数字电视国标核心模块优化与下一代演进标准的相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国数字电视国家标准(Digital Television/Terrestrial Multimedia Broadcasting, DTMB)及其核心技术时域同步的正交频分复用(Time-Domain Synchronous Orthogonal Frequency Division Multiplexing, TDS-OFDM)已经在全国施行,日趋成熟的国标数字电视系统也在向国际市场迈进。而欧美等发达技术国家和地区在不断完善一代数字电视系统并出口其他地区的同时,已经纷纷推出涵盖大量先进技术的第二代数字电视标准。为了进一步改良现有DTMB标准中的关键技术以及研究二代标准中分集技术,本文在TDS-OFDM系统中快速傅立叶变换(Fast Fourier Transform, FFT)算法研究、3780点处理器资源优化和空时编码技术等方面展开了研究。
     首先,TDS-OFDM系统是DTMB标准的核心技术,与其他OFDM技术相比具有独到的优势,采用3780点FFT构造的数据帧结构也是契合我国数字电视频带分配的规定。然而3780并不是一个整数次幂,所以无法直接调用常用的基-2或者基-4的FFT处理模块,必须单独设计专用的快速算法。本文提出的一种基于迭代Winograd快速算法(Winograd Fourier Transform Algorithm, WFTA)计算的3780点FFT算法,优化了计算复杂度。与典型的3780点算法比较,本文提出的方案将乘法计算量降低了45%,其代价仅仅是增加了1%的加法计算量。相比同类的其他优化算法,本文的方案也有明显的优势。新的算法更有助于3780点FFT处理器实现的资源优化。
     其次,由于3780点FFT计算需要拆分到小点数DFT运算后再进行合并,多级运算不可避免。用于级联运算模块间的整序缓存和旋转因子乘法都需要开销大量的硬件资源。本文设计了匹配迭代WFTA运算模块的整序算法,小点数离散傅立叶变换(Discrete Fourier Transform, DFT)运算模块的输入输出都优化为自然数顺序,同时还采用改进的正交旋转数字计算(Coordinate Rotation Digital Computer, CORDIC)模块来替代旋转因子复数乘法器,进一步优化了处理器的整体资源开销。分析结果表明,本文设计的3780点FFT处理器所开销的逻辑资源为两种同类方案的53%和81%,并且在系统延迟和DSP资源节省方面也更加出色。本文提出的方案同时也满足TDS-OFDM系统的技术指标,是一种有效的国标DTMB核心处理器装置。
     再次,分集发射技术是全球二代数字电视标准中先进技术的重要组成部分。应用于复杂信道条件的差分正交空时编码技术也将会在我国数字电视演进标准中有巨大的应用前景。差分算法消除了正交空时分组码(Space-Time Block Code, STBC)编解码对信道状态信息(Channel State Information, CSI)的依赖,但是却引入了星座点扩散的问题。本文在保证码率满速率的前提下,提出了一种基于双映射的差分正交空时分组码(Differential Space-Time Block Codes, DSTBC)编码算法,成功的抑制了星座点扩散。仿真结果显示,本文提出的抑制星座点扩散的DSTBC方案,是同类方案中映射流程最为简洁的,而且是所有满速率算法中性能最好的。相比未抑制星座点扩散的典型算法,仅在低信噪比条件下有1dB的损失,但是在高信噪比条件下性能相当。
Chinese terrestrial digital television (DTV) standard:Digital Television/Terrestrial Multimedia Broadcasting (DTMB), with its key technology Time-Domain Synchronous Orthogonal Frequency Division Multiplexing (TDS-OFDM) have been carried into effect in China. The DTMB system begins to enter the global market with optimized equipments. However, the Europe and American first generation DTV standards has been fully developed and exported to many countries all over the world. What is more, their second generation DTV standards, with advanced communication technology, are carried out. To face this challenge, we prepare to further optimize the DTMB key equipment and research transmitter diversity technology in the second generation standards. This paper launch the key technology research in the Fast Fourier Transform (FFT) of the TDS-OFDM,3780-point FFT processor optimization, space time block codes (STBC).
     Firstly, TDS-OFDM is the key technology in DTMB standard. TDS-OFDM has unique advantage comparing with other OFDM system. The3780-point FFT architecture in TDS-OFDM is designed for DTMB standard and Chinese DTV frequency band.3780is not an integer's power, so the common radix-2and radix-4FFT processor module can not be used in the3780-point FFT. A special algorithm should be designed for the3780-point FFT. This paper presents a novel3780-point FFT processor scheme to reduce the computational complexity. Comparing with the typical3780-point FFT scheme, our proposed3780-point FFT processor scheme reduces45%of the multiplications in the price of1%increase of the additions. The analysis results show that our proposed scheme has the best performance among all the existing optimize algorithms.
     Secondly, the3780-point FFT should be decomposed into small points DFT modules, so the3780-point FFT structure is always cascade connected. The reordering cache and twiddle factor multipliers consume a great amount of hardware resources. This paper designs a mapping method suitable for the iterative Winograd Fourier Transform Algorithm (WFTA) architecture. The small point FDT module's input and output data are designed to be natural number order. An optimized Coordinate Rotation Digital Computer (CORDIC) module is designed to do the twiddle factor multiplication to further reduce the resource consumption. The simulation results show that, the resource consumption of our proposed3780-point FFT processor is53%and81%of two similar existing designs. The proposed scheme also performs the best in system delay and DSPs consumption. It is an efficient design for the Chinese DTMB standard.
     Thirdly, the transmitter diversity technology is essential part of the advanced communication technology in the second generation DVB standard. The differential space-time block codes (DSTBC) is designed for complicated channel situation. DSTBC has great prospect in the next generation Chinese DVB standard. However, the DSTBC dose not rely on CSI but the differential method causes constellation expansion. This paper presents a double mapping method DSTBC, which can avoid constellation expansion and achieve full code rate. The proposed double mapping method is the simplest structure among all similar codes. The simulation results show that the proposed DSTBC performs best among all the existing codes without constellation expansion. Comparing with the typical DSTBC with constellation expansion, our proposed DSTBC has1dB loss in low SNR situation but can achieve the same performance in high SNR situation.
引文
[1]Standardization Administration of the People's Republic of China (SAC), Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System. Beijing, Standards Press of China,2006.
    [2]Z. Yang, X. Wang, F. Yang. Novel Approach to Support Multimedia Services Over DTMB System. IEEE Transactions on Broadcasting,2011, vol.57, no.3, pp.737-744.
    [3]F. Yang, X. Wang, K. Peng, The novel approach to support multimedia services over DTMB system.2010 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting,2010, pp.1-5.
    [4]Y. Guan, Y. Dai, W. Zhang. DTMB Application in Shanghai SFN Transmission Network. IEEE Transactions on Broadcasting,2013, vol.59, no.1, pp.183-187.
    [5]C. Y. Ong, J. Song, C. Pan. Technology and standards of digital television terrestrial multimedia broadcasting. IEEE Communications Magazine,2010, vol.48, no.5, pp.119-127.
    [6]L. Dai, Z. Wang, Z. Yang. Next-generation digital television terrestrial broadcasting systems:Key technologies and research trends. IEEE Communications Magazine,2012, vol.50, no.6, pp. 150-158.
    [7]Digital Video Broadcasting (DVB):Frame structure, Channel Coding and Modulation for Digital Television. European Standard ETSI Standard, (EN) 300 744, V1.5.1,2004.
    [8]ATSC digital television standard, ATSC:A/53D. Washington, DC, Advanced Television Systems Committee,2005.
    [9]Channel Coding, Frame Structure and Modulation Scheme for Terrestrial Integrated Service Digital Broadcasting (ISDB-T), ITU-R, WP11 A/59,1999.
    [10]M. El-Hajjar, L. Hanzo, A Survey of Digital Television Broadcast Transmission Techniques. IEEE Communications Surveys & Tutorials,2013, pp.1-26.
    [11]Frame Structure, Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2), ETSI Standard, (EN) 302 775, VI.1.1,2009.
    [12]J. Yang, K. Wang, Z. Zou. DVB-S2 Inner Receiver Design for Broadcasting Mode. Journal of Zhejiang University (Science A),2007, vol.8, no.1, pp.28-35.
    [13]ATSC-Mobile DTV Standard, Part 1-ATSC Mobile Digital Television System (A/153 Part 1), 2009.
    [14]Transmission System Based on Connected Segments for Terrestrial Mobile Multimedia Broadcasting, ARIB Standard, STD-B46,2010.
    [15]杨知行,杨林TDS-OFDM接收机自适应信道估计均衡方法及其系统,中国专利,ZL200410003480.2004.
    [16]Z. Wang, J. Wang, J. Wang, Review of Key Techniques for Future DTTB Systems.2010 International Conference on Multimedia Technology (ICMT),2010, pp.1-4.
    [17]S. B. Weinstein, P. M. Ebert. Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform. IEEE Transactions on Communication Technology,1971, vol.19, no. 5, pp.628-634.
    [18]L. J. Cimini. Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing. IEEE Transactions on Communications,1985, pp.665-675.
    [19]3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Radio Frequency (RF) system scenarios (Release 9).3GPP TR 36.942 V9.0.1,2010.
    [20]J. Song, Z. Yang, L. Yang. Technical Review on Chinese Digital Terrestrial Television Broadcasting Standard and Measurements on Some Working Modes. IEEE Transactions on Broadcasting,2007, vol.53, no.1, pp.1-7.
    [21]M. Liu, M. Crussiere, J. F. Helard, Analysis and performance comparison of DVB-T and DTMB systems for terrestrial digital TV.11th IEEE International Conference on Communication Systems, 2008, pp.1399-1404.
    [22]Z. X. Yang, Y. P. Hu, C. Y. Pan. Design of a 3780-point IFFT processor for TDS-OFDM. IEEE Transactions on Broadcasting,2002, vol.48, no.1, pp.57-61.
    [23]I. J. Good. The Interaction Algorithm and Practical Fourier Series. Journal of the Royal Statistical Society,1958, vol.20, no.2, pp.361-372.
    [24]J. W. Cooley, J. W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation,1965, vol.19, no.90, pp.297-301.
    [25]F. Camarda, J. C. Prevotet, F. Nouvel, Implementation of a Reconfigurable Fast Fourier Transform Application to Digital Terrestrial Television Broadcasting. International Conference on Field Programmable Logic and Applications,2009, pp.353-358.
    [26]X. Yang, W. Du, Z. Yang, Hardware design and implementation of 3780 points FFT based on FPGA in DTTB.4th International Conference on Application of Information and Communication Technologies (AICT),2010, pp.1-4.
    [27]G. Cheng, K. Su, A 3780-point FFT algorithm and its FPGA implementation. International Symposium on Next-Generation Electronics (ISNE),2010, pp.231-233.
    [28]R. Xiao, H. Quan, K. You, A novel multi-core processor for communication application.10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT),2010, pp.236-238.
    [29]E. Chen, Y. Chen, Y. Wang, A multi-core mapping implementation of 3780-point FFT.2012 International SoC Design Conference (ISOCC),2012, pp.289-292.
    [30]J. He, T. Li, X. Xu, Architectures for 3780 point FFT processor.4th International Congress on Image and Signal Processing (CISP),2011, pp.2522-2525.
    [31]K. P. Liolis, A. D. Panagopoulos, P. D. M. Arapoglou, An analytical unifying approach for outage capacity achieved in SIMO and MISO broadband satellite channel configurations.3rd European Conference on Antennas and Propagation,2009, pp.2911-2915.
    [32]G Foshini. Layered Space-Time Architecture for Wireless Communication in a Fading Environment when using Multiple Antennas. Bell Laboratories Technical Journal,1996, vol.1, no.2, pp.41-59.
    [33]S. Cioni, C. A. Vanelli, G. E. Corazza, Analysis and Performance of MIMO-OFDM in Mobile Satellite Broadcasting Systems. IEEE Global Telecommunications Conference (GLOBECOM), 2010, pp.1-6.
    [34]H. Meuel, J. Robert, MIMO channel analysis using DVB-T signals. IEEE 14th International Symposium on Consumer Electronics (ISCE),2010, pp.1-5.
    [35]S. Ji, J. Kim, C. You, Cooperative MIMO transmission scheme for the DVB-T2 system. International Conference on Information and Communication Technology Convergence (ICTC), 2010, pp.94-98.
    [36]I. Kang, K. Suh, T. Jung, Performance of the DVB-T2 system with MIMO Spatial Multiplexing. 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS),2011, pp.1-4.
    [37]C. Gomez-Calero, L. C. Navarrete, L. d. Haro. A 22 MIMO DVB-T2 System:Design, New Channel Estimation Scheme and Measurements With Polarization Diversity. IEEE Transactions on Broadcasting,2010, vol.55, no.2, pp.184-192.
    [38]R. T. Schwarz, A. Knopp, B. Lankl, Optimum-capacity MIMO satellite broadcast system: Conceptual design for LOS channels. Advanced Satellite Mobile Systems,2008, pp.60-65.
    [39]R. T. Schwarz, A. Knopp, D. Ogermann, Optimum-capacity MIMO satellite link for fixed and mobile services. InternationaL ITG Workshop on Smart Antennas,2008, pp.209-216.
    [40]F. Yamashita, K. Kobayashi, M. Ueba, Broadband multiple satellite MIMO system.2005 IEEE 62nd Vehicular Technology Conference,2005, pp.2632-2636
    [41]P. R. King, S. Stavrou. Low Elevation Wideband Land Mobile Satellite MIMO Channel Characteristics. IEEE Transactions on Wireless Communications,2007, vol.6, no.7, pp. 2712-2720.
    [42]K. P. Liolis, V. J. Gomez, E. Casini. Statistical Modeling of Dual-Polarized MIMO Land Mobile Satellite Channels. IEEE Transactions on Communications,2010, vol.58, no.11, pp.3077-3083.
    [43]S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications,1998, vol.16, no.8, pp.1451-1458.
    [44]V. Tarokh, H. Jafarkhani. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory,1999, vol.45, no.5, pp.1456-1467.
    [45]L. Li, Z. Fang, Y. Zhu, Generalized Differential Transmission for STBC Systems. IEEE Global Telecommunications Conference,2008, pp.1-5.
    [46]H. Jafarkhani. Space-Time Coding, Cambridge University Press,2005.
    [47]P. Tarasak, V. K. Bhargava, On differential space-time block codes without constellation expansion. IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2003, pp.380-383.
    [48]X. Shao, J. Yuan, A new differential space-time block coding scheme. The 8th International Conference on Communication Systems,2002, pp.183-187.
    [49]R. Wei. Differential encoding by a look-up table for quadratureamplitude modulation. IEEE Transactions on Communications,2011, vol.59, no.1, pp.84-94.
    [50]R. Wei, C. Lin, Y. Wu, Further results on differential encoding by a table. The 7th International Wireless Communications and Mobile Computing Conference,2011, pp.258-2590.
    [51]J. A. C. Bingham. Multicarrier modulation for data transmission an idea whose time has come. IEEE Communications Magazine,1990, vol.28, no.5, pp.5-14.
    [52]王文博,郑侃.宽带无线通信OFDM技术.北京,人民邮电出版社,2003.
    [53]S. Weinstein, P. Ebert. Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform. IEEE Transactions on Communication Technology.1971, vol.19, no.5, pp. 628-634.
    [54]周恩,张光,吕召彪.下一代宽带无线通信OFDM与MIMO技术.北京,人民邮电出版社,2008.
    [55]K. Takahashi, T. Saba, A novel symbol synchronization algorithm with reduced influence of ISI for OFDM systems. IEEE Global Telecommunications Conference,2001, pp.524-528.
    [56]K. Ramasubramanian, K. Baum, An OFDM timing recovery scheme with inherent delay-spread estimation. IEEE Global Telecommunications Conference,2001, pp.3111-3115.
    [57]H. K. Yun, K. H. Young, J. J. Hye, An efficient frequency offset estimator for timing and frequency synchronization in OFDM systems. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing,1999, pp.580-583.
    [58]D. Landstrom, S. K. Wilson, J. J. v. d. Beek. Symbol time offset estimation in coherent OFDM systems. IEEE Transactions on Communications,2002, vol.50, no.4, pp.545-549.
    [59]S. Barbarossa, M. Pompili, G. B. Giannakis. Channel-independent synchronization of orthogonal frequency division multiple access systems. IEEE Journal on Selected Areas in Communications, 2002, vol.20, no.2, pp.474-486.
    [60]B. Muquet, Z. Wang, G. B. Giannakis. Cyclic prefixing or zero padding for wireless multicarrier transmissions? IEEE Transactions on Communications,2002, vol.50, no.12, pp.2136-2148.
    [61]Z. Wang, G. B. Giannakis. Wireless multicarrier communications:Where Fourier meets Shannon. IEEE Signal Processing Magazine,2000, vol.17, no.3, pp.29-48.
    [62]Z. Wang, G. B. Giannakis, Linearly precoded or coded OFDM against wireless channel fades? IEEE Third Workshop on Signal Processing Advances in Wireless Communications,2001, pp. 267-270.
    [63]P. Sivakumar, S. Vidhya, M. Rajaram, On the equalization scheme for ZP-OFDM using MMSE criteria over deep fading channels. International Conference on Signal Processing,2011, pp. 96-99.
    [64]H. Eghbali, S. Muhaidat, N. Al-Dhahir, A Novel Reduced Complexity MMSE-Based Receiver for OFDM Broadband Wireless Networks. IEEE Wireless Communications and Networking Conference,2010, pp.1-5.
    [65]J. L. Yu, Y. C. Lin. Space-Time-Coded MIMO ZP-OFDM Systems:Semiblind Channel Estimation and Equalization. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers,2009, vol.56, no.7, pp.1360-132.
    [66]Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System (ISDB-T), Chinese National Standard, GB 20600-2006,2006.
    [67]J. Wang, Z.-X. Yang, C.-Y. Pan. Iterative padding subtraction of the PN sequence for the TDS-OFDM over broadcast channels. IEEE Transactions on Consumer Electronics,2005, vol.51, no.4, pp.1148-1152.
    [68]Z. Yang, L. Tong, L. Yang, Outage probability comparison of CP-OFDM and TDS-OFDM for broadcast channels. IEEE Global Telecommunications Conference,2002, pp.594-598.
    [69]S. Winograd, On Computing the Discrete Fourier Transform. Proceedings of the National Academy of Sciences,1976, pp.1005-1006.
    [70]C. Rader, N. Brenner. A new principle for fast Fourier transformation. IEEE Transactions on Acoustics, Speech and Signal Processing,1976, vol.24, no.3, pp.264-266.
    [71]程佩青.数字信号处理教程.北京,清华大学出版社,2003.
    [72]蒋增荣,曾泳泓,余品能.快速算法.长沙,国防科技大学出版社,1993.
    [73]Wang, Yuke. Residue-to-binary converters based on new Chinese remainder theorems. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,2000, vol.47, no. 3, pp.197-205.
    [74]Willi-Hans. Steeb. Problems and Solutions in Introductory and Advanced Matrix Calculus, World Scientific Publishing,2006.
    [75]H. F. Silverman. An introduction to programming the Winograd Fourier transform algorithm (WFTA). IEEE Transactions on Acoustics, Speech and Signal Processing,1977, vol.25, no.2, pp. 152-165.
    [76]E. J. VoLder. The CORDIC Trigonometric Computing Technique. IRE Transactions on Electronic Computers,1959, vol. EC-8, no.3, pp.330-334.
    [77]R. Krishna, S. P. Kumar, T. Rajkumar, A review of low cost multiplier using CORDIC subsystem. 2nd International Conference on Power, Control and Embedded Systems (ICPCES),2012, pp. 1-5.
    [78]B. Lakshmi, A. S. Dhar, Low Latency VLSI Architecture for the Radix-4 CORDIC Algorithm. IEEE Region 10 and the Third international Conference on Industrial and Information Systems, 2008, pp.1-5.
    [79]J. Shi, Y. Tian, M. Wang, A Novel Design of 1024-point Pipelined FFT Processor Based on Cordic Algorithm.2012 Second International Conference on Intelligent System Design and Engineering Application (ISDEA),2012, pp.80-83.
    [80]T. Adiono, R. S. Purba, Scalable pipelined CORDIC architecture design and implementation in FPGA. International Conference on Electrical Engineering and Informatics,2009, pp.646-649,
    [81]S. S. Abdullah, N. Haewoon, M. McDermot, A high throughput FFT processor with no multipliers. IEEE International Conference on Computer Design,2009, pp.485-490.
    [82]R. W. Patterson, J. H. Mcclellan. Fixed-point Error Analysis of Winograd Fourier Transform Algorithms. IEEE Transactions on Acoustics, Speech and Signal Processing,1978, vol.26, no.5, pp.447-455.
    [83]S. A. Kim, D. G. An, H.-G. Ryu, Efficient SNR estimation in OFDM system. IEEE Radio and Wireless Symposium (RWS),2011, pp.182-185.
    [84]M. Torlak, T. M. Duman, MIMO communication theory, algorithms, and prototyping.20th Signal Processing and Communications Applications Conference (SIU),2012, pp.1-2.
    [85]C. Capsoni, M. D'Amico, R. Nebuloni, Performance of site diversity technique estimated from time diversity. Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP),2011, pp.1463-1466.
    [86]Y. Wu, R. Liu, M. Lin, Frequency diversity evaluation using modified 2D finite-difference time-domain technique for tunnels and below ground fire hydrants. International Conference on Electromagnetics in Advanced Applications,2009, pp.541-544.
    [87]P. O. Riza, K. Tanjung, G. Hendrantoro, Implementation site diversity method on ka-band satellite to reduce the impact of rain attenuation in the tropics area.2013 International Conference on ICT for Smart Society (ICISS),2013, pp.1-6.
    [88]J. Yeo, Y. Lee, J. Ong. Performance of Site Diversity Investigated Through RADAR Derived Results. IEEE Transactions on Antennas and Propagation,2011, vol.59, no.10, pp.3890-3898.
    [89]D. J. Miiller, S. Senega, S. M. Lindenmeier, Novel 2-antenna diversity set for SDARS reception in GEO and HEO satellite systems. European Wireless Technology Conference (EuWIT),2010, pp. 169-172.
    [90]R. T. Schwarz, A. Knopp, D. Ogermann, Optimum-capacity MIMO satellite link for fixed and mobile services. International ITG Workshop on Smart Antennas, WSA 2008,2008, pp.209-216.
    [91]L. Hai, Y.-R. Zhang, A statistical MIMO channel model with space-polarization diversity.2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT),2010, pp. 1189-1192.
    [92]F. Ono, T. Muramatsu, H. Ochiai, A Signal Constellation Design for STBC with Spatial and Temporal Modulation. Proceedings of the Tenth International Symposium on Wireless Communication Systems (ISWCS 2013),2013, pp.1-5.
    [93]H. K. Shah, T. N. Parmar, N. J. Kothari, Performance of CR-QOSTBC for Multiple Receive Antennas in MIMO Systems.2010 International Conference on Computational Intelligence and Communication Networks (CICN),2010, pp.1-6.
    [94]Y. Li, H. Wang, X. Xia. On Quasi-Orthogonal Space-Time Block Codes for Dual-Polarized MIMO Channels. IEEE Transactions on Wireless Communications,2012, vol.11, no.1, pp. 397-407.
    [95]S. K. M. Rana, S. M. S. Alam, K. J. Fatema, Code construction and performance evaluation of Space Time Trellis Code (STTC) over Rayleigh fading channel.14th International Conference on Computer and Information Technology (ICCIT),2011, pp.280-285.
    [96]X. Ma, Z. W. Zheng, Y. Huang, Research on the theory and schemes of STTC. International Conference on Electronics, Communications and Control (ICECC),2011, pp.429-432.
    [97]I. B. Oluwafemi, S. H. Mneney, Performance of super-orthogonal space-time trellis codes over Nakagami fading channels.2nd International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology (Wireless VITAE),2011,pp.1-5.
    [98]J. Yang, Y. Liu, N. Wei, The Study on L-STBC-OFDM in HF Communication System. International Conference on Optoelectronics and Image Processing (ICOIP),2010, pp.641-644.
    [99]B. L. Hughes. Differential Space-Time Modulation. IEEE Transactions on Information Theory, 2000, vol.46, no.7, pp.2567-2578.
    [100]B. M. Hochwald, W. Sweldens. Differential unitary space time modulation. IEEE Transactions on Communications,2000, vol.48, no.12, pp.2041-2052.
    [101]V. Tarokh, H. Jafarkhani. A differential detection scheme for transmit diversity. IEEE Journal on Selected Areas in Communications,2000, vol.18, no.7, pp.1169-1174.
    [102]P. Tejera, W. Utschick, G. Bauch, Extended orthogonal STBC for OFDM with partial channel knowledge at the transmitter. IEEE International Conference on Communications,2004, pp. 2990-2994.
    [103]C. Zhang, M. Liao, Z. Zhang, Resource allocation with partial channel information in correlated channels for multiuser STBC-BF MIMO-OFDM downlink. International Conference on Microwave and Millimeter Wave Technology, ICMMT 2008,2008, pp.2010-2013.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.