石灰土上丛枝菌根真菌多样性特征及其对适生种群生理生态特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喀斯特(Karst)地貌在地球上分布广泛,我国西南地区存在大面积的石灰岩地质。由于石灰岩地区持水力差,土壤贫瘠,石漠化严重,植被恢复异常困难。近来,生理生态学的研究表明,丛枝菌根能够造成水分进入、通过和流出宿主植物的速率发生改变,进而引起组织水分状态和植株生理状态的改变。尽管丛枝菌根影响宿主水分关系的详细机制并不清楚,但有研究者认为,丛枝菌根可能通过促进宿主对营养物质,间接地改变了宿主的水分关系。因此,丛枝菌根真菌在石灰岩地区的植被恢复中具有潜在的应用价值。
     本文的研究目的就是探讨丛枝菌根真菌对石灰岩地区适生植物种群生理生态学特征的影响,以及石灰岩地区土壤中丛枝菌根真菌的多样性特征。为此,设计如下的5个试验:
     试验1:
     土壤水分与丛枝菌根真菌接种对构树根系形态特征和分形特征的影响
     利用WinRhizo根系分析系统,在石灰土基质上对不同土壤水分条件下接种AM真菌Glomus mosseae对构树幼苗根系的形态特征和分形特征的影响进行了研究。结果表明,土壤水分状况和接种菌根真菌对构树幼苗生物量积累产生了显著的影响;构树幼苗根系干重、总长度、表面积、体积、根节数目、根系平均直径和分形维数表现出随着土壤含水量的降低而降低,接种G.mosseae则使得该参数比同等水分条件下显著升高;未接种植株比根长SRL表现为随着土壤含水量的降低而升高,接种G.mosseae则降低了同等水分条件下构树幼苗的比根长;土壤水分和接种G.mosseae同样也对根节平均长度产生了影响。由此作者认为,接种G.mosseae在不同土壤水分条件下促进了构树幼苗的生物量积累,这种促进作用在土壤干旱条件下尤为明显,表明AM菌根真菌G.mosseae提高了宿主构树的抗旱性;G.mosseae对宿主构树抗旱性的提高与G.mosseae对构树根系形态特征、分形特征的改变密切相关。在接种幼套球囊霉的研究中也得出相同的结论。
     试验2:
     接种丛枝菌根真菌对三叶鬼针草保护酶活性的影响
     本实验研究在石灰土基质上接种丛枝菌根真菌Glomus mosseae对不同土壤水分条件下三叶鬼针草保护酶系统的影响。试验设置正常浇水、中度干旱和重度干旱3个水分处理水平,比较不同水分条件下接种Glomus mosseae的三叶鬼针草植株与未接种植株的丙二醛(MDA)含量、可溶性糖含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化酶(ASP)、过氧化物酶(POD)和多酚氧化酶(PPO)活性。研究结果表明,干旱胁迫条件下,三叶鬼针草叶片内MDA含量、可溶性糖含量显著升高,SOD、CAT、ASP、POD和PPO的活性都随土壤含水量的降低而升高。在正常浇水条件下,接种Glomus mosseae对三叶鬼针草叶片内MDA含量、可溶性糖含量没有影响,保护酶活性变化不显著;在中度干旱胁迫条件下,接种菌根并没有显著影响ASP与PPO活性,接种植株MDA含量在水分处理28d之前与未接种植株差异不显著,在处理35d时差异显著。可溶性糖含量、SOD和CAT活性则未接种植株显著高于接种植株。POD活性在水分处理前期(7d,14d和21d)接种植株与未接种植株差异不显著,在水分处理后期(28d、35d)未接种植株显著高于接种植株。在重度干旱胁迫条件下,MDA含量、可溶性糖含量、CAT活性未接种植株显著高于接种植株,对POD活性和PPO活性影响不显著,ASP活性则在21d前差异不显著,在28d和35d,未接种植株显著高于接种植株。保护酶系统变化表明,丛枝菌根有效地降低了干旱胁迫对三叶鬼针草的伤害程度,随着土壤含水量的严重亏缺和胁迫时间的延长,菌根对三叶鬼针草的保护作用逐渐减弱。
     试验3:
     干旱生境中接种AM真菌对三叶鬼针草光合特征的影响
     试验设置正常浇水(A)、中度干旱(B)和重度干旱(C)3个水分处理梯度,比较不同水分处理条件下接种丛枝菌根真菌Glomus mosseae和未接种三叶鬼针草之间光合色素含量、净光合速率、气孔导度、蒸腾速率、胞间CO_2浓度、表观量子效率、羧化效率、水分利用效率等特征的差异。结果表明,水分胁迫显著降低三叶鬼针草的净光合速率、气孔导度、蒸腾速率、表观量子效率和羧化效率。光合色素含量因干旱胁迫而升高,胞间CO_2浓度则是在水分处理的前期(7d)因干旱胁迫而降低,在干旱处理的后期随土壤含水量的降低而升高;水分利用效率则是中度胁迫的植株高于正常浇水处理组,而重度胁迫的植株则低于正常浇水处理组。在正常浇水处理条件下接种Glomus mosseae对三叶鬼针草光合参数没有产生显著性影响;在中度胁迫条件下,接种植株较未接种植株在水分处理的28d之前有更高的净光合速率、气孔导度、蒸腾速率、表观量子效率和羧化效率;在重度胁迫条件下,虽然净光合速率、气孔导度、蒸腾速率、表观量子效率和羧化效率接种植株高于未接种植株,但是二者并不显著。研究认为,干旱胁迫对三叶鬼针草光合作用的影响在水分处理的前期表现为气孔因素制约,在后期则主要是非气孔因素的影响;在正常浇水条件下接种丛枝菌根真菌Glomus mosseae对三叶鬼针草的光合作用没有显著性影响,在干旱胁迫条件下,丛枝菌根通过改善三叶鬼针草气孔导度和羧化效率等减弱干旱胁迫对植株的伤害,但是这种保护作用因为土壤水分的严重匮乏以及土壤干旱的时间延长而受到限制。
     试验4:
     丛枝菌根真菌对水分胁迫条件下三叶鬼针草(Bidens pilosa L.)开花的影响
     利用盆栽法研究了接种AM真菌在不同水分胁迫条件下对三叶鬼针草开花时间和单株开花数量的影响。结果表明,水分胁迫对三叶鬼针草的开花时间有提前的趋势,但是不显著;而对单株花序数量影响显著,表现为干旱造成三叶鬼针草单株花序数量升高。接种AM真菌之后,三叶鬼针草植株开花时间明显提前。非胁迫条件下接种摩西球囊霉Glomus mosseae的三叶鬼针草植株和接种幼套球囊霉Glomus etunicatum的植株分别比没有接种的植株始花时间分别提前了23d和13d;在水分胁迫条件下,接种植株较未接种植株开花时间也显著提前。在单株花序数量上,接种AMF的植株不同于未接种植株,在不同水分条件下显示出相同的变化趋势。结果表明,三叶鬼针草在干旱胁迫条件下单株花序数量增加,产生大量种子是其入侵的重要机制;而接种AM菌根使得三叶鬼针草开花期提前、开花数量增加,可能与AM真菌提高了植株对土壤中N、P的利用效率有关。
     试验5:
     石灰土上草本植物根系内丛枝菌根真菌多样性特征
     利用聚丙烯酰胺凝胶电泳(PAGE)和银染显影技术,比较了生长于石灰土和紫色土上的草本植物根系内的丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落的物种多样性特征。分属12个科的17种宿主植物分别种植于石灰土和紫色土上,120d后收获取样,通过CTAB法提取共生菌根内丛枝菌根真菌的DNA,用特异引物U1/U2扩增编码核糖体28S大亚基的rDNA部分序列,并进行聚丙烯酰胺凝胶电泳和银染染色。分析结果表明,生长于石灰土上的17种宿主植物根系内共发现AMF条带29种,平均每种宿主植物感染AMF 8.29种;生长于紫色土上的17种宿主植物根系内发现AMF条带24种,但是平均每种宿主植物感染AMF 9.47种。根系内的AMF包括特异的AMF类群和共有种群。聚类分析的结果表明,AMF对宿主植物的侵染具有科属的专一性,同时,这种专一性又受到土壤环境等外在条件的影响。
     总之,尽管丛枝菌根对宿主植物的保护作用在严重干旱和长时间干旱的条件下受到限制,但是接种丛枝菌根真菌在一定程度上缓解了由于干旱造成的对植物的伤害,因此,丛枝菌根真菌在石灰岩地区植被恢复过程中具有重要的应用价值。然而在本文中,石灰土中AMF种类并不低于紫色土,同时AMF对宿主抗旱性影响的机制尚不明确,因此丛枝菌根应用于实践还需要作进一步的研究。
The distribution of Karst landscape is very general in the world, especially in the southwest of China. In limestone districts, ecological restoration is very difficult due to low water retention capacity, low fertility and growing rocky desertification. Several eco-physiological studies have demonstrated that the arbuscular mycorrhizal (AM) symbiosis often results in altered rates of water movement into, through and out of the host plants, with consequent effects on tissue hydration and plant physiology. Although the real mechanisms were not clear, some researchers conclude that AM symbiosis probably affected the water relations of host plants indirectly improved nutrition, especially P. So AMF might be useful in ecological restoration in limestone districts.
     The goal of this paper is to investigate the effects of AMF on eco-physiology of dominant plant species in limestone soil. And species diversity of AMF in limestone soil is the other goal of this paper. Following 5 experiments were conducted:
     Experiment 1:
     Effects of soil moisture and AM inoculation on root morphology and fractal character in Broussonetia papyrifera (L.) Vent
     Effects of Glomus mosseae and water stress on morphology and fractal characteristic of root system in Broussonetia papyrifera (L.) Vent were studied in this experiment based on scanner-based image analysis. The results showed that drought and AM inoculation had a large, significant effect on plant development. Biomass, total length, surface area, volume, number of root nodes, average diameter and fractal dimension of root system in Broussonetia papyrifera (L.) Vent decreased with the reduction of soil moisture, while they were increased by AM inoculation. Special root length in non-AM plants increased when soil moisture was reducing, but it was decreased by AM inoculation. It was concluded that Glomus mosseae inoculation improved the drought resistance of Broussonetia papyrifera (L.) Vent, especially in moderate stressed conditions. And the contribution of AM symbiosis to plant to avoid the stress or to increase its tolerance might be the result of modification of root morphology and fractal character. The same conclusion was proved by Glomus etunicatum.
     Experiment 2:
     Influence of arbuscular mycorrhizae on activities of protective enzyme in Bidens pilosa L. under water stress
     The effects of vesicular-arbuscular mycorrhizal fungus (AMF) Glomus mosseae on activities of protective enzyme in Bidens pilosa L. were investigated in pot culture under three water treatments: well watered (A) , middle drought treatment (B) and serious drought treatment (C) .The contents of malondialdehyde (MDA) and soluble sugar, superoxide dismutase (SOD), catalase (CAT), peroxide dismutase (POD), polyphone oxidase (PPO) and ascorbic acid peroxidase (AsP) activities were compared between plants infected with Glomus mosseae (AM plants) and those not infected (Non-AM plants) at different water-treatments. The results showed that water stress significantly increased the activities of SOD, CAT, ASP, POD and PPO; the contents of MDA and soluble sugar were also increased by draught. There were no significant differences between AM plants and non-AM plants when they were well watered. But this was not the case in drought treatment. Soluble sugar content, SOD and CAT activities in non-AM plants were significantly higher than that in AM plants in middle drought treatment. And MDA content was not significantly different before 28d, but it was significant at 35d. POD activity in non-AM plants was markedly higher than in AM plants only at 28d and 35d in middle drought treatment, but AsP and PPO activities in leaves of Bidens pilosa L. were not affected significantly by AM infection. The content of MDA and soluble sugar, CAT activity were higher in non-AM plants than that in AM plants in serious drought treatment, but there were no significant differences in POD and PPO activity between AM and non-AM plants. And AsP activity was higher in non-AM plants than that in AM plants at 28d and 35d. It was concluded that draught stress did affect the protective enzyme system of Bidens pilosa L., and AM weakened the injury caused by draught. But this protection effect was limited by the heavier and longer draught.
     Experiment 3:
     Photosynthetic responses of AMF-infection and AMF-free Bidens pilosa L.to drought stress conditions
     To reveal the effects of vesicular-arbuscular mycorrhiza(AM) on the photosynthesis of Bidens pilosa L., three draught treatments were set: well watered (A) , middle drought treatment (B) and serious drought treatment (C) . Total chlorophyll content, net photosynthetic rate(Pn), Stomatal conductance(Gs), transpiration rate(Tr), intercellular CO_2 concentration(Ci), apparent quantum yield(AQY), carboxylation efficiency(CE) and water use efficiency (WUE) were compared between plants infected with Glomus mosseae (AM plants) and those not infected (Non-AM plants) at different water-treatments The results showed that the Pn, Gs, Tr, AQY, CE of plants decreased significantly under draught stress, but total chlorophyll content increased under draught stress, while Ci decreased at the early stage of draught stress (7d), and raised with the soil-water-content decreasing at the late stage of draught stress. The WUE of middle draught stress plants was higher than control, but the WUE of serious stressed plants was lower than control. The photosynthetic parameters of well watered plants were not significantly effected by Glomus mosseae infection. Especially before 28d of treatment, AM plants had higher Pn, Gs, Tr, AQY and CE than non-AM plants under middle draught stress, but they had not significant difference under serious draught stress. It was concluded that draught stress did effect the photosynthesis of Bidens pilosa L. because of Stomatal resistances at the early stage of treatment and nonstomatal limitation at later stage of treatment. The photosynthesis of well watered plants were not effected by Glomus mosseae infection. Under draught stress, AM improved the Gs and CE of plants to weaken the injury caused by draught, but this protection effect was limited by the heavier and longer draught treatment.
     Experiment 4:
     Effects of AM fungi on number and flowering time in Bidens pilosa (Compositae) under water stress
     The effects of vesicular-arbuscular fungi Glomus etunicatum and Glomus mosseae on number and flowering time in Bidens pilosa L. under water stress were studied in potted culture. The results showed that contents of water in soil played a great role in the processes of flowering in Bidens pilosa L. and water stress brought flowering time forward, although it was not significant, while the number of flowers per plant was increased significantly by water stress. The process of blooming in Bidens pilosa L. was also influenced by vesicular-arbuscular fungi inoculation. The times of first blooming were significantly brought forward by vesicular-arbuscular fungi in different water status and plants infected by vesicular-arbuscular fungi had the same numeric dynamics of flowers. It was concluded that plant growing in water stress habitat had more flowers was its ecological adaptation of the explosive population in Bidens pilosa L.. And plants infected by vesicular-arbuscular fungi growing in different water stress habitats having the same numeric dynamics of flowers was the result of vesicular-arbuscular fungi improving drought tolerance in Bidens pilosa L..
     Experiment 5:
     Species diversity of AMF community colonized in roots of herbages in limestone and purple soil
     The species diversity of arbuscular mycorrhizal fungi (AMF) in roots of various herbages were studied in this paper. Seventeen common herbages were selected as host plants of AMF colonization in this research and they were grown in limestone soil and purple soil, respectively. The plants were sampled at 120~(th) day after seedling and DNA of AMF in plant roots was extracted by CTAB method. The partial rDNA sequence encoding ribosomal 28S big unit was amplified with special primers U1/U2 for fungi, and PCR products were analyzed with PAGE silver staining method. Twenty-nine AMF species were found in roots of 17 host plant species in limestone soil and each host plant was colonized by 8.29 AMF species, while only twenty-four AMF species in purple soil and 9.47 AMF species in each host plant in purple soil. All the AMF species in roots were divided into two different groups, unique species group and common species group. Results of cluster analysis showed that colonization of AMF to host plants was family-specific, and the specificity was also affected by soil factors. The possibility of AMF used in ecological restoration of limestone area was also discussed in this paper.
     In general, AMF may be used in ecological restoration in limestone districts because AM symbiosis weakened the injury caused by draught, though this protection effect was limited by the heavier and longer draught treatment. The species of AMF in limestone soil in this study were not less than that in purple soil, which means more research work should be done in future.
引文
Aracheval. 1988. Effect of the tall fescue endophyte on plant response to environmental stress. Agron. J., 81~83
    Atkinson D. 1994. Impact of mycorrhizal colonization on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S et al. (eds). Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystem [C], 89-99.
    Augé R M, Foster J G, Loescher W H, Stodola A J. 1992. Symplastic molality of free amino acids and sugars in Rosa roots with regard to VAM and drought symbiosis. Symbiosis., 12:1-17.
    Augé R M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11: 3—42.
    Azcon R, Gomez M, Tobar R. 1996. Physiological and nutritional responses by Lactuca sativa to nitrogen sources and mycorrhizal fungi under drought. Biol. Fertil. Soils, 22:156-161.
    Azcon R, Tobar R M. 1998. Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal AlBum cepa.effect of drought stress. Plant Sci., 133:1-8.
    Bacon C W. 1993.Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte infected tall fescue. Agric Ecosystems Environ,44:123~141
    Barea J M, Jeffries P. 1995. Arbuscular mycorrhizas in sustainable soil-plant systems. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology[C]. Springer, Berlin Heidelberg New York, 521-561.
    Bartels D. 2001. Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance. Trends Plant Sci., 6:284-286.
    Berta G, Fusconi A, Sampo S, et al.. 2000. Polyploidy in tomato roots as affected by arbuscular mycorrhizal colonization. Plant and soil, 226: 37-44.
    Bethlenfalvay G J, Franson R L. 1989. Manganese toxicity alleviated by mycorrhizae in soybean. J. Plant Nutr., 12:953-970.
    Bryla D R, Duniway J M. 1997. Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat [J]. Plant and Soil., 197:95-103.
    Bryla D R, Duniway J M. 1997. Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. New Phytol., 136:581-590.
    Clay K. 1990. Fungal endophyte of grasses. Annuual Review of Ecological System, 21:257~297
    Csonka L N. 1998. Physilolgical and genetic responses of bacteria to osmotic stress. Microbiological Research, 53:121—127
    David P.Janos,Michelle S.Schroeder.et .2001.Inoculation with arbuscular mycorrhizal fungi enhances growth of Litchichinensis Sonn.trees after propagation by air-layering. Plant and Soil, 233:85-94
    Davies F T, Potter J R, Linderman R G. 1993. Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration - response in gas exchange and water relations. Physiol. Plant., 87:45-53.
    Dixon R K, Rao M V, Garg V K. 1994. Water relations and gas exchange of mycorrhizal Leucaena leucocephala seedlings. J. Trop. For. Sci., 6:542-552.
    Duan X, Neuman D S, Reiber J M, et al.. 1996. Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J. Exp. Bot., 47:1541-1550.
    E1-Tohamy W, Schnitzler W H, E1-Behairy U, E1-Betagy M S. 1999. Effect of VA mycorrhiza on improving drought and chilling tolerance of bean plants. J. Appl. Bot., 73:178-183.
    Gemma J N, Koske R E, Roberts E M, et al.. 1997. Mycorrhizal fungi improve drought resistance in creeping bentgrass. J Turfgrass Sci., 73:15-29.
    George E, Romheld V, Marschner H. 1994. Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Manthey J A, Crowley D E, Luster D G (eds.) Biochemistry of metal micronutrients in the rhizosphere [C]. Lewis, London, 93-109.
    Goicoechea N, Antolin M C, Sánchez-Diaz M. 1997. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol. Plant, 100: 989-997.
    Goicoechea N, Antolin M C, Sánchez-Diaz M. 1997. Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought-stressed alfalfa. Plant and Soil, 192:261-268.
    He X L, Zhao J L, Li S X. 1999. Effects of water stress and VA mycorrhizal fungi on the growth of mung bean[J]. Acta Agriculturae Nucleatae Sinica, 14 (5): 290-294.
    Henderson J C, Davies F T. 1990. Drought acclimation and the morphology of mycorrhizal Rosa hybrida L. cv Ferdy is independent of leaf elemental content. New Phytol., 115:503-510.
    Rivera L W,J.K.Zimmerman & T.M.A ide .Forest recovery in abandoned agricultural lands in a karst region of the Domincan Republic.Plant Ecology 148:115-125
    Lambert D H, Weidensaul T C. 1991. Element uptake by mycorrhizal soybean from sewage sludge treated soil. Soil Sci. Soc. Am. J., 55:393-398.
    Levitt J. 1980. Response of plants to environmental stresses. New York: Academic Press,325—358
    Li X L, Marschner H, George H. 1991. Acqyisition of phosphorus and copper by VA mycorrhizal haphae and root-to-shoot transport in white clover. Plant and Soil, 136:49-57.
    Marcel polka.2000.The botanical diversity in the Ayawasi area, Irian Jaya, Indonesia. Biodiversity and Conservation 9:1345-1375
    Marschner H, Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159:89-102.
    Mathur N, Vyas A. 1995. Influence of VAM on net photosynthesis and transpiration of Ziziphus mauritiana. J. Plant Physiol., 147:328-330.
    of the osmolyte mannitol. Science, 259:508-510
    Osonubi O, Mulongoy K, Awotoye O O, et al.. 1991. Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant and Soil, 136: 131-143.
    Palma J M, Longa M A, del Rio L A, Arines J. 1993. Superoxide dismutase in vesicular-arbuscular red clover plants. Physiol. Plant., 87:77-83.
    Panwar J D. 1993. Response of VAM and Azospirillum inoculation to water status and grain yield in wheat under water stress conditions. Indian J. Plant Physiol., 36:41-43.
    Ruiz-Lozano J M, Azcon R, Palma J M. 1996. Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytol., 134:327-333.
    Ruiz-Lozano J M, Azcon R. 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol. Plant., 95:472-478.
    Ryusuke Hatano, 2002 .Nitrogen budgets and environmental capacity in farm systems in alarge-scale karst region, southern China. Nutrient Cycling in Agroecosystems 63: 139-149, 2002.
    Schellenbaum L, Muller J, Boiler T, et al.. 1998. Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol., 138:59-66.
    Siegel M R. 1993. Acremonium endophytes: our current state of knowledge and future direction for search. Agric Ecosystems Environ, 44:301-321
    Su W C.2000. The eco-environmental fragility in Karst mountain regions of Guizhou Province. Journal of Mountain Science, 18(5):429-434.
    Subramanian K S, Charest C. 1995. Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza, 5:273-278.
    Subramanian K S, Charest C. 1997. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza, 7:25-32.
    TarezynskiM C. 1993.Stress protection of transgenic tobacco by production
    Tisdall J M. 1991. Fungal hyphae and structural stability of soil. Aust. J. Soil Res., 29:729-743.
    Townley - Smith T F. 1979. Testing and selection for drought resistance in wheat. Stress Physiology in Crop Plants,(2) : 447~464
    Van Oosterom E J. 1992. Adaptation of barley to harsh Mediterranean environments. Phytica,(62): 1-14
    Voethberg G S, Sharp R E. 1991. Growth of the maize primary root at low water potentials. Plant Physiol,96,(4): 1125-1130
    柴丽娜.1996.干旱条件下冬小麦幼苗根冠比的动态变化与品种抗旱性关系的研究.北京农学院学报,11(2):19-23
    陈世苹.2001.水分胁迫下内生真菌感染对黑麦草叶内游离脯氨酸和脱落酸含量的影响.生态学报,21(12):1965—1973
    冯固,杨茂秋,白灯莎.VA菌根真菌对石灰性土壤不同形态磷酸盐有效性的影响.植物营养与肥料学报3(1):43-48
    傅松玲,刘胜清.2001.石灰岩地区几种树种抗旱特件的研究.水土保持研究.15(5):89—94
    弓明钦,徐大平,仲崇禄,陈应龙.2000.菌根生物多样性及其应用研究.北京:中国林业出版社,51-61.
    关军锋.1999.Ca~(2+)对苹果果实细胞膜透性保护酶活性和保护物质含量的影响.植物学报,16(1):72—74
    韩建民.1990.1抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系.河北农业大学学报,13(1):17-21
    侯彩霞.1999.细胞相容性物质的生理功能及其作用机制.植物生理学通讯,35(1):1-7
    侯海军,何云,胡新文,郭建春.2005.植物旱害及抵御植物旱害途径的研究进展.作物杂志,5,36—39.
    胡弘道.2000.外生菌根接种青冈栎幼苗在贫瘠土壤的生长效应.弓明钦,徐大平等编著..菌根生物多样性及其应用研究.中国林业出版社.142—145
    胡荣海.1989.农作物资源的抗旱性筛选技术极其应用.农牧情报研究,(1):36-41
    黄艺,陈有键.2000.菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响.应用生态学报11(3):431—434
    霍仕平.1995.玉米抗旱的生理基础.国外农学-杂粮作物,(1):20-23
    金善宝.1996.中国小麦学.北京:北京中国农业出版社,754-758
    景蕊莲.1997.冬小麦不同基因型幼苗形态性状遗传力和早性的研究.西北植物学报,17(2):152—157
    郎有忠.2003.抗旱型稻根系形态与机能的研究.扬州大学学报(农业与生命科学版),24(4):58-61
    李德全.1992.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,18(1):37—43
    李建平,李涛,赵之伟.2003.金沙江干热河谷(元谋段)丛枝菌根真菌多样性研究.菌物系统22(4):604—612.
    李晓林,周文龙,曹一平.1994.VA菌根菌丝菌丝对紧实土壤中磷的吸收.植物营养与肥料学报,1(1):55-60.
    李友军.1999.小麦抗旱鉴定指标的筛选研究.洛阳农业高等专科学校学报,(1):7-10
    梁慧敏,夏阳,王太明.2003.植物抗寒冻、抗旱、耐盐基因工程研究进展.草业学报,12(3):1-7
    梁银丽.1998.旱地小麦品种的特征特性.(见)山仑,陈培元主编.早地农业生理生态基础.北京:北京科学出版社,259-264
    梁峥.1996.甜菜碱和甜菜碱合成酶.植物生理学通讯,31(1):1-8
    刘冬青.2003.不同覆盖方式对旱地棉田土壤环境及棉花产量的影响.干旱地区农业研究,21(2):18~21
    刘济明.2000.茂兰喀斯特森林中华蚊母树群落土壤种子库动态初探.植物生态学报.24(3):366-374
    刘济明.2000.茂兰喀斯特森林主要树种的繁殖更新对策.林业科学.36(5):114—122
    刘济明.2001.贵州茂兰喀斯特森林中华蚊母树群落种子库及其萌发特征.生态学报.21(2):197—203
    刘俊君.1996.转基因烟草的甘露醇合成和耐盐性.生物工程学报,12(2):206-210
    刘润进,李敏,孟祥霞,刘新.2000.丛枝菌根对玉米和棉花内源激素的影响.菌物系统,19(1):91-96.
    刘润进.1989.VA菌根对湖北海棠实生苗水分状况的影响.莱阳农学院学报,6(1):34—39
    刘玉成等,重庆石灰岩植被的初步研究.钟章成编著,常绿阔叶林生态学研究.西南师范大学出版社,1988
    路萍.1998.干旱条件下氯化钙和赤霉素浸种对小麦种子萌发的影响.中国农学通报,14(1):21~23
    梅慧生.1990.超氧物自由基介导ACC转化成乙烯.植物生理学会编辑.上海:中国植物生理学会第五次会议论文摘要汇编,37
    倪郁.2001.作物抗旱机制及其指标的研究进展与现状.甘肃农业大学学报,36(1):14-22
    齐国辉.2000.VA菌根对苹果组培苗水分吸收和利用的影响.河北林果研究,15(2):135— 138
    覃鹏,刘飞虎,梁雪妮.2002.超氧化物歧化酶与植物抗逆性.黑龙江农业科学,(1):31—34 Qin P, Liu F H, Liang X N. 2002. Superoxide dismutase and plant resistance to the environmental stress. Heilongjiang Agricultural Sciences, (1): 31-34
    汤章城.1983.植物对水分胁迫的反应和适应性植物对干旱的反应和适应性.植物生理学通讯,(4):1-7
    田佩占.1984.大豆品种根系生态类型的研究.作物学报,10(3):173-178
    王宝山.1997.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学报,1997,14(增刊):25~30
    王霞.1999.水分胁迫对柽柳植物可溶性物质的影响.干旱区研究,16(2):7—11
    王忠.1999.植物生理学.北京:中国农业出版社,452—455
    魏永胜.2001.干旱条件下不同施钾水平对烟草水分关系的影响.西北农业学报,10(4):90-94
    魏永胜.2001.钾与提高作物抗旱性的关系.植物生理学通讯,37(6):576—580
    吴强盛,夏仁学.2004.VA菌根与植物水分代谢关系.园艺园林科学,20(1):188—192.
    谢宗强,江喜明.1995。三峡地区石灰岩灌丛植被特征及其合理利用.植物学通报,12(生态学专辑):85—89
    徐冰,冯固.2003.外生菌根菌丝桥在板栗幼苗间传递磷的效应.生态学报.23(4):765—770
    徐颂军,莫仲达,何素玲.1996.粤北通天箩石灰岩阱洞的植物及其与生态条件的关系.植物生态学报.20(1)85-89
    阎秀峰,王琴.2002接种外生菌根对辽东栎幼苗生长的影响.植物生态学报26(6):701—707
    阎秀峰,王琴.2004.两种外生菌根真菌在辽东栎幼苗上的混合接种效应.植物生态学报.28(1):17—23
    杨淑英.2000.外源甜菜碱对冬小麦抗旱性生理指标的影Ⅱ向研究.西北植物学报,20(6):1041—1045
    余叔文.1998.植物生理与分子生物学.北京:科学出版社,739
    喻理飞,朱守谦,叶镜中.2002.喀斯特森林不同种组的耐旱适应性.南京林业大学学报.26(1):19—22
    喻理飞,朱守谦,叶镜中.2000.退化喀斯特森林自然恢复评价研究.林业科学.喻理飞,朱守谦,叶镜中.36(6):12—19
    张英,郭良栋,刘润进.都江堰地区丛枝菌根真菌多样性与生态研究.植物生态学报.2003,27 (4):537-544
    张邦琨,张萍.2000.喀斯特地貌不同演替阶段植被小气侯特征研究.贵州气象.24(3):17—21
    张世贵.1996.浅析棉花早衰与土壤养分含量的关系.中国棉花,23(1):19-21
    赵殿轩.1998.玉米抗旱生物学特性及抗旱育种研究的几个问题.玉米科学,(增刊):27-30
    周正贤,毛志忠等.2002.贵州石漠化退化土地及植被恢复模式.贵州科学.20(1):1-6
    周政贤,茂兰喀斯特森林科学考察集..贵州科学出版社.1987
    朱华,王洪等.1997.西双版纳石灰岩植物区系与东南亚及中国南部一些地区植物区系的关系.云南植物研究.19(4):357-365
    朱守谦,何纪星等.2003.茂兰喀斯特森林小生境特征研究.朱守谦主编,喀斯特森林生态学研究(Ⅲ).
    朱守谦,韦小丽等.2003乌江流域喀斯特石质山地水分特征研究.朱守谦主编,喀斯特森林生态学研究(Ⅲ).贵州科技出版社。
    朱守谦,魏鲁明等。1995.茂兰喀斯特森林生物量构成初步研究.植物生态学报.19(4)358—367
    朱守谦.1993喀斯特森林生态学研究(Ⅰ).贵阳:贵州科技出版社,
    朱维琴.2002.作物根系对干旱胁迫逆境的适应性研究进展.土壤与环境,11(4):430—433
    Auge R M, Foster J G, Loescherand W H, et al. 1992. Symplastic mobility of free amino acid and sugars in Rosa root with regard to VA mycorrhizae and drought. Symbiosis, 12: 1~17.
    Bever J D, Morton J B, Antonovics J, Schultz P A. 1996. Host dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology, 84: 71~82.
    Bidartondo, M. I, Redecker D, Hijri I. 2002. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature, 419: 389~392.
    Borstler B, Renker C, Kahmen A, Buscot F. 2006. Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biology and Fertility of Soils 42:4, 286
    Bray S R , Kitajima K, Sylvia DM. 2003. Mycorrhizae differentially alter growth, physiology and competitive ability of an invasive shrub. Ecological Applications, 13: 565-574.
    Burrows R L, Pfleger F L. 2002. Host responses to AMF from plots differing in plant diversity. Plant and Soil, 240: 169-179.
    Daniel L. Mummey, Matthias C. Rillig, William E. Holben. 2005. Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant and Soil, 271:1-2
    Eom A H, Hartnett D C, Wilson GW T. 2000. Host plant effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122: 435-444.
    Feng G, Li X L, Zhang F S , et al. 2000. Effect of AM fungi on water and nutrition status of corn plans under salt stress. Chinese Journal of applied ecology, 11(4): 595-598.
    Frank C. Landis, Andrea Gargas and Thomas J. Givnish. 2004. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist 164:3, 493-504
    Harrington T J and Mithell D T. 2002. Colonization of root systems of Carex flacca and C pilulifera by Cortinarius (Dermocybe) cinnamomeus. Mycological Research, 106:452-459.
    Husband R, Herre E A, Turner SL. 2002. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host associate ion over time and space in a tropical forest. Molecular Ecology, 2002, 11: 2669-2678.
    Juan C. Santos, Roger D. Finlay and Anders Tehler. 2006. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytologist, 172:1, 159- 168
    Kennedy N, Connolly J and Clipson N. 2005. Impact of lime, nitrogen and plant species on fungal community structure in grassland microcosms. Environmental Microbiology, 76:780 -788
    Klironomos J N, McCune J, Hart M, et al. 2000. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters, 3: 137-142.
    Kowalchuk G A, Francisco A D, Johannes A V. 2002. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Molecular Ecology, 11:571-581.
    Landis F C, Gargas A and Givnish T J. 2004. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist, 164: 493-504
    Levitt J. 1980. Response of Plant to Environmental Stress, 2nd ed. New York: Academic Press
    Lovelock C E , Andersen K, Morton J B. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia, 135: 268-297.
    Miller R. M. 2005 The nonmycorrhizal root - a strategy for survival in nutrient-impoverished soils. New Phytologist, 165:3, 655-658
    Mummey D L, Rillig M C. 2006. The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant and Soil, 288:1-2, 81
    O'Connor P J , Smith S E , Smith E A. 2002. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist, 154: 209-218.
    Oehl F, Sieverding E, Ineichen K, Mader P, Boller T, Wiemken A. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Applied and Environmental Microbiology, 69(5): 2816-2824
    Poss J A, Pond E , Menge J A , Jarrell WM. 1985. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant and Soil, 88: 307-319.
    Sandhu G S , Lline B C , Stockman L , et al. 1995. Molecular probes for diagnosis of fungal infections. Journal of Clinical Microbiology , 33 (11) :2913-2919.
    Santos J C, Finlay R D, Tehler A. 2006. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytologist, 172(1): 159-168
    Smith D M, Hartnett D C , Wilson GW T. 1999. Interacting influence of mycorrhizal symbiosis and competition on plant diversity in tallgrass prairie. Oecologia , 121: 574-582.
    Smith S E, Ginainazzi P V. 1988. Physiological interaction between symbionts in vesicular arbuscular mycorrhizal plants. Annual Review of plant Physiology and pant molecular biology, 39: 221-224.
    Smith S E, Read D. J. 1997. Mycorrhizal Symbiosis. Academic Press.
    Urcelay C, Diaz S. 2003. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters, 6: 388~391.
    Van der Heijden M G A , Klironomos J N , Ursic M, et al. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69~72.
    Van der Heijden M GA, Wiemken A, Sanders I R. 2003. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist, 157: 569-578.
    Vandenkoornhuyse P, Husband R, Daniell T J. 2002. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 11: 1555-1564.
    Wang H G, Wu G Y, Li H Q. 1989. Effect of vesicular-arbuscular mycorrhiza on the growth of Phaseolus aureus and its water use. Acta Peddologica Sinica, 26 (4): 394-400.
    董昌金,赵斌,2004.类黄酮物质apigenin和daidzein诱导AM真菌侵染十字花科植物芥菜.科学通报,49 (10): 953—960 Dong C J, Zhao B. 2004. Arbuscular mycorrhizal formation of crucifer leaf mustard induced by flavonoids apigenin and daidzein. Chinese Science Bulletin, 49 (10): 953—960
    刘玉成等,1988.重庆石灰岩植被的初步研究.钟章成 编著,常绿阔叶林生态学研究.西南师范大学出版社
    龙良鲲,羊宋贞,姚青,朱红惠.2005.AM真菌DNA的提取与PCR—DGGE分析.菌物学报,24(4): 564—569 Long L K, Yang S Z, Yao Q, Zhu H H. 2005. DNA extraction from arbuscular mycorrhizal fungi and analysis by PCR-denaturing gradient gel electrophoresis. Mycosystema, 24(4): 564—569
    谢宗强,江喜明.1995.三峡地区石灰岩灌丛植被特征及其合理利用.植物学通报,12(生态学专辑):85—89
    朱守谦.1993.喀斯特森林生态学研究(Ⅰ).贵州科技出版社.
    董鸣.1996.资源异质性环境中的植物克隆生长:觅食行为.植物学报38(10):828—835
    弓明钦,徐大平,仲崇禄,陈应龙.2000.菌根生物多样性及其应用研究.北京:中国林业出版社.
    王义琴,张慧娟,杨奠安,白克智,匡廷云.1998.大气CO2浓度倍增对植物幼苗根系生长影响的分形分析.科学通报,43(16),1736—1738
    吴强盛,夏仁学.2004.VA菌根与植物水分代谢的关系.园艺园林科学20(1):188—192
    谢宗强,江喜明.1995.三峡地区石灰岩灌丛植被特征及其合理利用.植物学通报,12:85—89
    杨培岭,罗远培.1994.冬小麦根系形态的分形特征.科学通报,39(20),1911—1913
    杨培岭,任树梅,罗远培.1999.分形曲线度量与根系形态的分形表征.中国农业科学,32(1),89—92
    Atkinson D, Black K E, Forbes P J, Hooker J E, Baddeley J A, Watson C A. 2003. The influence of arbuscular mycorrhizal colonization and environment on root development in soil. European Journal of Soil Science 54, 751-757.
    Augé R M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11:3—42
    Berntson G M and Wayne P M. 2000. Characterizing the size dependence of resource acquisition within crowded plant populations. Ecology 81, 1072-1085
    Costa C, Dwyer L M, Dutilleul P, Foroutan-pour K, Liu A G, Hamel C, and Smith L D. 2003. Morphology and Fractal dimension of root systems of maize hybrids bearing the leafy trait. Canadian Journal of Botany 81,706—713
    Cruz C, Green J J, Watson C A, Wilson F, and Martins-Loucao M A. 2004. Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14(3): 177-184
    Eghball B, Settimi J R, Maranville J W, and Parkhurst A M. 1993. Fractal analysis for morphological description of corn roots under nitrogen stress. Agronomy Journal. 85:287-289
    Fitter A H 1994 Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above- and Belowground, Eds M M Caldwell and R W Pearcy. pp 305-323. Academic, San Diego.
    Fitter A H. 1986. The topology and geometry of plant root systems: influence of watering rate on root system topology in Trifolium pratense. Annual of Botany 58, 91-101
    Folk R S, Grossnickle S C. 1997. Determining field performance potential with the use of limiting environmental conditions. New Forests 13, 121-138.
    Green J J, Baddeley J A, Cortina J, Watson C A. 2005. Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery treatments. Journal of Arid Environments 61, 1-12
    Lambers H, Atkin O K, Scheurwater I. 1995. Respiratory patterns in roots in relation to their functioning. In: Waisel Y, Eschel A, Kafkafi K (eds) Plant roots The hidden half. Dekker, New York
    Murphy S L, and Smucker J M. 1995. Evaluation of video image analysis and line-intercept methods for measuring root systems of alfalfa and ryegrass. Agron. J. 87,865-868
    Phillip J M, Hayman D S. 1970. Improved procedures for cleaning and staining parasitic and vesicular arbuscular mycorrhizal fungi. Transactions of the British Mycological Society, 55: 158-161.
    Smith S E, Read D J. 1997. Mycorrhizal Symbiosis. Academic Press, London.
    Stewart J D and Lieffers V J. 1993. Preconditioning effects of nitrogen relative addition rate and drought stress on container-grown lodgepole pine seedlings. Canadian Journal of Forest Research 23, 1663-1671
    Tatsumi J, Yamauchi A, and Kono Y. 1989. Fractal analysis of plants root systems. Annual of Botany 64, 499-503
    Taub D R, Goldberg D. 1996. Root system topology of plants from habitats differing in soil resource availability. Functional Ecology 10, 258-264
    Trapeznikov V K, Ivanov I I, Kudoyarova G R. 2003. Effect of heterogeneous distribution of nutrients on root growth, ABA content and drought resistance of wheat plants. Plant and Soil 252, 207—214
    Alguacil M, Caravaca F, Diaz-Vivancos P, Hernandez J A, Roldan A. 2006. Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant and soil, 279:209-218
    Davies F T, Potter J R, Linderman R G. 1993. Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration - response in gas exchange and water relations. Physiol. Plant., 87:45-53.
    Duan X, Neuman D S, Reiber J M, et al.. 1996. Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. Journal of Experimental Botany, 47, 1541-1550.
    Fitter A.H. 1988. Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. Journal of Experiment Botany, 39, 595 - 603
    Fridovich Ⅰ. 1975. Superoxide dismutase. Annual review of Biochemistry, 44: 147-159.
    Fridovich, Ⅰ. 1975. Superoxide dismutase. Annual ReviewofBiochemistry, 44: 147-159.
    Graham J.H., Syvertsen J.P. 1985. Host determinants of mycorrhizal dependency of citrus rootstock seedlings, New Phytologist, 101, 667- 676.
    Hsiao T C. 1973. Plant response to water stress. Annual Review of Plant Physiology, 24:519-570
    Li X L, Marschner H, George H. 1991. Acqyisition of phosphorus and copper by VA mycorrhizal haphae and root-to-shoot transport in white clover. Plant and Soil, 136, 49-57.
    Nakano Y, Asada K. 1981. Hydrogen, peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant cell and physiology, 22: 867- 880.
    Schellenbaum L, Muller J, Boller T, et al.. 1998. Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytologist, 138: 59-66.
    Subramanian K S, Charest C. 1995. Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza, 5:273-278.
    Subramanian K S, Charest C. 1997. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza, 7: 25-32.
    Wu Q S, Zou Y N, Xia R X. 2006. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. European Journal of soil biology, 42:166—172
    Zhang M Q, Chen R K, Yu S L. 1996. Analysis on the metabolism of reactive oxygen species in sugar cane leaves under water stress. Acta Agronomica Sinica, 22 (6) : 263—267.
    万美亮,邝炎华,陈建勋.1999.缺磷胁迫对甘蔗膜脂过氧化及保护酶系统活性的影响.华 南农业大学学报,2(2):58-61
    任安芝,高玉葆,李侠.2002.内生真菌感染对黑麦草若干抗旱生理特征的影响.应用与环境生物学报,8(5):535—539
    何冰,叶海波,杨肖娥.2003.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较.农业环境科学学报,22(3):274~278
    倪郁.2001.作物抗旱机制及其指标的研究进展与现状.甘肃农业大学学报,36(1):14~22
    吴强盛,夏仁学.2004.水分胁迫条件下丛枝菌根真菌对枳实生苗生长和渗透调节物质含量的影响.植物生理与分子生物学学报,30(5):583—588.
    孙国荣,彭永臻,阎秀峰,姜丽芬.2003.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响.林业科学,39(1):165—167
    弓明钦,徐大平,仲崇禄,陈应龙.2000.菌根生物多样性及其应用研究.北京:中国林业出版社,51-61.
    徐云岭,余叔文.1992.苜蓿愈伤组织盐适应过程中的溶质积累.植物生理学报,18(1):93~99
    李合生.2000.植物生理生化实验原理和技术.北京:高等教育出版社,1957-197
    李明,王根轩.2002.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响.生态学报,22(4):503—507
    林植芳.1984.水稻叶片衰老与超氧化物岐化酶活性及脂挝过氧化作用的关系.植物学报,26:605—615.
    汤章城.1983.植物对水分胁迫的反应和适应性植物对干旱的反应和适应性.植物生理学通讯,(4):1—7
    王宝山,赵思齐.1987.干旱对小麦幼苗膜脂过氧化及保护酶活性的影响.山东师范大学学报(自然科学版),(2):29—39.
    苏梦云,范铭庆.2000.渗透胁迫和钙处理对杉木幼苗膜脂过氧化及保护酶活性的影响.林业科学研究,13(4):391—396.
    贺学礼,赵丽莉,李英鹏.2005.NaCL胁迫下AM真菌对棉花生长和叶片保护酶系统的影响.生态学报,25(1):188—193
    阎秀峰,李晶,祖元刚.1999.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响.生态学报,19(6):850—854
    陈少裕.1989.膜脂过氧化与植物逆境胁迫.植物学通报,6(4):211—217.
    陈由强,叶冰莹,朱锦懋,庄伟建.2000.渗透胁迫对花生幼叶活性氧伤害和膜脂过氧化作用的影响.中国油料作物学报,11(4):24—25.
    Phillip J M, Hayman D S. 1970. Improved procedures for cleaning and staining parasitic and vesicular arbuscular mycorrhizal fungi[C]. Transactions of the British Mycological Society, 55:158~161
    Levitt J. 1980. Response of plants to environmental stresses A. New York: Academic Press, 325-358
    Stewart R C, Bewley J D. 1980. Lipid Peroxidation associated with aging of soybean axes. Journal of Plant Physiolology, 65:245-248
    Augé R M, Foster J G, Loescher W H, Stodola A J. 1992. Symplastic molality of free amino acids and sugars in Rosa roots with regard to VAM and drought symbiosis. Symbiosis., 12:1-17.
    Bowler C, Van Montagu M, Inze D. 1992. Superoxide dismutase and stress tolerance. Annul Review of Plant Molecular Biology, 43: 83-116.
    Ruiz-Lozano J M, Azcon R, Palma J M. 1996. Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought stress. New Phytologist, 134: 327-333.
    Goicoechea N, Antolin M C, Sánchez-Diaz M. 1997. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol. Plant, 100, 989-997.
    Auge R.M. 2001. Water relations, drought and vesicular- arbuscular mycorrhizal symbiosis, Mycorrhiza, 11, 3 - 42.
    Porcel R, Barea J M, Ruiz-Lozano J M. 2003. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence, New Phytologist, 157, 135-143.
    Ruiz-Lozano J M. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress, new perspectives for molecular studies. Mycorrhiza, 13, 309-317.
    Chen S L, Wang S S, Arie A, Aloys H. 1996. Stomatal and Non-stomatal control of photosynthesis in poplar genotypes in response to water stress. Journal of Beijing Forestry University (English Ed.),5(2): 63-72
    Demmig-Adams B, Adams Ⅲ WW. 1996. Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 198: 460~470.
    Farquhar G D, Sharkey T D. 1982. Stomatal conductance and photosynthesis. Annual Review of Physiology, 33:317-345
    Fay P, Mitchell D T, Osborne B A. 1996. Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytologist. 132(3): 425-433
    Genty B, Briantais J M. 1989. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, 990: 87~92.
    Jiang G M and Zhu G J. 2001. Effects of natural high temperature and irrigation on photosynthesis and related parameters in three arid sandy shrub species. Acta phytoecologica Sinica, 24:554-559
    Li X L, Marschner H, George H. Acqyisition of phosphorus and copper by VA mycorrhizal haphae and root-to-shoot transport in white clover[J]. Plant and Soil. 1991, 136:49-57.
    Paradi I, Bratek Z, Lang F. 2003. Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata. Biologia Plantarum, 46:563-569
    Sala A and Tenhunen J D. 1994. Site-specific water relations and stomatal response of Querus ilex L. in a Mediterranean watershed. Tree Physiology, 14:601-617
    Willeken S H, Yancam P W, et al.. 1994. Ozone, sulfur dioxide, and ozone ultraviolet-B have similar effect on mRNA accumulation of antioxidant genes in Nicotianaplum baginifolia L. Journal of Plant Physiology, 106:177-190
    Zahner R. 1968. Water deficits and growth of trees. In : Kozlowskis T Ted. Water Deficit and Plant Growth. Vol. 2. New York : Academic Press.
    曹慧,王孝威,曹琴.2001.果树水分胁迫研究进展.果树学报,18(2):110—114
    陈坤荣,王永义.1997.加勒比松耐旱性生理特征研究.西南林学院学报,17(4):9-15
    弓明钦,徐大平,仲崇禄,陈应龙.菌根生物多样性及其应用研究[M].北京:中国林业出版社.2000,51-61.
    关义新,戴俊英,林艳.1995.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,3l(4):293-297
    郭卫华,李波,黄永梅,张新时.2004.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响.生态学报,24(12):2716—2722
    何军,许兴,李树华,米海莉,张源沛,赵天成,马有朋.2004.水分胁迫对牛心朴子叶片光合色素及叶绿素荧光的影响.西北植物学报,24(9):1594—1598
    何维明,马风云.2000.水分梯度对沙地柏幼苗荧光特征和气体交换的影响.植物生态学报,24(5):630—634
    李昌晓,钟章成.2005.模拟三峡库区消落带土壤水分变化条件下落羽杉与池杉幼苗的光合特性比较.林业科学,4l(6):28—34
    任安芝,高玉葆,王巍,王金龙.2005.干旱胁迫下内生真菌感染对黑麦草光合色素和光合产物的影响.生态学报,25(2):225—231
    王世杰.2002.喀斯特石漠化概念演绎及其科学内涵的探讨.中国岩溶,21(2):101—105.
    肖春旺,张新时.2001.模拟降水量变化对毛乌素油蒿幼苗生理生态过程的影响研究.林业科学,37(1):15—22
    许大全.1997.光合作用中气孔限制分析中的一些问题.植物生理学通讯,33:241-244
    张永强,毛学森,孙宏勇.2002.干旱胁迫对冬小麦叶绿素荧光特性的影响.中国生态农业学报,10(4):13—15
    朱教军,康宏樟,李智辉,王国臣,张日升.2005.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响.生态学报,25(10):2527—2533
    雍伟东,种康.2000.高等植物开花时间决定的基因调控研究.科学通报,45(5):455—466
    柏素花,赵士杰,赵永厚.2002.VA菌根对茄子生长的影响.农学院学报,19(1):47~49
    葛均青,于贤昌,王竹红.2003.丛枝菌根(AM)及其在园艺作物上的应用.山东农业大学学报(自然科学版),34(2):303~306
    Auge RM.2001.Water relations,drought and vesicular-arbuscular mycorrhizal symbiosis.Mycorrhiza,11:3-42
    洪岚,沈浩,杨期和,曹洪麟,叶万辉.2004.外来入侵植物三叶鬼针草种子萌发与贮藏特性研究.武汉植物学研究,22(5):433—437
    肖宜安,何平,李晓红.2004.濒危植物长柄双花木开花物候与生殖特性.生态学报,24(1):14-21
    Bernier G. 1988. The control of floal evocation and morphogenesis. Annul Review of Plant Physiology and Plant Molecular Biology,39:175-219
    余叔文.1998.植物生理与分子生物学.北京:科学出版社,300-302
    吴强盛,夏仁学.2004.VA菌根与植物水分代谢的关系.中国农学通报,20(1):188—192
    Weller J L, Reid J B, Taylor S A, et al. 1997. The genetic control of flowering in pea. Trends of Plant Science. 1997, 2:412-418
    Koornneef M, Alonso-Blanco C, Peeters A J M, et al. 1998. Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol, 49:345-370
    Li, X. L., H. Marschner and H. George. 1991. Acqyisition of phosphorus and copper by VA mycorrhizal haphae and root-to-shoot transport in white clover. Plant and Soil., 136:49-57
    Atkinson D. 1994. Impact of mycorrhizal colonization on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi Set al. (eds). Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystem, 89-99
    Gross R W. 1960. Mycorrhizae of ponderosa pin in Nebraska grassland soils. Nebr Agric Exp Stn Res Bull, 192:1-17
    唐明,陈辉.1993.元宝槭VA菌根的研究.西北林学院学报,8(3):18—21
    Grime J P. 1997. Biodiversity and ecosystem function: the debate deepens. Science, 277:1260-1261
    Tilman D, Downing J. 1994. Biodiversity and stability in grassland. Nature, 367:363-365
    Saikkonen K, Wall P, Helander M, Faeth S H. 2004. Evolution of endophyte-plant symbioses. Trends in Plant Science,9(6):275-280
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.