羊痒病免疫组织化学检测方法建立及区分牛、羊PrP的单抗2H3的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊痒病的检测方法为单克隆抗体介导的免疫学反应,包括ELISA、western blotting和免疫组织化学(IHC)等方法,同时结合脑组织组织病理学观察。本研究通过大肠杆菌融合表达PrP27-30蛋白,制备特异性单克隆抗体,初步寻找单克隆抗体抗原结合位点,对所得单克隆抗体进行免疫学特性分析,选取最佳单克隆抗体,建立我国的羊瘁病免疫组化检测方法,并对我国部分地区采集样品进行普查,在我国羊痒病的监测方面做了比较系统的工作;另外本研究利用突变技术突变单抗2H3结合位点,首次提出并证明羊PrP208位点在不同物种间存在I/M的多态性,这一多态性导致2H3单抗对不同物种PrP亲和力存在差异。
     本实验利用PCR方法从小尾寒羊基因组DNA中扩增PrP27-30编码基因,并克隆到硫氧还原蛋白融合表达载体pET32a上,转化至E.coli BL21,IPTG诱导融合表达,得到相对分子质量约为35kD的重组小尾寒羊PrP27-30融合蛋白。以纯化的重组小尾寒羊PrP27-30融合蛋白免疫prp~c基因敲除小鼠,经过两次加强免疫,通过淋巴细胞杂交瘤技术,取脾脏细胞与骨髓瘤细胞进行融合,制备出抗小尾寒羊PrP27-30单克隆抗体,经三次亚克隆,筛选出六株能稳定分泌针对小尾寒羊PrP27-30特异性单克隆抗体的杂交瘤细胞株。
     利用大肠杆菌原核表达系统,以相邻肽段间每间隔15个氨基酸(PrP-peptide 2除外),共6段肽段来分段表达小尾寒羊PrP27-30,分别命名为PrP-peptide 1、PrP-peptide 2、PrP-peptide 3、PrP-peptide 4、PrP-peptide 5和PrP-peptide 6。将6段融合蛋白分别与羊痒病单克隆抗体进行Western blotting反应,根据反应情况分析单克隆抗体抗原结合位点的大概位置,初步得到了待检5株羊痒病单克隆抗体的抗原结合位点,其所在位置分别为:2H3在199aa-213aa之间、4C6在153aa-154aa左右、5F11在154aa-168aa之间、7F1在214aa-227aa之间、7F11在154aa-168aa之间。
     对2H3、4C6、5F11和7F11四株单克隆抗体与牛、羊PrP~c的ELISA反应特性,与牛和羊prp~c和prp~(Sc)的Western blotting、免疫组化反应特性等几个方面进行了详细的鉴定和分析。结果显示,2H3对羊PrP~c和PrP~(sc)显示了较强的反应性,对牛Prp~c和PrP~(sc)无反应;4C6对牛和羊PrP~(sc)和PrP~(sc)都有较强反应性;5F11和7F11显示出相似的反应特性,对羊PrP~c和PrP~(sc)反应性较强,而对牛PrP~c和PrP~(sc)次之,抗原结合位点结果与单抗的反应特性相一致。比较清楚的了解了四株单抗的免疫学特性,为每株单抗供不同用途使用提供了理论依据。
     根据单抗2H3免疫学特性,利用NCBI中BLAST功能比对单抗结合抗原区段氨基酸的差别,发现羊PrP208位点表现有种属特异性,推测此位点可能影响2H3免疫学特性;利用大肠杆菌原核表达系统表达含有2H3单抗结合区段的PrP肽段,在PCR引物中引入突变,将小尾寒羊PrP208位点的异亮氨酸Ⅰ突变为牛PrP208位点蛋氨酸M,与未引入突变的同一段小尾寒羊PrP肽段一起与2H3进行Western blotting反应,结果显示2H3不与突变后的PrP肽段发生反应,但与未引入突变的同一肽段发生反应。结果说明,2H3的主要抗原结合位点为羊208位点的Ⅰ,此位点的种属差异是造成2H3单抗具有免疫学特性的原因,结果同时也说明2H3在动物朊毒体蛋白研究上具有特殊意义。
     在以上研究的基础上,本实验以自制单抗为核心试剂,优化各步骤反应的最佳条件,建立具有我国自主知识产权的羊痒病免疫组化检测方法,并采集我国部分省、市、自治区羊脑样品,利用建立的羊痒病免疫组化检测方法对我国羊痒病进行普查。在2005年检测的3211头份样品和2006年检测的1711头份样品中,所有4922头份检测样品均显示为阴性,初步说明我国目前尚无羊痒病的发生。
The detection of scrapie is authorized by immunological assay mediated by monoclonal antibody, including ELISA, western blotting and immunohistochemistry (IHC) assay, in addition to histopathological test on brain. By the expression of Chinese short-tailed Han sheep PrP27-30 in E. coli BL21 (DE3) and preparation for anti-PrP27-30 of Chinese Short-tailed Han sheep monoclonal antibodies, the binding site and immunological characterization of the mAbs specific to ovine scrapie were systematicly studied in the present research. Two of the suitable mAbs, named 4C6 and 5F11, were selected to establish the method of immunohistochemistry assay. The total of 4922 samples from 26 provinces and autonomous regions of all over China were demonstrated for Scrapie. Meanwhile, using technique of gene mutation on the binding site of mAb 2H3, we discovered that I/M polymorphism of ovine PrP208 could identify ovine prion protein to bovine prion protein.
     Prnp gene of Chinese Short-tailed Han sheep was amplified from the Genomic DNA by the polymerase chain reaction and inserted into plasmid pET32a using T4 DNA ligase after digested with restriction enzyme, EcoRⅠand HindⅢ. The recombinant plasmid, named PrP-pET32a, was transferred to E. coli BL21 (DE3). The recombinant Chinese Short-tailed Han sheep PrP27-30 fusion protein, approximately 35kD, was obtained after 4h induced by IPTG. PrP null mice were injected subcutaneously with purified PrP27-30 fusion protein. After two times boosted, SP2/0 cell line and lymphocytes of the immunized PrP null mice were fused by means of lymphocyte hybridoma technique. Six hybridoma cell lines, which stably secreting monoclonal antibodies specific to PrP27-30 of Chinese Short-tailed Han sheep, were selected after three times of subclone.
     To find out the binding sites of mAbs 2H3, 4C6, 5Fll, 7F1 and 7F11, overlapping recombinant PrP27-30 which interval 15 amino acids every two consecutive peptides (excluding PrP peptide 2) were expressed in E. coli BL21 (DE3) and named PrP-peptide 1, PrP-peptide 2, PrP-peptide 3, PrP-peptide 4, PrP-peptide 5 and PrP-peptide 6 respectively. Binding sites of scrapie monoclonal antibodies were identified by Western blotting. Binding sites of five monoclonal antibodies specific to ovine scrapie are: 2H3 is between 199aa-213aa, 4C6 is between 153aa-154aa, 5F11 is between 154aa-168aa, 7F1 is between 214aa-227aa and 7F11 is between 154aa-168aa, respectively.
     ELISA characterization, western blotting characterization, IHC characterization of PrP~c and PrP~(Sc) between bovine and ovine were identified and analysized by mAbs 2H3, 4C6, 5F11 and 7F11 respectively in present research. The result showed that, 2H3 only reacted with ovine PrP but not bovine PrP; 4C6 strongly reacted with both bovine and ovine PrP; 5F11 and 7F11 gave the similar characterization which reacted more strongly with ovine PrP than bovine PrP.
     Acording to immunological characterization of Scrapie mAb 2H3, 2H3 binding site was compared to the other prion protein sequences published in Genebank by BLAST on NCBI web. The result showed that ovine PrP208, Isoleucine (I)/Methionine (M), owned polymorphism. By recombinant DNA technology, mutant fusion protein Mu-PrP-peptide5 which I replaced by M in 208 site was obtained. Western blotting showed that 2H3 only reacted with PrP-peptide5, but not Mu-PrP-peptide5. It implied that I/M polymorphism of ovine PrP208 could identify ovine prion protein to bovine prion protein.
     Two of the suitable mAb, 4C6 and 5F11, were selected to establish the method of immunohistochemistry assay. The total of 4922 samples from 26 provinces and autonomous regions of all over China were demonstrated for Scrapie during 2005 to 2006. All of the brain samples were scrapie negative.
引文
[1]. Adriano Aguzzi Magdalini Polymenidou, Mammalian Prion Biology: One Century of Evolving Concepts. Cell, 2004.116: p. 313-327.
    [2]. Aguzzi A., Prion diseases of humans and farm animals: epidemiology, genetics, and pathogenesis. J Neurochem, 2006. 97(6): p. 1726-39.
    [3]. Martinez-Lage J. F., Rabano A., Bermejo J., Martinez Perez M., Guerrero M. C, Contreras M. A., and Lunar A., Creutzfeldt-Jakob disease acquired via a dural graft: failure of therapy with quinacrine and chlorpromazine. Surg Neurol, 2005. 64(6): p. 542-5, discussion 545.
    
    [4]. Prusiner S. B., Prions. Proc Natl Acad Sci U S A, 1998. 95(23): p. 13363-83.
    
    [5]. Warter J. M., Steinmetz G, Mohr M., and Tranchant C, [Prion diseases]. Rev Neurol (Paris), 2002.158(10 Pt 1): p. 998-1007.
    [6]. Aguzzi A. and Polymenidou M., Mammalian prion biology: one century of evolving concepts. Cell, 2004.116(2): p. 313-27.
    [7]. Poser S. and Zerr I., [Clinical aspects, diagnosis and therapeutic possibilities of human prion diseases]. Internist (Berl), 2002.43(6): p. 731-7.
    [8]. Griffin J. K. and Cashman N. R., Progress in prion vaccines and immunotherapies. Expert Opin Biol Ther, 2005.5(1): p. 97-110.
    
    [9]. Peter Bross Niels Gregersen, Protein Misfolding and Disease. 232.
    [10]. Wang X J Zhang H T, Bao E D, Diagnostic technology of bovine spongiform encephalopathy (mad cow disease) and the research for neuropathology. Animal Husbandry and Veterinary Medicine, 2002. 34: p. 35-37.
    [11]. Wells G A., Wilesmith J. W., and McGill I. S., Bovine spongiform encephalopathy: a neuropathological perspective. Brain Pathol, 1991.1(2): p. 69-78.
    [12]. Adams D. H., The nature of the scrapie agent. A review of recent progress. Pathol Biol (Paris), 1970.18(9): p. 559-77.
    [13]. Bamborough P., Wille H., Telling G C, Yehiely E, Prusiner S. B., and Cohen F. E., Prion protein structure and scrapie replication: theoretical, spectroscopic, and genetic investigations. Cold Spring Harb Symp Quant Biol, 1996. 61: p. 495-509.
    [14]. Becht H., [Scrapie, still always a puzzling infection]. Tierarztl Prax, 1991.19(1): p. 48-51.
    [15]. Giorgini F., Guidetti P., Nguyen Q., Bennett S. C, and Muchowski P. J., A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet, 2005. 37(5): p. 526-31.
    [16]. Mabbott N. A. and Bruce M. E., The immunobiology of TSE diseases J Gen Virol, 2001. 82(Pt 10): p. 2307-18.
    [17]. Brugere-Picoux J. and Chatelain J., [Scrapie in sheep and transmissible encephalopathy of the mink]. Pathol Biol (Paris), 1995.43(2): p. 81-90.
    [18]. Brunori M., Silvestrini M. C, and Pocchiari M., The scrapie agent and the prion hypothesis. Trends Biochem Sci, 1988.13(8): p. 309-13.
    
    [19]. Gardash'ian A. M., [Scrapie virus]. Usp Sovrem Biol, 1967. 63(3): p. 429-43.
    [20]. Gibbons R. A. and Hunter G D., Nature of the scrapie agent Nature, 1967. 215(5105): p. 1041-3.
    [21]. Goudsmit J. and Van der Waals F. W., Scrapie and its association with 'amyloid-like' fibrils and glycoproteins encoded by cellular genes: an animal model for human dementia Prog Brain Res, 1986.70: p. 391-8.
    [22]. Foster J. and Hunter N., Transmissible spongiform encephalopathies: transmission, mechanism of disease, and persistence. Curr Opin Microbiol, 1998.1(4): p. 442-7.
    [23]. Peretz D., Williamson R. A., Matsunaga Y., Serban H., Pinilla C, Bastidas R. B., Rozenshteyn R., James T. L., Houghten R. A., Cohen F. E., Prusiner S. B., and Burton D. R., A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol, 1997. 273(3): p. 614-22.
    [24]. Rohwer R. G, The scrapie agent: "a virus by any other name". Curr Top Microbiol Immunol, 1991.172: p. 195-232.
    
    [25]. Stamp J. T, Scrapie and its wider implications. Br Med Bull, 1967. 23(2): p. 133-7.
    [26]. Jaegly A., Mouthon E, Peyrin J. M, Camugli B., Deslys J. P., and Dormont D., Search for a nuclear localization signal in the prion proteia Mol Cell Neurosci, 1998.11(3): p. 127-33.
    [27]. Kogan E. A., Zelenkov P. V., Uspenskaia O. V., and Epifanov Ia V., [Prion diseases: current views]. Arkh Patol, 2002. 64(6): p. 3-9.
    [28]. Hoinville L. J., A review of the epidemiology of scrapie in sheep. Rev Sci Tech, 1996.15(3): p. 827-52.
    [29]. Cathala E, Scrapie in France. J Am Vet MedAssoc, 1990.196(10): p. 1680.
    
    [30]. Detwiler L. A., Scrapie. Rev Sci Tech, 1992.11(2): p. 491-537.
    
    [31]. Hourrigan J. L, The scrapie control program in the United States. J Am Vet Med Assoc, 1990.196(10): p. 1679.
    [32], Hadlow W. J., An overview of scrapie in the United States. J Am Vet Med Assoc, 1990.196(10): p. 1676-7.
    [33]. Birkmann E Schafer O, Weinmann N Detection of prion particles in samples of BSE and scrapie by fluorescence correlation spectroscopy without proteinase K digestioa Biol Chem, 2006.387(1): p. 95-102
    [34]. Harmeyer S., Pfaff E., and Groschup M. H., Synthetic peptide vaccines yield monoclonal antibodies to cellular and pathological prion proteins of ruminants. J Gen Virol, 1998. 79 (Pt 4): p. 937-45.
    [35]. S.Thorgeirsdottir GGeorgsson, E.Reynisson, S.Sigurdarson, A.Palsdottir Search for healthy carriers of scrapie: an assessment of subclinical infection of sheep in an Icelandic scrapie flock by three diagnostic methods and correlation with PrP genotypes. Arch Virol, 2002.147(709-722).
    [36]. Andrea Matucci Gianluigi Zanusso, Matteo Gelati, Alessia Farinazzo, Michele Fiorini,Sergio Ferrari, Giancarlo Andrighetto, Tiziana Cestari, Maria Caramelli, Alessandro Negro , Michela Morbin , Roberto Chiesa ,Salvatore Monacob, , Giuseppe Tridente., Analysis of mammalian scrapie protein by novel monoclonal antibodies recognizing distinct prion protein glycoforms: an immunoblot and immunohistochemical study at the light and electron microscopic levels. . Brain Research Bulletin, 2005. 65: p. 155-162.
    [37]. Robakis NK Devine-Gage EA, Jenkins EC Localization of a human gene homologous to the PrP gene on the p arm of chromosome 20 and detection of PrP-related antigens in normal human brain. Biochem Biophys Res Commun, 1986. 140(2): p. 758-765.
    [38]. Sparkes RS Simon M, Cohn VH, Assignment of the human and mouse prion protein genes to homologous chromosomes. Proc Natl Acad Sci U S A, 1986. 83(19): p. 7358-7362.
    [39]. Schatzl HM Da Costa M, Taylor L, Cohen FE, Prusiner SB. , Prion protein gene variation among primates. J Mol Biol, 1995 Jan 27. 245(4): p. 362-74.
    [40]. Hunter N Goldmann W, Marshall E, O'Neill G, Sheep and goats: natural and experimental TSEs and factors influencing incidence of disease. Arch Virol Suppl, 2000(16): p. 181-8.
    [41]. Nishida N., Harris D. A., Vilette D., Laude H., Frobert Y., Grassi J., Casanova D., Milhavet O., and Lehmann S., Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion proteia J Virol, 2000. 74(1): p. 320-5.
    [42], Lars Redecke Wolfram Meyer-Klaucke , Mirjam Koker , Joachim Clos , Dessislava Georgieva , Nicolay Genov , Hartmut Echner , Hubert Kalbacher , Markus Perbandt , Reinhard Bredehorst , Wolfgang Voelter , Christian Betzel COMPARATIVE ANALYSIS OF THE HUMAN AND CHICKEN PRION PROTEIN COPPER BINDING REGION AT PH 6.5. JBC, 2005.
    [43]. Walmsley A. R. and Hooper N. M., Glycosylation efficiency of Asn-Xaa-Thr sequons is independent of distance from the C-terminus in membrane dipeptidase. Glycobiology, 2003.13(9): p. 641-6.
    [44]. Weissmann C, The state of the prion. Nat Rev Microbiol, 2004. 2(11): p. 861-71.
    [45]. Henrik Biverstahl August Andersson, Astrid Gra slund, and Lena Maler, NMR Solution Structure and Membrane Interaction of the N-Terminal Sequence (1-30) of the Bovine Prion Proteia Biochemistry, 2004. 43: p. 14940-14947.
    [46]. Nunziante M., Gilch S., and Schatzl H. M., Prion diseases: from molecular biology to intervention strategies. Chembiochem, 2003.4(12): p. 1268-84.
    [47]. Sunyach C. and Checler F., Combined pharmacological, mutational and cell biology approaches indicate that p53-dependent caspase 3 activation triggered by cellular prion is dependent on its endocytosis. J Neurochem, 2005. 92(6): p. 1399-407.
    [48]. Adjou K. T, Simoneau S., Sales N., Lamoury F, Dormont D., Papy-Garcia D., Barritault D., Deslys J. P., and Lasmezas C. I., A novel generation of heparan sulfate mimetics for the treatment of prion diseases. J Gen Virol, 2003. 84(Pt 9): p. 2595-603.
    [49]. IGOR B. KUZNETSOV SHALOM RACKOVSKY, Comparative computational analysis of prion proteins reveals two fragments with unusual structural properties and a pattern of increase in hydrophobicity associated with disease-promoting mutations. Protein Science, 2004. 13: p. 3230-3244.
    [50]. Gohel C, Grigoriev V., Escaig-Haye F., Lasmezas C. I., Deslys J. P., Langeveld J., Akaaboune M., Hantai D., and Fournier J. G, Ultrastructural localization of cellular prion protein (PrPc) at the neuromuscular junction. J Neurosci Res, 1999. 55(2): p. 261-7.
    [51]. Yost C. S., Lopez C. D., Prusiner S. B., Myers R. M., and Lingappa V. R., Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion proteia Nature, 1990. 343(6259): p. 669-72.
    [52]. Mironov A., Jr., Latawiec D., Wille H., Bouzamondo-Bernstein E., Legname G, Williamson R. A., Burton D., DeArmond S. J., Prusiner S. B., and Peters P. J., Cytosolic prion protein in neurons. J Neurosci, 2003. 23(18): p. 7183-93.
    [53]. Sulkowski E., Spontaneous conversion of PrPC to PrPSc FEBS Lett, 1992. 307(2): p. 129-30.
    [54]. Biverstahl H., Andersson A., Graslund A., and Maler L., NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion proteia Biochemistry, 2004. 43(47): p. 14940-7.
    [55]. Aronoff-Spencer E., Burns C. S., Avdievich N. I., Gerfen G J., Peisach J., Antholine W. E., Ball H. L., Cohen F. E., Prusiner S. B., and Millhauser G L., Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry, 2000. 39(45): p. 13760-71.
    [56]. Burns C. S., Aronoff-Spencer E., Dunham C. M., Lario P., Avdievich N. I., Antholine W. E., Olmstead M. M., Vrielink A., Gerfen G J., Peisach J., Scott W. G, and Millhauser G L., Molecular features of the copper binding sites in the octarepeat domain of the prion proteia Biochemistry, 2002. 41(12): p. 3991-4001.
    [57]. Miura T., Sasaki S., Toyama A., and Takeuchi H., Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake. Biochemistry, 2005.44(24): p. 8712-20.
    [58]. Zanusso G, Liu D., Ferrari S., Hegyi I., Yin X., Aguzzi A., Hornemann S., Liemann S., Glockshuber R., Manson J. C, Brown P., Petersen R. B., Gambetti P., and Sy M. S., Prion protein expression in different species: analysis with a panel of new mAbs. Proc Natl Acad Sci U S A, 1998. 95(15): p. 8812-6.
    [59]. Haigh C. L., Edwards K., and Brown D. R., Copper binding is the governing determinant of prion protein turnover. Mol Cell Neurosci, 2005. 30(2): p. 186-96.
    [60]. Jones C. E., Klewpatinond M., Abdelraheim S. R., Brown D. R., and Viles J. H., Probing copper2+ binding to the prion protein using diamagnetic nickel2+ and 1H NMR: the unstructured N terminus facilitates the coordination of six copper2+ ions at physiological concentrations. J Mol Biol, 2005.346(5): p. 1393-407.
    [61]. Kretzschmar H. A., Giese A., Brown D. R., Herms J., Keller B., Schmidt B., and Groschup M., Cell death in prion disease. J Neural Transm Suppl, 1997. 50: p. 191-210.
    [62]. Stanczak P. and Kozlowski H., Can chicken and human PrPs possess SOD-like activity after beta-cleavage? Biochem Biophys Res Commun, 2007. 352(1): p. 198-202.
    [63]. Herms J. W., Kretzchmar H. A., Titz S., and Keller B. U., Patch-clamp analysis of synaptic transmission to cerebellar purkinje cells of prion protein knockout mice. Eur J Neurosci, 1995.7(12): p. 2508-12.
    [64]. Kurschner C. and Morgan J. I., The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system. Brain Res Mol Brain Res, 1995. 30(1): p. 165-8.
    [65]. Kurschner C. and Morgan J. I., Analysis of interaction sites in homo- and heteromeric complexes containing Bcl-2 family members and the cellular prion protein. Brain Res Mol Brain Res, 1996. 37(1-2): p. 249-58.
    [66]. Bounhar Y., Zhang Y., Goodyer C. G, and LeBlanc A., Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem, 2001. 276(42): p. 39145-9.
    [67]. Rambold A. S., Miesbauer M., Rapaport D., Bartke T., Baier M., Winklhofer K. F., and Tatzelt J., Association of Bcl-2 with misfolded prion protein is linked to the toxic potential of Cytosolic PrP. Mol Biol Cell, 2006.17(8): p. 3356-68.
    [68]. Chiesa R., Angeretti N., Lucca E., Salmona M., Tagliavini E, Bugiani O., and Forloni G, Clusterin (SGP-2) induction in rat astroglial cells exposed to prion protein fragment 106-126. Eur J Neurosci, 1996. 8(3): p. 589-97.
    [69]. Caramelli M., Ru G, Acutis P., and Forloni G, Prion diseases: current understanding of epidemiology and pathogenesis, and therapeutic advances. CNS Drugs, 2006. 20(1): p. 15-28.
    [70]. Bragason B. T. and Palsdottir A., Interaction of PrP with NRAGE, a protein involved in neuronal apoptosis. Mol Cell Neurosci, 2005. 29(2): p. 232-44.
    [71]. Martins V. R., Mercadante A. F., Cabral A. L., Freitas A. R., and Castro R. M., Insights into the physiological function of cellular prion protein. Braz J Med Biol Res, 2001. 34(5): p. 585-95.
    [72]. Massimino M. L., Griffoni C, Spisni E., Toni M., and Tomasi V., Involvement of caveolae and caveolae-like domains in signalling, cell survival and angiogenesis. Cell Signal, 2002.14(2): p. 93-8.
    [73]. Bouzamondo-Bernstein E., Hopkins S. D., Spilman P., Uyehara-Lock J., Deering C, Safar J., Prusiner S. B., Ralston H. J., 3rd, and DeArmond S. J., The neurodegeneration sequence in prion diseases: evidence from functional, morphological and ultrastructural studies of the GABAergic system. J Neuropathol Exp Neurol, 2004. 63(8): p. 882-99.
    [74]. Taylor D. M. and Woodgate S. L., Rendering practices and inactivation of transmissible spongiform encephalopathy agents. Rev Sci Tech, 2003. 22(1): p. 297-310.
    [75]. Collee J. G and Bradley R., BSE: a decade on--Part L Lancet, 1997. 349(9052): p. 636-41.
    [76]. Prusiner S. B., Scott M. R., DeArmond S. J., and Cohen F. E., Prion protein biology. Cell, 1998. 93(3): p. 337-48.
    [77]. Weissmann C Bueler H, Fischer M, Sailer A, Aguzzi A, Aguet M, PrP-deficient mice are resistant to scrapie. Ann N Y Acad Sci, 1994 Jun 6. 724: p. 235-40.
    [78]. C. Korth B. Stierli, P. Streit, M. Moser, O. Schaller,, R. Fischer W. Schulz-Schaeffer, H. Kretzschmar,, A. Raeberk U. Braun, F. Ehrensperger, S. Hornemann,, R. Glockshuber R. Riek, M. Billeter, K. Wu" thrich, and B. Oesch, Prion (PrPSc)-specific epitope defined by amonoclonal antibody, letters to nature, 1997. 390: p. 74-77.
    [79]. Manuelidis L. and Manuelidis E. E., Recent developments in scrapie and Creutzfeldt-Jakob disease. Prog Med Virol, 1986. 33: p. 78-98.
    [80]. Reder A. T., Mednick A. S., Brown P., Spire J. P., Van Cauter E., Wollmann R. L., Cervenakova L., Goldfarb L. G, Garay A., Ovsiew F., and et al., Clinical and genetic studies of fatal familial insomnia Neurology, 1995. 45(6): p. 1068-75.
    [81]. Korth C, Kaneko K., Groth D., Heye N., Telling G, Mastrianni J., Parchi P., Gambetti P., Will R., Ironside J., Heinrich C, Tremblay P., DeArmond S. J., and Prusiner S. B., Abbreviated incubation times for human prions in mice expressing a chimeric mouse-human prion protein transgene. Proc Natl Acad Sci U S A, 2003. 100(8): p. 4784-9.
    [82]. Beisel C. E. and Morens D. M., Variant Creutzfeldt-Jakob disease and the acquired and transmissible spongiform encephalopathies. Clin Infect Dis, 2004. 38(5): p. 697-704.
    
    [83]. Billette de Villemeur T., [Prion diseases]. Arch Pediatr, 2003.10(1): p. 54-7.
    [84]. Doh-ura K., [Prion diseases: disease diversity and therapeutics]. Rinsho Shinkeigaku, 2004.44(11): p. 855-6.
    [85]. Grigor'ev V. B., [Prion diseases of man and animal], Vopr Virusol, 2004. 49(5): p. 4-12.
    [86]. Paramithiotis E., Pinard M., Lawton T., LaBoissiere S., Leathers V. L, Zou W. Q., Estey L. A., Lamontagne J., Lehto M. T., Kondejewski L. H., Francoeur G P., Papadopoulos M., Haghighat A., Spatz S. J., Head M., Will R., Ironside J., O'Rourke K., Tonelli Q., Ledebur H. C, Chakrabartty A., and Cashman N. R., A prion protein epitope selective for the pathologically misfolded conformation. Nat Med, 2003. 9(7): p. 893-9.
    [87]. Tichy J., [Prion neuroinfections]. Cas Lek Cesk, 2004. 143(7): p. 440-5; discussion 445-6.
    [88]. Townsend G C. and Scheld W. M., Infections of the central nervous system. Adv Intern Med, 1998.43: p. 403-47.
    [89]. Gilch S., Wopfner F., Renner-Muller I., Kremmer E., Bauer C, Wolf E., Brem G, Groschup M. H., and Schatzl H. M., Polyclonal anti-PrP auto-antibodies induced with dimeric PrP interfere efficiently with PrPSc propagation in prion-infected cells. J Biol Chem, 2003. 278(20): p. 18524-31.
    [90]. Whittington M. A., Sidle K. G, Gowland I., Meads J., Hill A. F., Palmer M. S., Jefferys J. G, and Collinge J., Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein Nat Genet, 1995. 9(2): p. 197-201.
    [91]. Goldmann W., PrP gene and its association with spongiform encephalopathies. Br Med Bull, 1993. 49(4): p. 839-59.
    [92]. Moore R. C, Hope J., McBride P. A., McConnell I., Selfridge J., Melton D. W, and Manson J. C, Mice with gene targetted prion protein alterations show that Prnp, Sinc and Prni are congruent Nat Genet, 1998.18(2): p. 118-25.
    [93]. Peng Y., Huang Q., Zhang R. H., and Zhang Y. Z., Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol B Biochem Mol Biol, 2003.134(1): p. 45-52.
    [94]. Mastrangelo P. and Westaway D., Biology of the prion gene complex. Biochem Cell Biol, 2001. 79(5): p. 613-28.
    [95]. Thorgeirsdottir S., Georgsson G, Reynisson E., Sigurdarson S., and Palsdottir A., Search for healthy carriers of scrapie: an assessment of subclinical infection of sheep in an Icelandic scrapie flock by three diagnostic methods and correlation with PrP genotypes. Arch Virol, 2002.147(4): p. 709-22.
    [96]. Nielsen D., Gyllberg H., Ostlund P., Bergman T., and Bedecs K., Increased levels of insulin and insulin-like growth factor-1 hybrid receptors and decreased glycosylation of the insulin receptor alpha- and beta-subunits in scrapie-infected neuroblastoma N2a cells. Biochem J, 2004. 380(Pt 2): p. 571-9.
    [97]. Benestad S. L, Sarradin P., Thu B., Schonheit J., Tranulis M. A., and Bratberg B., Cases of scrapie with unusual features in Norway and designation of a new type, Nor98. Vet Rec, 2003.153(7): p. 202-8.
    [98]. Laude H., Vilette D., Le Dur A., Archer E, Soulier S., Besnard N., Essalmani R., and Vilotte J. L, New in vivo and ex vivo models for the experimental study of sheep scrapie: development and perspectives C R Biol, 2002. 325(1): p. 49-57.
    [99]. De Bosschere H., Roels S., Dechamps P., and Vanopdenbosch E., TSE detected in a Belgian ARR-homozygous sheep via active surveillance. Vet J, 2005.
    [100]. Andreoletti O., Simon S., Lacroux C, Morel N., Tabouret G, Chabert A., Lugan S., Corbiere E, Ferre P., Foucras G, Laude H., Eychenne F., Grassi J., and Schelcher F., PrPSc accumulation in myocytes from sheep incubating natural scrapie. Nat Med, 2004.10(6): p. 591-3.
    [101]. Matuskova M., Csokova N., Filipcik P., Hanusovska E., Bires J., Cabadaj R., Kontsek P., and Novak M., First confirmed sheep scrapie with A136R154Q171 genotype in Slovakia Acta Virol, 2003.47(3): p. 195-8.
    [102]. Belt P. B., Muileman I. H., Schreuder B. E., Bos-de Ruijter J., Gielkens A. L., and Smits M. A., Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J Gen Virol, 1995. 76 (Pt 3): p. 509-17.
    [103]. Gombojav A., Ishiguro N., Horiuchi M., Serjmyadag D., Byambaa B., and Shinagawa M., Amino acid polymorphisms of PrP gene in Mongolian sheep. J Vet Med Sci, 2003. 65(1): p. 75-81.
    [104]. Baylis M. and Goldmann W., The genetics of scrapie in sheep and goats. Curr Mol Med, 2004.4(4): p. 385-96.
    [105]. McKinley M. P. and Prusiner S. B., Biology and structure of scrapie prions. Int Rev Neurobiol, 1986. 28: p. 1-57.
    [106]. Liao Y. C, Lebo R. V., Clawson G A., and Smuckler E. A., Human prion protein cDNA: molecular cloning, chromosomal mapping, and biological implications. Science, 1986. 233(4761): p. 364-7.
    [107]. Barnewitz K., Maringer M., Mitteregger G, Giese A., Bertsch U., and Kretzschmar H. A., Unaltered prion protein cleavage in plasminogen-deficient mice. Neuroreport, 2006.17(5): p. 527-30.
    [108]. Chabry J., Ratsimanohatra C, Sponne I., Elena P. P., Vincent J. P., and Pillot T., In vivo and in vitro neurotoxicity of the human prion protein (PrP) fragment P118-135 independently of PrP expressioa J Neurosci, 2003. 23(2): p. 462-9.
    [109]. Fioriti L., Angeretti N., Colombo L, De Luigi A., Colombo A., Manzoni C, Morbin M., Tagliavini F., Salmona M., Chiesa R., and Forloni G, Neurotoxic and gliotrophic activity of a synthetic peptide homologous to Gerstmann-Straussler-Scheinker disease amyloid protein. J Neurosci, 2007. 27(7): p. 1576-83.
    
    [110]. Fioriti L., Dossena S., Stewart L. R., Stewart R. S., Harris D. A., Forloni G, and Chiesa R., Cytosolic prion protein (PrP) is not toxic in N2a cells and primary neurons expressing pathogenic PrP mutations. J Biol Chem, 2005. 280(12): p. 11320-8.
    [111]. Fuhrmann M., Bittner T., Mitteregger G, Haider N., Moosmang S., Kretzschmar H., and Herms J., Loss of the cellular prion protein affects the Ca2+ homeostasis in hippocampal CA1 neurons. J Neurochem, 2006. 98(6): p. 1876-85.
    [112]. Kempster S., Collins M. E., Aronow B. J., Simmons M., Green R. B., and Edington N., Clusterin shortens the incubation and alters the histopathology of bovine spongiform encephalopathy in mice. Neuroreport, 2004.15(11): p. 1735-8.
    [113]. Liberski P. P., Transmissible spongiform encephalopathies or prion disorders-current views. Folia Neuropathol, 1994. 32(2): p. 65-73.
    [114]. Magalhaes A. C, Baron G S., Lee K. S., Steele-Mortimer O., Dorward D., Prado M. A., and Caughey B., Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J Neurosci, 2005. 25(21): p. 5207-16.
    [115]. Martin-Clemente B., Alvarez-Castelao B., Mayo I., Sierra A. B., Diaz V, Milan M., Farinas I., Gomez-Isla T., Ferrer I., and Castano J. G, alpha-Synuclein expression levels do not significantly affect proteasome function and expression in mice and stably transfected PC12 cell lines. J Biol Chem, 2004.279(51): p. 52984-90.
    [116]. Matucci A., Zanusso G, Gelati M., Farinazzo A., Fiorini M, Ferrari S., Andrighetto G, Cestari T, Caramelli M., Negro A., Morbin M., Chiesa R., Monaco S., and Tridente G, Analysis of mammalian scrapie protein by novel monoclonal antibodies recognizing distinct prion protein glycoforms: an immunoblot and immunohistochemical study at the light and electron microscopic levels. Brain Res Bull, 2005. 65(2): p. 155-62.
    [117]. Peoc'h K., Volland H., De Gassart A., Beaudry P., Sazdovitch V., Sorgato M. C, Creminon C, Laplanche J. L, and Lehmann S., Prion-like protein Doppel expression is not modified in scrapie-infected cells and in the brains of patients with Creutzfeldt-Jakob disease. FEBS Lett, 2003.536(1-3): p. 61-5.
    [118]. Rieger R., Lasmezas C. I., and Weiss S., Role of the 37 kDa laminin receptor precursor in the life cycle of prions. Transfus Clin Biol, 1999. 6(1): p. 7-16.
    [119]. Wong B. S., Brown D. R., Pan T., Whiteman M., Liu T., Bu X., Li R., Gambetti P., Olesik J., Rubenstein R., and Sy M. S., Oxidative impairment in scrapie-infected mice is associated with brain metals perturbations and altered antioxidant activities. J Neurochem, 2001. 79(3): p. 689-98.
    [120]. Van Everbroeck B., O'Rourke K. I., and Cras P., Immunoreactivity of the monoclonal antibody F89/160.1.5 for the human prion protein. Eur J Histochem, 1999. 43(4): p. 335-8.
    [121]. Martin H. Groschup Silke Harmeyer, Eberhard Pfaff, antigenic features of prion proteins of sheep and of other mammalian species. Journal of Immunological Methods, 1997. 207: p. 89-101.
    [122]. Brun A., Castilla J., Ramirez M. A., Prager K., Parra B., Salguero F. J., Shiveral D., Sanchez C, Sanchez-Vizcaino J. M., Douglas A., and Torres J. M., Proteinase K enhanced immunoreactivity of the prion protein-specific monoclonal antibody 2A11. Neurosci Res, 2004. 48(1): p. 75-83.
    [123]. Ce' cile Fe'raudet Nathalie Morel, Ste'phanie Simon, Herve' Volland, Yveline Frobert, and Christophe Cre'minon Didier Vilette, Sylvain Lehmann, and Jacques Grassi, Screening of 145 Anti-PrP Monoclonal Antibodies for Their Capacity to Inhibit PrPSc Replication in Infected Cells. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2005. 280(12): p. 11247-11258.
    [124]. Enari M., Flechsig E., and Weissmann C., Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci USA, 2001. 98(16): p. 9295-9.
    [125]. Scott M. R., Peretz D., Nguyen H. O., Dearmond S. J., and Prusiner S. B., Transmission barriers for bovine, ovine, and human prions in transgenic mice. J Virol, 2005. 79(9): p. 5259-71.
    [126]. Perrier V., Solassol J., Crozet C., Frobert Y., Mourton-Gilles C., Grassi J., and Lehmann S., Anti-PrP antibodies block PrPSc replication in prion-infected cell cultures by accelerating PrPC degradation. J Neurochem, 2004. 89(2): p. 454-63.
    [127]. Feraudet C., Morel N., Simon S., Volland H., Frobert Y., Creminon C., Vilette D., Lehmann S., and Grassi J., Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem, 2005. 280(12): p. 11247-58.
    [128]. Tao Pan Ruliang Li, Boon-Seng Wong, Shin-Chung Kang, James Ironside, Man-Sun Sy, Novel Antibody-Lectin Enzyme-Linked Immunosorbent Assay That Distinguishes Prion Proteins in Sporadic and Variant Cases of Creutzfeldt-Jakob Disease. JOURNAL OF CLINICAL MICROBIOLOGY, 2005. 43(3): p. 1118-1126.
    [129]. Ponti W., Sala M., Pollera C., Braida D., Poli G., and Bareggi S., In vivo model for the evaluation of molecules active towards transmissible spongiform encephalopathies. Vet Res Commun, 2004. 28 Suppl 1: p. 307-10.
    [130]. Azadeh Khalili-Shirazi Sonia Quaratino, Marco L ondei, Linda Summers, Mourad Tayebi, Anthony R. Clarke, Simon H. Hawke, Graham S. Jackson, and John Collinge Protein Conformation-Significantly Influences Immune Responses to Prion Protein. The Journal of Immunology, 2005. 174: p. 3256-3263.
    [131]. Thackray A. M., Madec J. Y., Wong E., Morgan-Warren R., Brown D. R., Baron T., and Bujdoso R., Detection of bovine spongiform encephalopathy, ovine scrapie prion-related protein (PrPSc) and normal PrPc by monoclonal antibodies raised to copper-refolded prion protein. Biochem J, 2003. 370(Pt 1): p. 81-90.
    [132].曹洁,赵平,戚中田,应用噬菌体随机9肽库筛选庚型肝炎病毒抗原表位.病毒学报,2000.16(3):p.270-272.
    [133].潘卫,戚中田,吴晓兰,贺祥,潘欣,陈秋莉,杜平,从HCV核心蛋白噬菌体随机展示肽库中筛选抗原表位.细胞与分子生物学杂志,2001.17(1):p.20-23.
    [134].汤兆明,郭永建,卓孝福,苏东辉,王长青,用噬菌体展示随机12肽库筛选 HCVB细胞抗原表位.免疫学杂志,2005.21(4):p.341-344.
    [135].杨清浩,王祥卫,金燕,张立新,噬菌体随机肽库筛选MUC1抗原模拟表位.第三军医大学学报,2005.27(13):p.1332-1334.
    [136]. Francüoise Blanquet-Grossard Nicole M. Thielens, Charlotte Vendrely, Marc Jamin, Ge'rard J. Arlaud, Complement Protein C1q Recognizes a Conformationally Modified Form of the Prion Protein. Biochemistry, 2005. 44(11): p. 4349-4356.
    [137].张永强,吴晓东,刘雨田,张海涛,王志亮,鲍恩东,小尾寒羊骚痒病单抗制备及免疫组化检测方法的初步建立.中国农业科学,2006.39(4):p.819-824.
    [138]. Furuoka H., Yabuzoe A., Horiuchi M., Tagawa Y., Yokoyama T., Yamakawa Y., Shinagawa M., and Sata T., Species-specificity of a Panel of Prion Protein Antibodies for the Immunohistochemical Study of Animal and Human Prion Diseases. J Comp Pathol, 2007. 136(1): p. 9-17.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.