001) Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer 91, 1277-1283.
    76. Takeha, S. et al. (1997) Stromal expression of MMP-9 and urokinase receptor is inversely associated with liver metastasis and with infiltrating growth in human colorectal cancer:a novel approach from immune/inflammatory aspect. Jpn. J. Cancer Res.88,72-81.
    77. Akahane T, Akahane M, Shah A, Connor CM, Thorgeirsson UP. (2004) TIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanisms. Exp Cell Res; 301:158-167.
    78. Apparailly F, Noel D, Millet V, Baker AH, Lisignoli G, Jacquet C, Kaiser MJ, Sany J, Jorgensen C. (2001) Paradoxical effects of tissue inhibitor of metalloproteinases 1 gene transfer in collagen-induced arthritis. Arthritis Rheum; 44:1444-1454.
    79. Denhardt DT, Feng B, Edwards DR, Cocuzzi ET, Malyankar UM. (1993) Tissue inhibitor of metalloproteinases (TIMP, aka EPA):Structure, control of expression and biological functions. Pharmacol Ther,59:329-341.
    80. Edwards DR, Beaudry PP, Laing TD, Kowal V, Leco KJ, Leco PA, Lim MS. (1996) The roles of tissue inhibitors of metalloproteinases in tissue remodelling and cell growth. Int J Obes Relat Metab Disord 20(Suppl 3):S9-S15.
    81. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. (1997) Tissue inhibitors of metalloproteinases:Structure, regulation and biological functions. Eur J Cell Biol; 74:111-122.
    82. Jaworski DM. (2000) Differential regulation of tissue inhibitor of metalloproteinase mRNA expression in response to intracranial injury. Glia; 30:199-208.
    83. Hoashi T, Kadono T, Kikuchi K, Etoh T, Tamaki K. ((2001) Differential growth regulation in human melanoma cell lines by TIMP-1 and TIMP-2. Biochem Biophys Res Commun; 288:371-379.
    84. Leveque T, Le Pavec G, Boutet A, Tardieu M, Dormont D, Gras G. (2004) Differential regulation of gelatinase A, B and TIMP-1 and -2 by TNFalpha and HIV virions in astrocytes. Microbes Infect; 6:157-163.
    85. Mannello F, Gazzanelli G. (2001) Tissue inhibitors of metalloproteinases and programmed cell death:Conundrums, controversies and potential implications. Apoptosis; 6:479-482.
    86. Muir EM, Adcock KH, Morgenstern DA, Clayton R, von Stillfried N, Rhodes K, Ellis C, Fawcett JW, Rogers JH. (2002) Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Brain Res Mol Brain Res; 100(1/2):103-117.
    87. Ogier C, Creidy C, Boucraut J, Soloway S, Khrestchatisky M, Rivera S. (2005) Astrocyte reactivity to Fas activation is attenuated in TIMP-1 deficient mice:An in vitro study. BMC Neuroscience; 6:68.
    88. Owen CA, Hu Z, Barrick B, Shapiro SD. (2003) Inducible expression of tissue inhibitor of metalloproteinases-resistant matrix metalloproteinase-9 on the cell surface of neutrophils. Am J Respir Cell Mol Biol; 29(Pt 1):283-294.
    89. O'Connell JP, Willenbrock F, Docherty AJ, Eaton D, Murphy G. (1994) Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J Biol Chem; 269:14967-14973.
    90. Porter JF, Shen S, Denhardt DT. (2004) Tissue inhibitor of metalloproteinase-1 stimulates proliferation of human cancer cells by inhibiting a metalloproteinase. Br J Cancer; 90:463-470.
    91. Rivera, Ogier C, Jourquin J, Timsit S, Szklarczyk A, Miller K, Gearing A, Kaczmarek L, Khrestchatisky M. (2002) Gelatinase B, TIMP-1 are regulated in a cell-and time dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. Eur J Neurosci; 15:19-32.
    92. Rivera S, Tremblay E, Timsit S, Canals O, Ben-Ari Y, Khrestchatisky M. (1997) Tissue inhibitor of metalloproteinases-1 (TIMP-1) is differentially induced in neurons and astrocytes after seizures:Evidence for developmental, immediate early gene, and lesion response. J Neurosci; 17:4223-4235.
    93. Rivera S, Khrestchatisky M. (1999) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuronal plasticity and pathology. In:Baudry M, Thomsom RF, Davis JL, editors. Advances in synaptic plasticity. Cambridge, Massachusetts; The MIT Press:Pp 53-86.
    94. Roeb E, Bosserhoff AK, Hamacher S, Jansen B, Dahmen J, Wagner S, Matern S. (2005) Enhanced migration of tissue inhibitor of metalloproteinase overexpressing hepatoma cells is attributed to gelatinases:Relevance to intracellular signaling pathways. World J Gastroenterol; 11:1096-1104.
    95. Vaillant C, Didier-Bazes M, Hutter A, Belin MF, Thomasset N. (1999) Spatiotemporal expression patterns of metalloproteinases and their inhibitors in the postnatal developing rat cerebellum. J Neurosci; 19:4994-5004.
    96. Jiang, Y. et al. (2001) Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metalloproteinase 4 gene delivery. Cancer Res.61, 2365-2370.
    97. Hayakawa, T., Yamashita, K., Ohuchi, E.& Shinagawa, A. (1994) Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J. Cell Sci.107,2373-2379.
    98. Yoshiji, H. et al. (1998) Mammary carcinoma cells over-expressing tissue inhibitor of metalloproteinases-1 show enhanced vascular endothelial growth factor expression. Int. J. Cancer 75,81-87.
    99. Gururajan, R. et al. (1998) Duplication of a genomic region containing the Cdc2L1-2 and MMP21-22 genes on human chromosome 1p36.3 and their linkage to D1Z2. Genome Res.8,929-939.
    100.Llano, E. et al. (1999) Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res.59,2570-2576.
    101.Crawford, H. C. et al. (2001) The PEA3 subfamily of Ets transcription factors synergizes with (3-catenin-LEF-1 to activate matrilysin transcription in intestinal tumors. Mol. Cell Biol.21,1370-1383.
    102.Sun, Y. et al. (1999) p53 down-regulates human matrix metalloproteinase-1 (collagenase-1) gene expression. J. Biol. Chem.274,11535-11540.
    103.Sun, Y. et al. (2000) Wild type and mutant p53 differentially regulate the gene expression of human collagenase-3 (hMMP-13). J. Biol. Chem.275, 11327-11332.
    104.Polette, M. et al. (1994) Gelatinase A expression and localization in human breast cancers. An in situ hybridization study and immunohistochemical detection using confocal microscopy. Virchows Arch.424,641-645.
    105.Lisa J. McCawley and Lynn M. Matrisian (2000) Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today; 6:149-156.
    106.Hofmann UB, Westphal JR, Van Muijen GN, Ruiter DJ. (2000) Matrix metalloproteinases in human melanoma. J Invest Dermatol; 115:337-344.
    107.Ahonen, M., Baker, A. H.& Kahari, V. M. (1998) Adenovirusmediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res.58,2310-2315.
    108.Lochter, A. et al. (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol.139,1861-1872.
    109.Belien, A. T., Paganetti, P. A.& Schwab, M. E. (1999) Membranetype 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J. Cell Biol.144,373-384.
    110.Deryugina, E. I., Luo, G. X., Reisfeld, R. A., Bourdon, M. A.& Strongin, A. (1997) Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res.17,3201-3210.
    111.Ala-Aho, R., Johansson, N., Baker, A. H.& Kahari, V. M. (2002) Expression of collagenase-3 (MMP-13) enhances invasion of human fibrosarcoma HT-1080 cells. Int. J. Cancer 97,283-289.
    112.Hua, J.& Muschel, R. J. (1996) Inhibition of matrix metalloproteinase 9 expression by a ribozyme blocks metastasis in a rat sarcoma model system. Cancer Res.56,5279-5284.
    113.Itoh, T. et al. (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res.58,1048-1051.
    114. Itoh, T. et al. (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin. Exp. Metastasis 17,177-181.
    115.Nakahara, H. et al. (1997) Transmembrane/cytoplasmic domainmediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc. Natl Acad. Sci. USA 94,7959-7964.
    116.Bourguignon, L. Y. et al. (1998) CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J. Cell Physiol.176, 206-215.
    117.Brooks, P. C. et al. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85,683-693.
    118.Tomasek JJ, Halliday NL, Updike DL, Ahern-Moore JS, Vu TK, Liu RW, Howard EW. (1997) Gelatinase A activation is regulated by the organization of the polymerized actin cytoskeleton. J Biol Chem; 272:7482-7487.
    119.Schwarzbauer, J. (1999) Basement membranes:Putting up the barriers. Curr. Bio,. 9, R242-R244.
    120.Liotta LA, Stetler-Stevenson WG (1991) Tumor invasion and metastasis:an imbalance of positive and negative regulation. Cancer Res, 51:5054-5059.
    121.Pagenstecher A, Stalder AK, Kincaid CL, Shapiro SD, Campbell IL. (1998) Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. Am J Pathol; 152:729-741.
    122.Liabakk NB, Talbot I, Smith RA, Wilkinson K, Balkwill F. (1996) Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type Ⅳ collagenases in colorectal cancer. Cancer Res; 56:190-196.
    123.Ayoub AE, Cai TQ, Kaplan RA, Luo J. (2005) Developmental expression of matrix metalloproteinases 2 and 9 and their potential role in the histogenesis of the cerebellar cortex. J Comp Neurol; 481:403-415.
    124.Buisson-Legendre N, Bernard P, Bobichon H, Emonard H, Schneider C, Maquart FX, Haye B, Hornebeck W. (1999). Involvement of the 92-kDa gelatinase (matrix metalloproteinase-9) in the ceramide-mediated inhibition of human keratinocyte growth. Biochem Biophys Res Commun 260:634-640..
    125.Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM. (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol; 151:879-889.
    126.Vaillant C, Meissirel C, Mutin M, Belin MF, Lund LR, Thomasset N. (2003) MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum. Mol Cell Neurosci; 24:395-408.
    127.Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L. (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci; 22:920-930.
    128.Aimes, R.T., French, D.L., and Quigley, J.P. (1994). Cloning of a 72 kDa matrix metalloproteinase (gelatinase) from chicken embryo fibroblasts using gene familyPCR:expression of gelatinase increase upon malignant transformation. Biochem. J; 300:729-736.
    129.Giancotti, F.G. and Ruoslahti, E. (1999) Integrin signaling. Science; 285, 1028-1032.
    130.Richard O. Hynes (2002) Integrins:Bidirectional, Allosteric Signaling Machines Cell; 110:673-687.
    131.Yuki Ohkawa Sayaka Miyazaki Maiko Miyata Kazunori Hamamura Koichi Furukawa Keiko Furukawa. (2008) Essential roles of integrin-mediated signaling for the enhancement of malignant properties of melanomas based on the expression of GD3 Biochemical and Biophysical Research Communications; 373: 14-19
    132.Grashoff, C., AszoAdi, A., Sakai, T., Hunziker, E.B. and FaEssler, R. (2003) Integrin-linked kinase (ILK) regulates chondrocyte shape and proliferation. EMBO Rep.; 4:432-438.
    133.Hirsch MS, Law LY, Trinkaus-Randall V, Svoboda KK. (1994) The intracellular distribution of vinculin and alpha 2 integrin in epithelial cells and chondrocytes. Scanning; 16:275-284.
    134.Grose,R., Hutter,C, Bloch,W., Thorey,I., Watt,F.M., FaEssler,R., Brakebusch,C. and Werner,S. (2002) A crucial role of b1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development; 129:2303-2315.
    135.Joseph C. Loftus, Jeffrey W. Smith, and MarkH.Ginsbergi (1994) Integrin-mediated Cell Adhesion:The Extracellular Face. THE JOURNAL OF BIOLOGICAL CHEMISTRY; 269(41):25235-25238.
    136.Erkki Ruoslahti (1991) Integrin. J. Clin. Invest.87:1-5.
    137.Albelda, S.M. (1993) Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab. Invest; 68,4-17.
    138.Stephen P. Holly, Mark K. Larson, and Leslie V. Parise. (2000) Multiple Roles of Integrins in Cell Motility Experimental Cell Research; 261,69-74.
    139.Caroline Cluzel, Frederic Saltel, Jost Lussi, Frederique Paulhe, Beat A. Imhof, and Bernhard Wehrle-Haller. (2005) The mechanisms and dynamics of αvβ3 integrin clustering in living cells. JCB; 171:383-392.
    140.Arthur, W. T., Noren, N. K. and Burridge, K. (2002) Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion. Biol. Res; 35,239-246.
    141.Bouvard, D. and Block, M. R. (1998) Calcium/calmodulin-dependent protein kinase II controls integrin a5b1-mediated cell adhesion through the integrin cytoplasmic domain associated protein-la. Biochem. Biophys. Res. Commun; 252,46-50.
    142.Chang, D. D., Wong, C., Smith, H. and Liu, J. (1997) ICAP-1, a novel b1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of b1 integrin. J. Cell Biol.;138:1149-1157.
    143.Braun,A., Bordoy,R., Stanchi,F., Moser,M., Kostka,G., Ehler,E., Brandau,O. and FaEssler,R. (2003) PINCH2 is a new 5 LIM domain protein, homologous to PINCH and localized to focal adhesions. Exp. Cell Res.; 284:237-248.
    144.Christerson, L. B., Vanderbilt, C. A. and Cobb, M. H. (1999) MEKK1 interacts with a-actinin and localizes to stress (?)bers and focal adhesions. Cell Motil. Cytoskeleton; 43:186-198.
    145.Chen, L. M., Bailey, D. and Fernandez-Valle,C. (2000) Association of b1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J. Neurosci.; 20:3776-3784.
    146.Crawford, A.W. and Beckerle, M. C. (1991) Puri(?)cation and characterization of zyxin, an 82,000-dalton component of adherens junctions. J. Biol. Chem.; 266: 5847-5853.
    147.Degani, S., Balzac,F., Brancaccio,M., Guazzone,S., Retta,S.F., Silengo,L., Eva,A. and Tarone,G. (2002) The integrin cytoplasmic domain-associated protein ICAP-1 binds and regulates Rho family GTPases during cell spreading. J. Cell Biol.; 156:377-387.
    148.Del Pozo, M.A., Kiosses, W.B., Alderson, N.B., Meller, N., Hahn, K.M. and Schwartz, M.A. (2002) Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nat. Cell Biol.; 4:232-239.
    149.Delcommenne, M., Tan, C., Gray,V., Rue,L., Woodgett,J. and Dedhar,S. (1998) Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl Acad. Sci. USA; 95:11211-11216.
    150.Garcia-Alvarez, B., de Pereda, J. M., Calderwood, D.A., Ulmer, T.S., Critchley, D., Campbell, I.D., Ginsberg,M.H. and Liddington,R.C. (2003) Structural determinants of integrin recognition by talin. Mol. Cell.; 11:49-58.
    151.Greenwood, J. A., Theibert, A. B., Prestwich, G.D. and Murphy-Ullrich J.E. (2000) Restructuring of focal adhesion plaques by PI 3-kinase. Regulation by PtdIns (3,4,5)-p (3) binding to a-actinin. J. Cell Biol.; 150:627-642.
    152.Milner R, Campbell IL. (2002) The integrin family of cell adhesion molecules has multiple functions within the CNS. J Neurosci Res; 69:286-291.
    153.Montgomery, A.M.P. et al. (1994) Integrin avb3 rescues melanoma cells from apoptosis in a three-dimensional dermal collagen. Proc. Natl. Acad. Sci. U. S. A; 91,8856-8860
    154.Nisato RE, Hosseini G, Sirrenberg C, Butler GS, Crabbe T, etal. (2005) Dissecting the role of matrix metalloproteinases (MMP) and integrin alpha(v)beta3 in angiogenesis in vitro:absence of hemopexin C domain bioactivity, but membrane-Type 1-MMP and alpha(v)beta3 are critical. Cancer Res; 65:9377-9387.
    155.Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer; 2:91-100.
    156.Guo W, Giancotti FG. (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol; 5:816-826.
    157.Kuphal S, Bauer R, Bosserhoff AK. (2005) Integrin signaling in malignant melanoma. Cancer Metastasis Rev; 24:195-222.
    158.Luo BH, Carman CV, Springer TA. (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol; 25:619-647.
    159.MiIner R, Huang X, Wu J, Nishimura S, Pytela R, et al. (1999) Distinct roles for astrocyte alphavbeta5 and alphavbeta8 integrins in adhesion and migration. J Cell Sci; 112:4271-4279.
    160.Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, etal. (1995) Integrin function:molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol; 131:791-805.
    161.Hemler, M. E. (1990) VLA proteins in the integrin family:structures, functions, and their role on leukocytes. Annu. Rev. Immunol.8:365-400.
    162.Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B (2003) Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA; 100: 9482-9487.
    163.Loftus, J. C., E. F. Plow, T. E. O'Toole, A. Glass, A. L. Frelinger, and M. H. Ginsberg. (1990) Common mechanism of integrin function:mutation of a highly conserved aspartic acid abolishes ligand binding and alters divalent cation dependent conformation. Science (Wash. DC). In press.
    164.Vogel, B. E., G. Tarone, F. G. Giancotti, J. Gailit, and E. Ruoslahti. (1990) A novel fibronectin receptor with an unexpected subunit composition (a, fl,). J. Biol. Chem.265:5934-5937.
    165.Otey, C. A., F. M. Pavalko, and K. Burridge. (1990) An interaction between a-actinin and the Pf integrin subunit in vitro. J. Cell Biol.11:721-729.
    166.Junichi Takagi Timothy A. Springer. (2002) Integrin activation and structural rearrangement Immunological Reviews; 2002 Vol 186:141-163.
    167.Sophia Havaki, Mirsini Kouloukoussal, Kawther Amawi, Yiannis Drosos, Leonidas D Arvanitis, Nikos Goutas, Dimitrios Vlachodimitropoulos, Stamatis D Vassilaros, Eleni Z Katsantoni, Irene Voloudakis-Baltatzis, Vassiliki Aleporou-Marinou, Christos Kittas and Evangelos Marinos. (2007) Altered expression pattern of integrin alphavbeta3 correlates with actin cytoskeleton in primary cultures of human breast cancer. Cancer Cell International; 7:16 doi: 10.1186/1475-2867-7-16.
    168.Bouvard, D., Vignoud, L., Dupe-Manet,S., Abed,N., Fournier,H.N., Vincent-Monegat,C., Retta,S.F., FaEssler,R. and Block,M.R. (2003) Disruption of focal adhesions by integrin cytoplasmic domain associated protein-1a. J. Biol. Chem.; 278:6567-6574.
    169.Ballestrem, C., Hinz, B., Imhof, B. A. and Wehrle-Haller,B. (2001) Marching at the front and dragging behind:differential avb3-integrin turnover regulates focal adhesion behavior. J. Cell Biol.; 155:1319-1332.
    170.Brown, N. H., Gregory, S. L., Rickoll,W. L, Fessler, L. I., Prout, M., White, R. A. and Fristrom, J. W. (2002) Talin is essential for integrin function in Drosophila. Dev. Cell; 3:569-579.
    171.Chen, H. C., Appeddu, P. A., Parsons, J. T., Hildebrand,J.D., Schaller,M.D. and Guan,J.L. (1995) Interaction of focal adhesion kinase with cytoskeletal protein talin. J. Biol. Chem.; 270:16995-16999.
    172.Hynes RO. (2002) Integrins:bidirectional, allosteric signaling machines. Cell; 110:673-687.
    173.van der Flier A, Sonnenberg A. (2001) Function and interactions ofintegrins. Cell Tissue Res; 305:285-298.
    174.Hodivala-Dilke KM, Reynolds AR, Reynolds LE (2003) Integrins in angiogenesis:multitalented molecules in a balancing act. Cell Tissue Res; 314: 131-144.
    175.Felding-Habermann, B., and Cheresh, D.A. (1993). Vitronectin and its receptor. Curr. Opin. Cell Biol; 5,864-868.
    176.Charo IF, Nannizzi L, Smith JW, Cheresh DA (1990) The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin. J Cell Biol; 111: 2795-2800.
    177.Yifeng Jia, Zhao-Zhu Zeng, Sonja M. Markwart, Korrene F. Rockwood, Kathleen M. Woods Ignatoski, Stephen P. Ethier, and Donna L. Livant.(2004) Integrin Fibronectin Receptors in Matrix Metalloproteinase-1-Dependent Invasion by Breast Cancer and Mammary Epithelial Cells CANCER RESEARCH; 64: 8674-8681.
    178.Aumailley, M., Pesch, M., Tunggal, L., Gaill, F. and FaEssler, R. (2000) Altered synthesis of laminin 1 and absence of basement membrane component deposition in b1 integrin-de(?)cient embryoid bodies. J. Cell Sci.; 113:259-268.
    179.Erik H.J. Danen (2005) Integrins:Regulators of Tissue Function and Cancer Progression. Current Pharmaceutical Design; 11:881-891.
    180.Brugge JS, McCormick F. (1999) Intracellular networking. Curr Opin Cell Biol; 11:173-176
    181.Schlaepfer DD, Hauck CR, Sieg DJ. (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol; 71:435-478.
    182.Mizejewski GJ (1999) Role of integrins in cancer:survey of expression patterns. Proc Soc Exp Biol Med; 222:124-138.
    183.Wenjie Bao and Staffan Stromblad. (2004) Integrin av-mediated inactivation of p53 controls a MEK1-dependent melanoma cell survival pathway in three-dimensional collagen. JCB; 167:745-756
    184.Keely P, Parise L, Juliano R (1998) Integrins and GTPases in tumour cell growth, motility and invasion. Trends Cell Biol; 8(3):10116.
    185.Albelda, S.M., Mette, S.A., Elder, D.E., Stewart, R., Damjanovich, L., Herlyn, M., and Buck, C.A. (1990). Integrin distribution in malignant melanoma:association of b3 subunit with tumor progression. Cancer Res; 50:6757-6764.
    186.Brakebusch, C., Bouvard, D., Stanchi, F., Sakai, T. and FaEssler, R. (2002) Integrins in invasive growth. J. Clin. Invest.; 109:999-1006.
    187.Erik H.J. Danen (2005) Integrins:Regulators of Tissue Function and Cancer Progression. Current Pharmaceutical Design; 11:881-891.
    188.Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science; 264:569-571.
    189.Seftor RE, Seftor EA, Stetler-Stevenson WG, Hendrix MJ. (1993) The 72 kDa type Ⅳ collagenase is modulated via differential expression of alpha v beta 3 and alpha 5 beta 1 integrins during human melanoma cell invasion. Cancer Res; 53:3411-3415.
    190.Peter C. Brooks, Staffan Stro" mblad, Luraynne C. Sanders, Tami L. von Schalscha, Ronald T. Aimes, William G. Stetler-Stevenson, James P. Quigley, and David A. Cheresh. (1996) Localization of Matrix Metalloproteinase MMP-2 to the Surface of Invasive Cells by Interaction with Integrin avb3 Cell; 85: 683-693.
    191.Gehlsen KR, Argraves WS, Pierschbacher MD, Ruoslahti E. (1988) Inhibition of in vitro tumor cell invasion by Arg-Gly-Aspcontaining synthetic peptides. J Cell Biol; 106:925-930.
    192.Deryugina El, Ratnikov BI, Strongin AY. (2003) Prinomastat, a hydroxamate inhibitor of matrix metalloproteinases, has a complex effect on migration of breast carcinoma cells. Int J Cancer;104:533-541.
    193.Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA (1992) Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest; 89:2018-2022.
    194.Filardo EJ, Brooks PC, Deming SL, Damsky C, Cheresh DA (1995) Requirement of the NPXY motif in the integrin beta 3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo. J Cell Biol; 130:441-450.
    195.Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, etal. (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell; 85:683-693.
    196.Godefroy E, Moreau-Aubry A, Diez E, Dreno B, Jotereau F, etal. (2005) alpha v beta3-dependent cross-presentation of matrix metalloproteinase-2 by melanoma cells gives rise to a new tumor antigen. J Exp Med; 202:61-72.
    197.Michael Stefanidakis and Erkki Koivunen. (2006) Cell-surface association between matrix metalloproteinases and integrins:role of the complexes in leukocyte migration and cancer progression. BLOOD; 108:1441-1449
    198.Fedarko NS, Jain A, Karadag A, Fisher LW. (2004) Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. FASEB J; 18:734-736.
    199.Borowsky, M. L. and Hynes, R. O. (1998) Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruf-es. J. Cell Biol; 143:429-442.
    200.Levkau B, Kenagy RD, Karsan A, Weitkamp B, Clowes AW, Ross R, Raines EW. (2002) Activation of metalloproteinases and their association with integrins:An auxiliary apoptotic pathway in human endothelial cells. Cell Death Differ; 9:1360-1367.
    201.Galardy RE, Cassabonne ME, Giese C, Gilbert JH, Lapierre F, etal. (1994) Low molecular weight inhibitors in corneal ulceration. Ann. N. Y. Acad. Sci.; 732: 315-23.
    202.Ogier C, Bernard A, Chollet AM, T LED, Hanessian S, etal. (2006) Matrix metalloproteinase-2 (MMP-2) regulates astrocyte motility in connection with the actin cytoskeleton and integrins. Glia; 54:272-284.
    203.Kenny HA, Kaur S, Coussens LM, Lengyel E (2008) The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest; 118:1367-1379.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.