重庆缙云山典型林地土壤抗剪特性及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合“十一五”国家科技支撑项目“重庆北部水源区水源涵养林构建技术试验示范(2006BAD03A 1 802)”,采用实验对比,相关分析和主成分分析等方法研究了重庆缙云山五种典型地类(针阔混交林、常绿阔叶林、楠竹林、灌木林和农地)原状土和扰动土的抗剪强度特征及影响因素,以期为缙云山林地土壤抗侵蚀研究提供科学依据。研究的主要结果为:
     对五种林分的土壤结构和理化性质分析表明:各林地土壤砂粒含量相对较低,其中楠竹林的物理性粘粒含量最低,为31.33%。林地的团聚体含量大于灌木林地、农地。微团聚体团聚度和各类孔隙度从表层(A层)到底层(C层),均逐渐降低,而土壤容重由A层到C层容重呈增加趋势。各典型林地pH值、有机质含量、阳离子含量、速效氮、速效磷、速效钾、全氮、全磷和全钾含量大小排列各不相同,除pH值、阳离子交换量和全钾含量外,其它各指标随着土壤深度的增加而减小
     对各典型林地的土壤抗剪强度特征分析表明:原状土的粘聚力值(c)在土壤剖面方向呈增大趋势,其中针阔混交林原状土的的平均c最大(42.09kPa)。内摩擦角((?))基本没有变化,农地原状土的平均(?)最大(27.31。)。对扰动土分别进行三组实验:1)直剪试验;2)不固结不排水试验;3)固结不排水试验。直剪和不固结不排水试验结果表明,这两处理方式下各典型林地土壤的内摩擦角、粘聚力值并无明显规律性,直剪试验中粘聚力的平均值c以灌木林地最大(16.51 kPa),内摩擦角(?)平均值以楠竹林地最大(25.60°)。固结不排水试验结果表明,土壤有效粘聚力与总粘聚力的变化趋势相同,而有效内摩擦角与总内摩擦角的变化趋势具有明显差别。
     抗剪强度与土壤结构和理化性质指标的相关分析结果表明:1),原状土的理化性质各指标与土壤抗剪强度值之间相关性较好,相关系数为0.824;2),在扰动土直剪、不固结不排水和固结不排水试验,抗剪强度与土壤结构各指标和理化性质指标之间相关性均较高,相关系数在0.9到0.928之间。
     采用主成分分析法对影响各典型林地土壤抗剪特性的影响因子分析结果表明:1)各典型林地原状土抗剪特性影响因子的平均综合指数为30.34,其排列顺序为灌木林(40.74)>常绿阔叶林(30.63)>针阔混交林(28.78)>楠竹林(28.71)>农地(25.46);2)对扰动土分析,①.直剪试验中,各典型林地土壤抗剪特性影响因子的平均综合指数为29.08,其排列顺序为灌木林(51.99)>农地(27.57)>针阔混交林(27.46)>常绿阔叶林(24.39)>楠竹林(19.72)。②.不固结不排水试验中,其平均综合指数为23.69,排列顺序为针阔混交林(25.27)>灌木林(24.23)>常绿阔叶林(23.88)>农地(21.92)>楠竹林(21.49)。③.固结不排水试验中,总应力方式下,其平均综合指数为77.57,排列顺序为灌木林(109.91)>常绿阔叶林(74.82)>针阔混交林(72.20)>楠竹林(69.63)>农地(69.37);有效应力下,其综合指数为24.12,排列顺序为灌木林(52.78)>针阔混交林(29.05)>农地(18.67)>楠竹林(14.45)>常绿阔叶林(]2.84)。
This study was supported by the "Eleventh Five-year" National Technology Support Project "Experiment& Demonstration of the Construction Technology of Water-Conservation-Forest in the northern Water Source Area, Chongqing (2006BAD03A1802)". In this thesis, Experiment, Correlation Analysis and Principal Component Analysis were employed to study the shear strength characteristics and affecting factors of the undisturbed soil and disturbed soil from typical Mixed Coniferous forest, Evergreen-Broadleaf forest, Bamboo, Shrub and Farm land, in Jinyun Mountain Area, Chongqing.
     Analysis on the structure and physical and chemical properties of soil indicated that:the content of sand in soil from the five typical land types is relatively low, while the physical clay content in the soil from Bamboo Land is the lowest, about 31.33%. The content of Aggregates in the soil from forest land is more than Shrub Land and Farmland. The Aaggregate Degree and various types of Porosity decrease, while the Soil Bulk Density increases from the surface layer(A layer) to the bottom layer(C layer). Organic Matter Content, pH, Cation Content, Available Nitrogen, Phosphorus, Potassium, Total Nitrogen, Total Phosphorus and Potassium of the soil form typical forest lands array in different order. All of these indicators, except pH Value, Cation Exchange Capacity and Potassium, are decreasing with the depth of soil.
     The analysis of shear strength of soil from the five land types showed that:Cohesion Value(c) of undisturbed soil gradually increases with the depth of the soil, while the average c of soil from Mixed Coniferous forest is the biggest, about 42.09KPa. The Internal Friction Angle(φ) of the soil from all the five land types doesn't change with the depth of soil, andφof soil from Farmland is the biggest, about 27.31°. The c andφof disturbed soil were tested in three conditions, direct shear test, undrained test and consolidated undrained test. In the direct shear test, there is no significant change in c andφfrom A layer to C layer, and the c of soil from Shrub Land andφof soil from Bamboo Land are the largest, about 16.51kPa 25.6°respectively. In the undrained test, there is also no significant regularity in c andφfrom A layer to C layer. In the consolidated undrained test, the trends of the effective soil cohesive force and the total value of the cohesive force are the same, while trends of effectiveφand the total value ofφare different.
     The shear strength of undisturbed soil is closely related with soil properties indices, the correlation coefficient between them is 0.824. In the direct shear test, undrained test and consolidated undrained test, the correlation coefficient between shear strength of disturbed soil and soil properties indices is very high, between 0.90 and 0.928.
     Principal Component Analysis showed that:1), the average Comprehensive Index (CI)of the factors which affect the shear characteristics of soil from different land types is 30.34, the order of CI is Shrub Land (40.74), Evergreen-broadleaf forest (30.63), Mixed Forest (28.78), Bamboo Land (28.71) and Farmland(25.46);2)On the disturbed soil analysis:①. In the direct shear test, the average CI is 29.08, the order of CI is Shrub Land (51.99), Farmland(27.57), Mixed Forest (27.46), Evergreen-broadleaf forest (24.39), Bamboo Land(19.72);②. In the undrained test, the average CI is 23.69, the order of CI is Mixed Coniferous (25.27), Shrub forest (24.23), Evergreen-broadleaf forest (23.88),Farmland (21.92), Bamboo Land(21.49);③. In the consolidated undrained test, the average CI under total stress is 77.57, the order of CI is Shrub forest (109.91), Evergreen-broadleaf forest (74.82), Mixed Forest (72.20), Bamboo Land (69.63), Farmland (69.37), while the CI under effective stress is 24.12, the order of CI is Shrub (52.78), Mixed Forest (29.05), Farmland (18.67), Bamboo Land (14.45), Evergreen-broadleaf forest (12.84).
引文
[1]丁文峰,李占斌.土壤抗蚀性研究动态[J].水土保持科技情报,2001,(1):36-39.
    [2]陈敬虞,Fredlund D.G.非饱和土抗剪强度理论的研究进展[J].岩土力学,2003,(24):22-89.
    [3]陈晓平.喀斯特山区环境土壤侵蚀特性的分析研究[J].水土保持学报,1997,(4):351-361.
    [4]储小院,王玉杰,刘楠等.重庆缙云山林分林地土壤微团聚体特征分析[J].土壤通报.2009,40,(6):1241-244.
    [5]代全厚,张力等.嫩江大堤植物根系固土护堤功能研究[J].中国水土保持,1998,8(12):37~38.
    [6]党进谦,李靖.非饱和黄土的强度特征[J].岩土工程学报,1997,(2):56~61.
    [7]党坤良,雷瑞德.秦岭火地塘林地区不同林分水源涵养效能的研究[J].土壤侵蚀与水土保持学报,1995,1(1):79~84.
    [8]高维森,王佑民.土壤抗蚀抗冲性研究综述[J].水土保持通报,1992,12(5):22-39.
    [9]郭培才,张振中等.黄土区土壤抗蚀性预报及评价方法研究.水土保持学报,1992,6(3):19~21.
    [10]郭培才等.黄土高原沙棘林滴土壤抗蚀抗冲性及其指标的研究[J].西北林学院学报,1989,(5);1-4.
    [11]关连珠,张伯泉,颜丽.不同肥力黑土、棕壤各级微团粒中胶结物质的粗成及其特性[J].沈阳农业大学学报,1991,22(1):55~60.
    [12]胡建忠.苗十高原沟壑区人工沙棘林地土壤抗蚀性研究[J].沙棘,1999,12(1):1-20.
    [13]胡建忠,范小玲,王愿昌等.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通报,1998,18(2):25~30.
    [14]胡建忠,周心澄.退耕地青海云杉人工林土壤抗冲性试验研究[J].水土保持学报,2004,12(18)6:6~11.
    [15]黄昌勇.土壤学[M].北京:中国农业出版社,1999:32-45.
    [16]纪晶晶,张弛等.土壤酸、碱度含量对土抗剪强度影响[J].科技创新导报,2009,1(6):141~143.
    [17]蒋定生等编著.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997:101-120.
    [18]蒋定生.黄土抗冲性的研究[M].陕西:陕西省土壤学会1978年学术年会论文集,1978:33-38.
    [19]蒋定生,范兴科,李新华等.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究[J].水土保持学报,1995,9(2):l~8.
    [20]景可等.中国土壤侵蚀与环境[M].北京:科学出版社,2005:46-56.
    [21]潘利君,Ir.E.Bergsma.利用土壤入渗速率和土壤抗剪力确定土壤侵蚀等级[J].水土保持学报,1995,9(2):30~35.
    [22]彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报,2004,41(4):618~623.
    [23]沈慧,姜凤岐,杜晓军.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2002,11(3):345-348.
    [24]时忠杰,王彦辉等.六盘山典型植被下的土壤大孔隙特征[J].应用生态学报,2007,18(12):2675~2680.
    [25]史东梅,吕刚,蒋光毅,卢喜平,马尾松林地土壤物理性质变化及抗蚀性研究[J].水土保持学报,2005,12,(19):35~41.
    [26]雷俊山,杨勤科.土壤因子研究综述[J].水土保持研究,2004,11(2):156-159.
    [27]李阳兵,魏朝富等.岩溶山区植被破坏前后土壤团聚体分形特征研究[J].土壤通报,2006,2(37)1:51~56.
    [28]刘国彬.黄土高原土壤抗冲性研究及有关问题[J].水土保持研究,1997,4(5):91~101.
    [29]刘国彬.黄土高原草地土壤抗冲性及其机理研究[J].土壤侵蚀与水土保持学报,1998,4(1):93-94.
    [30]刘秉正.刺槐林地土壤抗冲性的试验研究[J].西北林学院学报,1984,(5):1-5.
    [31]刘国彬,张光辉.原状土冲刷法与人工降雨模拟降雨法研究土壤侵蚀性对比分析[J].水土保持通报,1995,15(4):37~41.
    [32]刘国彬.黄土高原土壤抗冲性研究及有关问题[J].水土保持研究,1997,4(5):91~101.
    [33]刘国彬.黄土高原草地土壤抗冲性及其机理研究[J].土壤侵蚀与水土保持学报,1998,4(1):93~94.
    [34]廖超林,何毓蓉,徐佩.泥石流源地土壤团聚体抗蚀特征研究-以蒋家沟为例[J].地球与环境,2005,(6):36~49.
    [35]吕春娟,白中科,陈卫国,秦俊梅,贺斌,李俊杰,崔艳.黄土区大型排土场植被根系的抗蚀抗冲性研究[J].水土保持学报,2006,(20):35-39.
    [36]卢金伟.土壤团粒水稳定性及其与土壤可蚀性之间关系研究[D].陕西:西北农林大学,2002,(6):69~78.
    [37]毛璀,孟广涛,周跃.植物根系对土壤侵蚀控制机理的研究[J].水土保持研究,2006,4(13)2:241-244.
    [38]倪九派,高明,魏朝富,谢德体.土壤含水率对浅层滑坡体不同层次土壤抗剪强度的影响[J].水土保持学报,2009,23(6):48-50.
    [39]牛德奎,郭晓敏.土壤可蚀性研究现状及趋势分析[J].江西农业大学学报,2004,12(26):936-941.
    [40]邱仁辉,杨玉胜,俞新妥.不同栽植代数杉木林土壤结构特性研究[J].北京林业大学学报,1998,20(4):6-11.
    [41]孙树林,王利丰.饱和、非饱和有机质粉土抗剪强度的对比[J].岩土工程学报,2006,28(11):1932~1935.
    [42]唐克丽、张科利等.子午岭林区自然侵蚀和人为加速侵蚀剖析[J].中国科学院西北水土保持研究所集刊,1 993,(2):86-123.
    [43]汤连生.从粒间吸力特性再认识非饱和土抗剪强度理论[J].岩土工程学报,2001,(4):412~417.
    [44]田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J].土壤学报,1964,12(3):286~296.
    [45]王云琦.三峡库区森林理水调洪机理及空间配置研究[D].北京:北京林业大学,2006:56-78.
    [46]王玉杰,王云琦,齐实等.重庆缙云山典型林地土壤分形特征对水分入渗影响[J].北京林业大学学报,2006,28(2):73-78.
    [47]王云琦,王玉杰,朱金兆.重庆缙云山典型林分林地土壤抗蚀性分析[J].水土保持研究,2005,1](14):775~781.
    [48]王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报,1994,8(4):11-16.
    [49]吴淑安,蔡强国,马绍嘉.土壤坑蚀性实验研究[J].云南地理环境研究,1996,6(8)1:73~81.
    [50]王晓飞,申向东,李晓丽等.干寒区耕作性土壤基本性质及其对土壤抗蚀能力影响的研究.农村牧区机械化,2005,6(2):19~21.
    [51]王礼先,朱金兆.水土保持学(第二版)[M].北京:中国林业出版社,2005:125~180.
    [52]吴淑安,蔡强国.土壤表土中植物根系影响其抗蚀性的模拟降雨试验研究[J].干旱区资源与环境,1999,13(3):35~43.
    [53]王德炉,朱守谦,黄宝龙.石漠化过程中土壤理化性质变化的初步研究[J].山地农业生物学报,2003,2(3):204-207.
    [54]王清奎,汪思龙.土壤团粒形成与稳定机制及影响因素[J].土壤通报,2005,6(3):415-419.
    [55]王军.植物根系对土坡抗侵蚀能力的影响[J].土壤与环境,2001,10(3):250~252.
    [56]徐燕,龙健.贵州喀斯特山区土壤物理性质对土壤侵蚀的影响[J].贵州师范大学学报,2005,2(19):157~161.
    [57]徐永福,董平.非饱和土的水分特征曲线的分形模型[J]岩土力学,2002,23(4):400-405.
    [58]夏艳华.黄土抗侵蚀能力与抗剪强度的关系研究[D].武汉:中国科学院研究生院,2003:123-138.
    [59]夏青,何丙辉.土壤物理特性对水力侵蚀的影响[J].水土保持应用技术,2006,(5):12~15.
    [60]夏卫生.具有中国特色的水土保持科学体系[J].水土保持通报,1989,9(4):30~35.
    [61]余清珠,师明洲.半干旱黄土丘陵沟望区人工混交林土壤抗蚀性研究初报[J].水土保持通报,1990,10(5):5~9.
    [62]余树全,苏增建.沱江上游深丘地区不同立地土壤抗蚀性、渗透性及其影响因素[J].防护林科技,2003,(1)3:1-4.
    [63]杨玉盛,何宗明,林光耀.不同治理模式对严重退化红壤抗蚀性影响的研究[[J].土壤侵蚀与水土保持学报,1996,2(2):32~37.
    [64]杨安学.麻江县主要土壤类型的物理性质与土壤抗蚀性的关系的初步研究[J].贵州林业科技,2004,32(2):25~29.
    [65]杨建国,安韶山,郑粉莉.宁南山区植被自然恢复中土壤团聚体特征及其与土壤性质关系[J].水土保持学报,2006,2(20):72~77.
    [66]杨玉盛,叶旺,林建华.水保林对紫色土抗蚀性的影响[J].中国水土保持,1992,(5):31-32.
    [67]尤万学,常发君,冯起勇等.沙棘林地土壤抗蚀性的研究[J].宁夏农林科技,2004,(4):13~15.
    [68]张洪江,解明曙等.长江三峡花岗岩区坡面糙率系数研究[J].水土保持学报,1994,(1):33-,38.
    [69]张建军,张宝颖,毕华兴.黄土区不同植被条件下的土壤抗冲性[J].北京林业大学学报,2004,11(26):25~30.
    [70]张启昌,孟庆繁,兰晓龙.黄土低山丘陵土壤抗蚀性影响因素的初步研究[J].水土保持通报,1996,16(3):23~26.
    [71]张松阳.不同治理措施对土壤抗蚀性因子的影响[J].福建水土保持,1999,11(3):49~52.
    [72]张保华,徐佩,廖朝林.川中丘陵区人工林土壤结构性及对土壤侵蚀的影响[J].水土保持通报,2005,25(3):25~28.
    [73]张立恭.四川盆地主要土壤类型抗侵蚀能力研究[J].四川林堪设计,1996,(2):15~23.
    [74]朱显谟.强化黄土高原土壤渗透性及抗冲性的研究[J].水土保持学报,1997,7(3):1~10.
    [75]中国农学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:26-32.
    [76]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社,1978:36~45.
    [77]中国农业百科全书编辑委员会.中国农业百科全书—土壤卷[M].北京:农业出版社,1996:316-321.
    [78]郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟[M].西安:陕西人民出版社,2000:156~160.
    [79]郑粉莉,王占礼,杨勤科.土壤侵蚀学科发展战略[J].水土保持研究,2004,(12)4:11-16.
    [80]周利军,齐实.三峡库区典型林分林地土壤抗蚀抗冲性研究[J].水土保持研究,2006,2(13):38-45.
    [81]赵鸿雁等.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168~172.
    [82]查小春,唐克丽等.黄土丘陵林地土壤侵蚀与土壤性质变化[J].地理学报,2003,58(3):464~469.
    [83]赵传燕,李林.兰州市郊区土壤水稳定性微团聚体的组成分析[J].兰州大学学报(自然科学版),2003,3(2):90~94.
    [84]Alex W, Chris P, Michael M. Root strength, growth and rates of decay root einforcement changes of two tree species and their contribution to slope stability[J].Plant and Soil,1999,2(17):39~47.
    [85]Aldurrah. M., and J. M. Bradfo rd. New M ethods of Studying SoilDetachment due to Waterdrop Impact[J].Soil Sci. Soc. Am. J,1981,4(5):949~953.
    [86]Baver L D. Some Facto rs Effect ing Erosion[J]. Agri Eng,1993,1(4):51~52.
    [87]Bouyoucos G J. The Clay Rat io asA Criterion of Suscep t ibility of Soil to Erosion[J]. Journal of American Society of Agronomy,1935,2(7):738~741.
    [88]Cruse. R. M and L arson. W. E. Effect of So il Shear St rength on Soil Detachment due to Raindrop Impact[J].SoiI Sci. Soc. Am. J,1977,4(1):777~781
    [89]Coote, D. R., and C. A. M alco lmMcGovenetal. Seasonal variat ion of Erodibility Indices on ShearSt rength and A ggregate Stability in Some Ontario Soils[J]. Can. J. Soil Sci.,1988,6(8): 405~416.
    [90]Dexter AR. Advances in characterization of soil structure[J]. Soil Till.Res.2001,1(1):199~238.
    [91]DeBooA,Wesseling GRitsma c G.LISEM:A single-event,physical based hydrological and soils erosionmodel for drainage basin.I:theory,input and output[J].Hydrological Processes,1996,10(8):1107-1117.
    [92]David D B,Jeffrey J W,Mathew P J,etl.Wind and water erosion and transport in semi-arid scrublands, grassland and forest ecosystems:quantifying dominance of horizontal wind-driven transport[J].Earth Surface Processes and Landforms,2003,2(8):1189-1209.
    [93]Fredlund D C, Rahardjo H.非饱和土力学[D].北京:中国建筑工业出版社,1997:26~32.
    [94]Hudson N. W著,窦葆璋译.土壤保持[D].北京:科学出版社,1975:36-49.
    [95]James L. Lolcama, Harvey A. Cohen, Matthew J. Tonkin. Deep karst conduits, flooding, and sinkholes:lessons for the aggregates industry[J]. Engineering Geology,2002,6(5):151~157.
    [96]Kok, H., and D. K. M cCool. Quant ifying FreezeoT haw induced variability of Soil Strength[J]. Trans. ASAC,1990,3(3):501~511
    [97]M iddleton H E. Propert ies of Soil Which Influence Soil Erosion[J]. USDSA TechnicalBullet in, 1930,17(3):16~18.
    [98]Mutcher. C. Kand Carter. C. E. Soil variat ion during the year. Transactions of the ASAC,1983,26 (1):1102~1108
    [99]Meyer L,D.Evolution of the universal Soil Loss Equation[J]. Soil and Water Conservation. 1984,32(2):99~104.
    [100]Michael S Kuznetsov, Gendugov V M, yong-Qing Jiang, etal. New Model of Soil Detachment by Water Flow, Soil Erosion and Dryland Farming[J]. CRC Press,LLC,2003,(5):573~579.
    [101]Morgan R P C, Quinton J N, Smith R E, etal. The European Soil Erosion Model (EuROSEM):A dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms,1998,23 (6):527~544.
    [102]N earingM. A and L. T. West. Soil Strength Indices as Indicato rs of Conso lidation[J]. Trans. A SAC,1988,3(1):471~476.
    [103]Peele.T.C.The Effect of Lime and Organic Matter on the Erodibility of Cecil Clay[J]. Soil Sci.Soc.Am.Proc.1938,(3):289~295.
    [104]Renard K G, Foster G R, Weesies G A, etal. Coordinators. Predicting soil erosion by water: aguide to conservation planning with the Revised universal Soil Loss Equation (RuSLE) [J]. USDA Agricultural Handbook,1997,(7):33-38.
    [105]Rohm S A, vilar OM. Shear strength of unsaturatedsandy soil[A]. Proc.1st Int. Conf. unsaturatedSoils[C]. Paris,1995,(8):189~195.
    [106]Waston. D. A and Laflen. J. M. So il St rength, Slope and Rainfall Intensity Effects on Interrill Ero sion.Transactions of The ASAE,1986,2(9):98~102.
    [107]Woodburn R, Kozachyn, J. Study of relative erodibility of a group of Mississippi gully soils[J].Trans. Am. Geophys. Union,1956,3(7):749~753.
    [108]Wischmeier,W.H. A soil Erodibility Nomograph for Farmland and Construction Sites[J]. Soil and Water Conservation,1971,2(6):189~193.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.