煤油双模态冲压发动机燃烧室工作过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用理论、试验与数值仿真相结合的手段,对煤油在超声速气流中的火焰传播与扩散、火焰维持、稳定燃烧过程以及燃烧室工作过程进行了深入研究,然后应用这些研究成果对双模态冲压发动机构型进行改进,设计了多凹腔构型发动机,并对此发动机的燃烧性能以及工况转换过程进行了直连式和自由射流试验研究,取得了很多有意义的成果。
     研究了不同点火方式下煤油在超声速气流中的火焰传播与火焰维持等过程,发现在点火阶段,燃烧室内存在火焰加速传播过程,并且火焰可以在超燃燃烧室内实现逆流传播。实验还发现超燃燃烧室内的着火区域由回流区内的亚声速维持火焰与超声速主流中的扩散火焰组成。
     对目前广泛采用的超燃流场一维分析模型进行了总结与分析,指出了模型存在的不足,提出了适合强预燃激波条件下的一维分析模型,并在直连式试验中得到了验证,准确度较高。进一步分析和总结了绝热的双流管拟正激波无波模型,将计算结果与一维分析模型结果进行对比,指出了不同面积分布率一维模型计算结果的本质。最后通过改进,提出了一种带加热的拟正激波无波模型,通过仿真计算,指出了一维模型参数计算准确性的相关问题,加深了对超声速燃烧流场的理解。
     进行了多个凹腔间的相互作用机理研究,发现采用多凹腔构型总体上可以提高液体煤油的燃烧效率。根据研究结果设计了多凹腔构型发动机,并在直连式试验系统上,进行了Ma=4、5、6三种条件下的燃烧性能试验,实现了多种燃烧模态,验证了多凹腔构型双模态发动机的优越性,得出了提高发动机燃烧性能的方法。基于直连式试验系统,进行了模态转换相关技术的试验工作,实现了多种模拟条件下的工况转换过程,并进行了模态转换前后的发动机性能对比。
     将以上研究成果应用于实际单模块双模态冲压发动机的设计与自由射流试验中,进行了Ma=4、5、6条件下的发动机性能与工况转换研究,顺利实现了发动机的点火、火焰维持与燃烧工况转换过程,并获得了净正推力。
The flame propagation, flame holding, stable combustion of kerosene in supersonic flow and dynamic working process of combustor were studied in detail by means of theoretical analysis, experimental investigation and numerical simulation. In this way, the configuration of dual-mode ramjet combustor was improved, a multi-cavity type emerged as the times require. The combustion performance and mode transition of this type of ramjet were conducted by both direct-connect and free-jet hot tests, many significant results were acquired.
     The process of flame propagation and holding were investigated experimentally by different ways of ignition. It is found that flame can be accelerated and spread upstream in the phase of ignition of certain cases, and the supersonic combustion flow field was made up of the resident flame in subsonic recirculating zone and diffusive flame in supersonic main flow.
     By comparing different 1-d models which were adopted for analyzing supersonic flow field, the limitations of these models turned up. A new 1-d model fitted for strong precombustion shockwave was put forward, which was validated by the direct-connect hot tests. Moreover, through analyzing the adiabatic no-shock pseudo-shock model for dual-mode combustor, different results derived from this model and 1-d models were given, the essence of calculating by using 1-d model with different area distribution was pointed out. Finally, the supersonic flow field was simulated with a modified non-adiabatic no-shock pseudo-shock model, the veracity of 1-d models by using different parameter was considered.
     It is found that multi-cavity type of combustor could improve both combustion efficiency and engine performance while investigating the mechanism of the interaction of cavities. The combustion performance of this type of combustor was tested on the direct-connect test-bed under the condition simulated Ma4, 5 and 6. These are of use to enhance the performance of dual-mode ramjet combustor.
     The combustion mode transition under various simulating conditions was carried out basing on the direct-connect test-bed, the contrast between pre-transition and after-transition engine performance was given.
     Finally, several free-jet tests were conducted under the condition of Ma4, 5 and 6 with a full size dual-mode ramjet engine. The flame holding and combustion mode transition were achieved under all incoming flow conditions. Positive thrust of this dual-mode ramjet engine was obtained.
引文
[1] Edward T Curran. Scramjet Engines: The First Forty Years. Journal of Propulsion and Power. 2001,Vol.17(6):1138~1148.
    [2] 张炜,朱慧,方丁酉,张为华. 冲压发动机发展现状及其关键技术. 固体火箭推进技术,1998,21(3):24~30.
    [3] Dugger G L. Recent advances in ramjet combustion. ARS Journal. 1959, Vol.29(11):819~827.
    [4] Weber R J. A survey of hypersonic-ramjet concepts. American Rocket Society. Paper875~59,1959.
    [5] Mallinson D H. Discussion on hypersonic ramjet development. High Mach Number Airbreathing Engines. Pergamon Oxford,England,U.K. 1961,80~83.
    [6] Hawkins R and Fox M D. An investigation of real gas effects relevant to the performance of a kerosene fueled hypersonic ramjet. Supersonic Flow,Chemical Processes and Radiative Transfer,Macmillan,New York,1964,113~136.
    [7] Builder C H. On the thermodynamic spectrum of airbreathing propulsion. AIAA Paper,64-243.
    [8] Heiser W H,Pratt D T,Deley D H. Hypersonic Airbreathing Propulsion. American Institute of Aeronautics and Astronautics Inc,Washington,D.C.1994.
    [9] Roy M M. Moteurs Thermiques. Comptes rendus de l’ Academie des Science,Vol.222,NO.1,1946.
    [10] Tsien H S and Beilock M. Heat source in a uniform flow. Journal of Aeronautical Sciences. 1949,Vol.16(12).
    [11] Pinkle I I and Serafini J S. Graphical method for obtaining flow field in two-dimensional supersonic stream to which heat is added,NACA TN-2206,Nov,1950.
    [12] Ferri A. Discussion on M.Roy’s paper propulsion supersonic par turboreacturs et par statoreacteurs. Advances in Ameronautical Sciences,Vol.1,Pergamon,Oxford,England,U.K.,1959,79~112.
    [13] Ferri A,Libby P A and Zakkay V. Theoretical and experimental investigations of supersonic combustion. Proceedings of the International Council of the Aeronautical Sciences,Third Congress,Stockholm,1962,Spartan,New York,1964,1089~1155.
    [14] Billig F S. Research on supersonic combustion.AIAA Paper,92-0001.
    [15] Andrews E H and Mackley E A. Review of NASA's hypersonic research engineproject. AIAA Paper,93-2323.
    [16] Andrews E H. Scramjet development and Testing in the United States. AIAA Paper 2001-1927,2001.
    [17] Rubert K F,Lopez H J. The NASA hypersonic research engine program. N92-21521.
    [18] Billig F S. Supersonic Combustion Ramjet Missile. Journal of Propulsion and Power. 1995,11(1):1139~1146.
    [19] Robins P M and Bauer R C. A review of supersonic combustion research at AEDC with hypersonic application. AIAA Paper,93-2326.
    [20] Clinitz W. Some supersonic and hypersonic research at GASL in the 1960s and 70s. AIAA Paper,93-2337.
    [21] Ferri A. Review of problems in application of supersonic combustion. Journal of the Royal Aeronautical Society. 1964,Vol.68(645):575~597.
    [22] Orgorodnikov D. CIAM hypersonic investigation and capabilities. AIAA Paper,93-5093.
    [23] Walther R,Sabelnikov V A. Russian scramjet technology development:From the first steps to the current status. Seminar Report,Oct.1993.
    [24] Waltrup P J and Billig F S. Prediction of precompression wall pressure distributions in scramjet engines. Journal of Spacecraft and Rockets,1973,10(9):620~622.
    [25] Waltrup P J,Billig F S. Structure of shock waves in cylindrical ducts. Journal of AIAA. 1973,11(10).
    [26] Billig F S. Design of supersonic combustors based on pressure-aera fields. Eleventh Symposium(International) on Combustion,Combustion Inst. 1967.
    [27] Curran E T and Stull F D,The utilization of supersonic combustion ramjet systems at low mach numbers. Aero Propulsion Lab. RTD-TDR-63-4097,Jan.1964.
    [28] Billig F S,Dugger G L and Waltrup P J,Inlet-Combustor interface problems in scramjet engines. Proceedings of the 1st International Symposium on Airbreathing Engines.1972.
    [29] Shchetinkov E S. Piecewise-One-Dimensional models of supersonic combustion and psuedo shock in a duct. Combustion Explosion and Shock Wave,1975,9(4).
    [30] Waldman,Barry J,Harsha and Philip T. The first year of teaming - A progress report on X-30 vehicle. AIAA Paper,91-5008.
    [31] Thomas,John P,Powell and William E. NASP - A status report. AIAA Paper,92-1417.
    [32] Kazmar,Richard R. Airbreathing hypersonic propulsion at Pratt & Whitney – overview. AIAA Paper,2005-3256.
    [33] Tang,Ming,Chase and Ramon. Hypersonics - A Periodic Quest. AIAA Paper ,2005-3258.
    [34] Falempin,Francois. The fully reusable launcher: A new concept asking new visions. AIAA Paper,2003-6994.
    [35] Hirschel E H,Arlinger B,Lind I A. German-Scandinavian cooperation in the field of aerothermodynamics of the German Hypersonics Technology Programme. AIAA Paper,95-6073.
    [36] LEDERER R,SCHWAB R R. Hypersonic airbreathing propulsion activities for Saenger. AIAA Paper,91-5040.
    [37] Mercier R A,Ronald T M F. US Air Force Hypersonic Technology Program. AIAA Paper,96-2123.
    [38] http://www.globalsecurity.org/military/systems/munitions/hytech.htm.
    [39] http://www.globalsecurity.org/military/systems/munitions/hyfly.htm.
    [40] Mercier Robert,McClinton C,Hypersonic Propulsion - Transforming the future of flight. AIAA Paper,2003-2732.
    [41] 王培. 法俄合作研制超燃冲压发动机. 飞航导弹,1999(7):40~42.
    [42] 郭振玲. 法国冲压发动机研制情况介绍. 飞航导弹,1994(4):24~28.
    [43] Marc BOUCHEZ,Fran?ois FALEMPIN,Vadim LEVINE,Valery AVRASHKOV. French-Russian partnership on hypersonic wide range ramjets : status in 2002. AIAA Paper,2002-5254.
    [44] Laurent SERRE,Jean-Pierre. French potential for semi-free jet test of an experimental dual mode ramjet in Mach 4-8 conditions. AIAA Paper,2002-5448.
    [45] 周军,徐文. 法国试验超声速和高超声速发动机. 飞航导弹,2003(2):32~33.
    [46] Hunt J L,Johnston P J,et al.Hypersonic airbreathing missile concepts under study at Langley. AIAA Paper,82-0316.
    [47] Kay I W,Peschke W T,and Guile R N. Hydrocarbon-fueled scramjet combustion investigation. AIAA Paper,90-2337.
    [48] 张香文,米镇涛. 高超声速推进用吸热燃料的几个关键技术. 2003 高超技术研讨会论文集.
    [49] 乐嘉陵,胡欲立,刘陵. 双模态超燃冲压发动机研究进展. 流体力学实验与测量. 2000,14(1):1~12.
    [50] 沈剑,2004 年美国成功的高超声速飞行试验. 飞航导弹,2005(6):34~39.
    [51] 吴家彤. 6.5 马赫超燃冲压发动机的近期飞行实验结果. 火箭推进,2004,30(2):48~53.
    [52] 陈英硕,X-43A 创新的世界记录. 飞航导弹,2004(12):2.
    [53] 美国超燃冲压发动机取得进展. 环球军闻,2006(5):2.
    [54] Voland R T,Auslander A H,Smart M K,Roudakov A S,Semenov V L and Kopchenov V. CIAM/NASA mach 6.5 scramjet flight and ground test. AIAA Paper,99-4848.
    [55] 丛敏. 国际性超燃冲压发动机研究进入飞行试验阶段. 飞航导弹,1998(12):53~56.
    [56] 周义,王永良,王自焰. 高超音速武器的特点与发展现状. 中国人民防空,2004(12):38~40.
    [57] 乐嘉陵. 关于开展国家高超声速飞行器研究的建议.“863”航天高技术论证建议. 1998,3.
    [58] Tomioka,Sadatake Hiraiwa,Tetsuo Sakuranaka,Noboru Murakami. Ignition strategy in a model scramjet. AIAA Paper,96-3240.
    [59] Kuo S P,Bivolaru,Daniel. Plasma torch igniters for a scramjet combustor. AIAA Paper,2004-0839.
    [60] Cain T and Walton C. Review of experiments on ignition and flameholding in supersonic flow. AIAA Paper,2002-3877.
    [61] E.T.Curran and S.N.B.Murthy. Scramjet Propulsion. Volume 189 Progress in Astrotaunics and Aeronautics,AIAA 2000.
    [62] Vinogradov V,Kobigsky S,Petrov M. Experimental investigation of liquid carbonhydrogen fuel combustion in channel at supersonic velocities. AIAA Paper,92-3429.
    [63] Maurice L Q, Corporan E, Striebich R C etc. Smart fuels:Controlled chemcally reacting. AIAA Paper,99-4916.
    [64] Powell O A, Edwards J T, Norris R B, Numbers K E. Development of hydrocarbon fueled scramjet engines: the hypersonic technology (HyTech) Program. Journal of Propulsion and Power. 2001,Vol.17(6):1170~1176.
    [65] 刘敬华,路艳红. 碳氢燃料双模态超声速燃烧的点火稳定分析. 飞航导弹,2000(3):55~58.
    [66] Segal C,Owens M G,et al. Flameholding configuration for kerosene combustion in a mach 1.8 airflow. AIAA Paper,97-2888.
    [67] Jackokn K R,Corporan E,Budkley P,et al. Test results of an endothermic fuel reactor. AIAA Paper,95-6028.
    [68] Uwe Hueter,Huntsville AL,Charles R McClinton. NASA’s advanced spacetransportation hypersonic program. AIAA Paper,2002-5175.
    [69] Faulkner R F , Weber J W , Hydrocarbon scramjet propulsion system development,demonstration and application. AIAA Paper,99-4922.
    [70] Fortin T B,Wishart D P,Guinan D G,Norris R. Testing of an actively fuel-cooled Scramjet propulsion system. AIAA Paper,2002-5252.
    [71] Ewards T and Anderson S D. Results of high temperature JP-7 cracking assessment. AIAA Aerospace Science Meeting and Exhibit,31st,Reno.,NV.Jan,11~14,1993.
    [72] Shawn P Heneghan,Steven Zabarnlck and Dilip R Ballal,et al. Designing high thermal stability Jet fuels for the 21st century. Energy Resource Technology,1996,118,170~179.
    [73] Edwards T. Recent research in advanced fuels. ACS Petroleum Chemistry Division Preprints,Vol.41,No.2,1996,481~487.
    [74] Jamie S Ervin,Thomas A Ward,Theodore F Williams,et al. Surface deposition withintreatedand untreated stainless steel tubes resulting from thermal-oxidative and pyrolytic degradation of jet fuel. Energy & Fuel,2003,17,577~586.
    [75] Linne D L,Meyer M L,Ewards T. Evaluation of heat transfer and thermal stability of supercritical JP-7 fuel. AIAA Paper,97-3041.
    [76] Wickham D T,Alptekin G O,Engel J R,et al. Additives to reduce coking in endothermic heat exchangers. AIAA Paper,99-2215.
    [77] Maurice L Q,Corporan E,Harrison W E. Controlled chemically reacting fuels:a new beginning. ISABE 99-7234.
    [78] Spadaccini L J,et al. Method of cooling with as endothermic fuel.US Patent 5176814,1993.
    [79] Spadaccini L J,et al. Endothermic fuel system. US Patent 5232672,1993.
    [80] Spadaccini L J,Sobel D R,Huang H. Deposit formation and mitigation in aircraft fuels. J. of Engineering for gas turbines and power,2001,Vol.123,741~746.
    [81] Atria J V,Cermignani W and Schobert H H. Nature of high temperature deposits from n-alkanes in flow reactor tubes. ACS Petroleum Chemistry Division Preprints,Vol.41,No.2,1996,493~497.
    [82] Orhan Altin,Semih Eser. Analysis of solid deposits from thermal stressing of a JP-8 fuels on different tube surface in a flow reactor. Ind. Eng. Chem. Res.,2001,40,596~603.
    [83] Wickham,David T,Engel,et al. Methods for suppression of filamentous coke formation. US6,482,311,2002.
    [84] Longwell J P and Weiss M A. High temperature reaction rates in hydrocarbon combustion. Industrial and Engineering Chemistry,Vol.47,No.8,1955,1634~1643.
    [85] Wickham D T,Engal J R,Hitch B D,et al. Initiators for endothermic fuels. ISABE 99-7068.
    [86] Ianovski Leonid S,Moses Clifford. Endothermic fuels for hypersonic aviation. AGARD-C P536,1993.
    [87] Yanovskiy L S,Sapgir G B,Strokin V N. Endothermic fuels: Some aspects of fuel decomposition and combustion at flows. A99-34068.
    [88] Gong Yu,Xue-Jun Fan,et al. Characterization of a supersonic model combustor with partially-cracked kerosene. AIAA Paper,2005-3714.
    [89] Xuejun Fan,Gong Yu,JianGuo Li. Flow rate analysis and calibrations of kerosene cracking for supersonic combustion. AIAA Paper ,2005-3555.
    [90] 金如山. 高超音速巡航导弹用的超燃亚燃双燃烧室冲压发动机及燃料. 国际航空,1990(4):35~37.
    [91] 潘宇. 超燃燃烧室及其关键技术. 航空航天部航空科学技术情报研究所技术报告,1991.
    [92] http://www.theregister.co.uk/2005/12/19/US scramjet hits Mach 5. files
    [93] 司徒明,王春,陆惠萍,双燃式冲压发动机富油燃气射流的超燃研究,推进技术,2001,22(3):237~240.
    [94] 司徒明,王子川,牛余涛等,高温富油燃气超燃实验研究,推进技术,1999,20(6):75~79.
    [95] Situ M,Wang C,Lu H P. Hot gas piloted energy for supersonic combustion of kerosne with dual-cavity. AIAA Paper,2001-0523.
    [96] 司徒明,王春. 双燃式冲压发动机中富油燃气射流的超燃研究. 推进技术,2001,22(3):237~240.
    [97] 孙英英,司徒明. 高温富油燃气作引导火焰的煤油超燃研究. 推进技术,2001,22(2):157~161.
    [98] 孙英英,司徒明. 碳氢燃料超声速燃研究的新方法. 推进技术,2001,22(1):69~71.
    [99] 司徒明,李建国. 一种研究煤油超燃的新方案. 流体力学实验与测量,2001,15(3):7~12.
    [100] 司徒明. 双燃式冲压发动机研究. 中国国防科学技术报告,中国航天科工集团第三研究院第三十一研究所,2000.11.
    [101] 孙英英,司徒明. 一种缩短碳氢燃料—空气混合物点火延迟的方法. 流体力学实验与测量,2001,15(2):28~33.
    [102] 孙英英,司徒明. 双燃烧室中煤油超燃试验研究. 流体力学实验与测量,2000,14(1):51~56.
    [103] Avrashkov V,Baramovsky S,Levin V. Gasdynamic features of supersonic kerosene combustion in a model combustion chamber. AIAA Paper,90-5268.
    [104] Sabel’nikov V A , Korontsvit. Experimental investigation of combustion stabilization in supersonic flow using free recirculating zone. AIAA Paper,98-1515.
    [105] Goldfeld M A,Mishunin A A and Starov A V. Investigation of hydrocarbon fuels combustion in supersonic combustor. AIAA Paper,2004-3487.
    [106] 余勇. 超燃冲压发动机燃烧室工作过程理论和试验研究. [工学博士学位论文]. 国防科学技术大学研究生院. 2004,10.
    [107] 焦伟,周化波等. 两米量级直连式超声速燃烧室模型的煤油喷堵点火与燃烧试验研究. 第 11 届激波管会议论文集.
    [108] 潘余,李大鹏等. 变几何喉道对超燃冲压发动机点火与燃烧性能的影响. 推进技术,2006,27(3):225~229.
    [109] 刘小勇等. 冲压发动机双模态燃烧的理论与试验研究. 航天科工集团三院三十一所. 国防科技报告. 2000.
    [110] Su Chang,Mark J Lewis. Development of a Jet-A/Silane/Hydrogen reaction mechanism for modeling a scramjet combustor. AIAA Paper,99-2252.
    [111] Bonghi L,Dunlap M J,et al. Hydrogen piloted energy for supersonic combustion of liquid fuels. AIAA Paper,95-0730.
    [112] Owens M G , Segal C , et al. Combustion of kerosene in a supersonic airstream-thermal efficiency of selected injection configurations. AIAA Paper, 96-3140.
    [113] Vinogradov V,Kobigsky S,Petrov M. Experimental investigation of liquid carbonhydrogen fuel combustion in channel at supersonic velocities. AIAA Paper,92-3429.
    [114] Yu G,Li J G,Chang X Y. Investigation of fuel injection and flame stabilization in liquid hydrocarbon-fueled supersonic combustors. AIAA Paper,2001-3608.
    [115] Yu G,Li J G,Zhang X Y,Chen L H. Investigation on combustion characteristics of kerosene-hydrogen dual fuel in a supersonic combustor. AIAA Paper,2000-3620.
    [116] Yu G,Li J G,Chang X Y,Chen L H. Investigation of kerosene combustion characteristics with pilot hydrogen in model supersonic combustors. Journal ofPropulsion and Power,2001,Vol. 17(6):1263-1273.
    [117] Yu G,Li J G,et al. Experimental Studies on H2/Air Model Scramjet Combustor. AIAA Paper,99-2449.
    [118] 俞刚,李建国,陈立红,黄庆生. 煤油-氢双燃料超声速燃烧点火特性研究. 流体力学实验与测量,2000,Vol.14(1):63~71.
    [119] 黄庆生. 煤油-氢双燃料超声速燃烧研究. [硕士学位论文]. 中国科学院力学研究所,1999.9.
    [120] 贺伟,苟永华等. 冲压发动机燃烧室低总温条件下煤油点火与燃烧. 第 11 届激波管会议论文集,2004.
    [121] 谭宇. 直连式超燃发动机燃烧室煤油点火燃烧初步试验研究. 四川绵阳:国防科技报告,2000.10.
    [122] 刘卫东,梁剑寒等. 超燃冲压模型发动机试验研究. 国防科技大学. 国防科技报告. 2003.
    [123] 余勇,丁猛,刘卫东等. 煤油超音速燃烧的试验研究. 国防科技大学学报,2004,26(1):1~4.
    [124] 马培勇,仇性启,崔运静. 气泡雾化喷嘴试验研究. 石油化工设备,2006,35(1):12~15.
    [125] Lin K C,Kirkendall K A,Kennedy P J,Jackson T A. Spray structures of aerated liquid fuel jets in supersonic crossflows. AIAA Paper,99-2374.
    [126] Lin K C,Kennedy P J. Spray penetration heights of angle-injected aerated-liquid jets in supersonic crossflows. AIAA Paper,2000-0194.
    [127] Lin K C,Kennedy P J. Structures of internal flow and the corresponding spray for aerated-liquid injectors. AIAA Paper,2001-3569.
    [128] Sallam K A,Aalburg C,Faeth G M,Lin K C. Breakup of aerated-liquid jets in supersonic crossflows. AIAA Paper,2004-0970.
    [129] Lin K C,Kennedy P J,Jackson T A. Structures of water jets in a Mach 1.94 supersonic crossflow. AIAA Paper,2004-0971.
    [130] Ghenai C,Sapmaz H,Lin C X. Characterization of aerated liquid jet in subsonic and supersonic cross flow. AIAA Paper,2005-3580.
    [131] Tam Chung-Jen,Cox Stouffer,Susan,Lin Kuo-Cheng. Gaseous and liquid injection into high-speed crossflows. AIAA Paper,2005-0301.
    [132] Dixon D R,Gruber M R,Jackson T A,Lin K C. Structures of angled aerated-liquid jets in mach 1.94 supersonic crossflow. AIAA Paper,2005-0733.
    [133] 刘联胜,吴晋湘. 气泡雾化喷嘴混合室内两相流型及喷嘴喷雾稳定性. 燃烧科学与技术,2002,8(4):353~357.
    [134] Lefebvre A H,Wang X F,Martin C A. Spray characteristics of aerated-liquid pressure atomizers. Journal of Propulsion and Power,1988,Vol.4(4).
    [135] Roesler T C, Lefebvre A H. Studies on aerated-liquid atomization. International Journal of Turbo and Jet Engines,1989,Vo1.6(3&4).
    [136] Mathur T, Lin K C, Kennedy P. Liquid JP-7 combustion in a scramjet combustor. AIAA Paper,2000-3581.
    [137] Sabel’nikov V A , Korontsvit. Investigation of supersonic combustion enhancement using barbotage and injectors with noncircular nozzles. AIAA Paper,98-1516.
    [138] 王冬,俞刚. 煤油射流在超声速燃烧室中的实验研究. 实验流体力学,2005,19(2):11~13.
    [139] Yu G,Li J G,Zhao Z,Chang X Y. Investigation of vaporized kerosene injection in a supersonic model combustor. AIAA Paper,2003-6938.
    [140] 俞刚,李建国,赵震,王冬. 超声速模型燃烧室中气化煤油喷注研究. 推进技术,2005,26(2):97~100.
    [141] 岳连捷,俞刚. 气泡雾化喷嘴液雾特性. 推进技术,2003,24(4):348~352.
    [142] 俞刚,张新宇. 超声速气流中的煤油喷雾研究. 流体力学实验与测量,2001,15(4):12~14.
    [143] Michael D Payne. A Variable-complexity modeling approach to scramjet fuel injection array design optimization. AFIT/GOR/ENS/98M-18.
    [144] Kuo-Cheng Lin and Paul Kennedy. Active combustion instability control during scramjet initiation stage.F33615-00-C-2036.
    [145] Figueira da Silva,Sabel’nikov L F. Stabilization of supersonic comubstion by a free recirculation bubble: a numerical study. AIAA Journal,V35(11):1782~1784.
    [146] Brandstetter A,Denis S R,Kau H P,Rist D. Flame stabilization in supersonic combustion. AIAA Paper,2002-5224.
    [147] Gouskov O V,Kopchenov V I. Investigation of ignition stabiliation behind the strut in supersonic flow. AIAA Paper,2000-1929.
    [148] Frank Marrot,Frank Simon,Pierre Gaian,Simone Pauzin. Active control of a backward-facing step flow. AIAA Paper,2000-1929.
    [149] Thakur A,Segal C. Flameholding analyses in supersonic flow. AIAA Paper,2004-3831.
    [150] Sadatake Tomioka,Tetsuo Hiraiwa,Tohru Mitani. Auto ignition in a supersonic combustor with perpendicular injection behind backward-facing step. AIAAPaper,97-1622.
    [151] Baurle R A,Gruber M R. A study of recessed cavity flowfields for supersonic combustion applications. AIAA Paper,98-0938.
    [152] Christopher J Montgomery,Wei Zhao,Chung-Jen Tam,Dean R. Eklund. CFD simulations of a 3-D scramjet flameholder. AIAA Paper,2004-3874.
    [153] Gruber M R,Donbar J M and Carter C D,et al. Mixing and combustion studies using cavity-based Flameholders in a supersonic flows. Journal of Propulsion and Power. 2004,20(5):769~778.
    [154] Adela Ben-Yakar and Ronald K Hanson. Cavity flame-holders for ignition and flame stabilization in scramjets: an overview. Journal of Propulsion and Power. 2001,17(4):869~877.
    [155] Ben-Yaker A. and Hanson R.K. Supersonic combustion of cross-flow jets and the influence of cavity flame-holders. AIAA Paper,99-0484.
    [156] Hsu K.Y.,Carter C.,Crafton J.,Gruber M.,Donbar J.,Mathur T.,Schommer D. and Terry W. Fuel distribution about a cavity flameholder in supersonic flow,AIAA Paper,2000-3585.
    [157] Burnes R.,Parr T.P.,Wilson K.J. and Yu K. Investigation of supersonic mixing control using cavities:effect of fuel injection localtion. AIAA Paper,2000-3618.
    [158] Jackson A P,Soltanit S and Hillier R. A study of two- and three-dimensional separation at hypersonic speeds. AIAA Paper,99-0902.
    [159] Sabel’nikov,Korontsvit. Experimental investigation of combustion stabilization in supersonic flow using free recirculating zone. AIAA Paper,98-1515.
    [160] 激光点火技术.光学精密机械. 2004(2):13-13.
    [161] Zaidi S H,Macheret S O,Ju Y,Miles R B,Sullivan D J,Efthimion P C. Microwave-assisted hydrocarbon flame speed enhancement. AIAA Paper ,2005-0992.
    [162] 司徒明. 超燃发动机跟踪研究,863-2-2,1996,2.
    [163] Vinagradov V,Grachev V,Petrov M,et al.Experimental investigation of 2-D dual mode scramjet with hydrogen fuel at Mach 4-6.AIAA Paper,90-5269.
    [164] Roudakov A S,Semonov V L,Recent flight testing results of the joint CIAM/NASA Mach 6.5 scramjet flight program. AIAA Paper,98-1643.
    [165] Davis D L,Bowersox R D W. Computational fluid dynamics analysis of cavity flame holders for scramjets. AIAA Paper,97-270.
    [166] Davis D L,Bowersox R D W. Stirred reactor analysis of cavity flame holders for scramjets. AIAA Paper,97-3274.
    [167] 超燃冲压发动机研究取得新进展. 中国科学院院刊. 2004,19(2):118~118.
    [168] Yu K.,Wilson K.J.,Smith R.A.,and Schadow K.C. Experimental investigation on dual purpose cavity in supersonic reacting flows. AIAA Paper,98-0723.
    [169] 丁猛. 基于凹腔的超声速燃烧火焰稳定技术研究. [工学博士学位论文]. 国防科学技术大学研究生院. 2005,10.
    [170] Weber R.J. and Mackay J.S. An Analaysis of Ramjet Engines Using Supersonic Combustion. NASA TN 4386,Sept.1958.
    [171] Hideo IKAWA. Rapid Methodology for Design and Performance Prediction of Integrated Supersonic Combustion Ramjet Engine. Journal of Propulsion and Power,1991,Vol. 7(3):437-444.
    [172] 张鹏,俞刚. 超燃燃烧室一维流场分析模型的研究.流体力学实验与测量,2003,17(1):88~82.
    [173] Bussing T R A,Murman E M. A one-dimensional unsteady model of dual-mode scramjet operation. AIAA Paper,83-0422.
    [174] Timothy F O’Brien,Ryan P Starkey and Mark J.Lewis. Quasi-one-dimensional high-speed engine model with finite-rate chemistry. Journal of Propulsion and Power,2001,Vol.17(6):1366~1374.
    [175] A.D.Cutler. Specification of Combustor Entrance Conditions in Ground-Based Scramjet Testing. AIAA Paper,98-0710.
    [176] 刘敬华,凌文辉,刘兴洲等. 超音速燃烧室性能非定常准一维流数值模拟. 推进技术,1998,19(1).
    [177] Buggeln R C, McDonald H, and Levy R. Development of a three-dimensional inlet flow analysis. NASA CR-3218,1980.
    [178] Anderson B H. Three-dimensional design methodology for advanced technology aircraft supersonic inlet systems. NASA TM-83558,1984.
    [179] Kumar A. Numerical analysis of the scramjet inlet flow field using two-dimensional navier-stokes equations. AIAA Paper,81-0185.
    [180] Kumar A. Three dimensional anviscid analysis of the scramjet inlet flow field. AIAA Paper,82-0060.
    [181] Schetz J A,Billig F S and Favin S. Analysis of mixing and combustoin in a scramjet combustor with a co-axial fuel jet. AIAA Paper,80-1256.
    [182] Schetz J A,Billig F S. Studies of scramjet flowfield. AIAA Paper,87-2161.
    [183] Drummond J P,Rogers R C and Evans J S. Combustor modelling for scramjet engines. AGARD-CP-275,1979.
    [184] Drummond J P,Weidner E H. Numerrical study of a scramjet engine flow field.AIAA Paper,81-0186.
    [185] Drummond J P,Rogers R C and Hussaini M Y. A detailed numerical model of a supersonic reacting mixing layer. AIAA Paper,86-1427.
    [186] Uenishi K,Rogers R C and Northam G B. Three dimensional computations of transverse hydrogen jet combustion in a supersonic airstream. AIAA Paper,87-0089.
    [187] Widhopf G F,Wang JC T. A TVD finite-volume technique for nonequilibrium chemically reacting flows. AIAA Paper,88-2711.
    [188] Dimotakis P E and Hall J L. A simple finite chemical kinetics analysis of supersonic turbulent shear layer combustion. AIAA Paper,87-1879.
    [189] Yu S T,Tsai Y L P,Shuen J S. Three-dimensional calculations of supersonic reacting flows using an LU scheme. Journal of Computational Physics,101,276-286,1992.
    [190] Sirignano W A and Kim I. Diffusion flame in a two-dimensional,accelerating mixing layer. Physics of Fluids,1997,Vol.9(9).
    [191] Chakraborty D,Nagaraj Upadhyaya H V,Paul P J and Mukunda H S. A thermo-chemical exploration of a two-dimensional reacting supersonic mixing layer. Physics of Fluids ,1997,Vol.9(11).
    [192] Delarue B J and Pope S.B. Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods. Physics of Fluids,1998,Vol.10(2).
    [193] Day M J and Reynolds W C. The structure of the compressible reacting mixing layer:Insights from linear stability analysis. Physics of Fluids,1998,Vol.10(4).
    [194] White M E,Drummond J P,Kumar A. Evolution and application of CFD technique for scramjet engine analysis. Journal of Propulsion,1987,Vol.3(2):423~438.
    [195] Jarymowycz T A,Yang V and Kuo K K. Numerical study of solid-fuel combustion under supersonic crossflows.Journal of Propulsion and Power,1992,Vol.8(2):346-353.
    [196] Wadawadigi G, Tannehill J C and Buelow P E and Lawrence S L. Three- dimensional upwind parabolized Navier-Stokes code for supersonic combustion flow fields. J. Thermophysics and Heat Transfer,1993,Vol.7(4):661~667.
    [197] Christopher J Roy,Jack R Edwards. Numerical simulation of a three-dimensional flame/shock wave interaction. AIAA Paper,98-3210.
    [198] Ming-Hsiung Chen,Rick Gaffney,Pei-Kuan Wu,Abdollah S Nejad. Numericalsimulation of axisymmetric sonic He and H2 injection into a mach 2 airstream. AIAA Paper,95-0873.
    [199] Drummond J P,Hussaini M Y and Zang T A. Spectral methods for modeling supersonic chemically reacting flowfields. AIAA Journal , 1986 , 24(9) : 1461~1467.
    [200] Jou W H,Riley J J. Progress in direct numerical simulations of turbulent reacting flows. AIAA Journal,1989,27(1):1543-1556.
    [201] Kallenberg M,von Lavante E. Numerical analysis of three-dimensional effects in unsteady supersonic combustion. AIAA Paper,97-3180.
    [202] Azevedo J L F,Figueira da Silva L F. The development of an unstructured grid solver for reactive compressible flow applications. AIAA Paper,97-3239.
    [203] Shang H M,Chen Y S. Unstructured adaptive grid method for reacting flow computation. AIAA Paper,97-3183.
    [204] Donohue J M,McDaniel Jr J C and Haj-Hariri H. Experimental and numerical study of swept ramp injection into a supersonic flowfield. AIAA Paper 93-2445,1993.
    [205] Tam C J,Baurle R A and Gruber M R. Numerical study of jet injection into a supersonic crossflow. AIAA Paper,99-2254.
    [206] Krishnamurthy R,Rogers R C and Tiwari S N. Numerical study of hypervelocity flows through a scramjet combustor. Journal of Propulsion and Power,1997,Vol.13(1):131-141.
    [207] McClure T H,Ervin E. CFD analysis of circular transverse injector for a scramjet combustor. AIAA Paper,96-0729.
    [208] Thompson J F,Thames F C and Mastin C W. TOMCAT. A code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics,1977,24:274~302.
    [209] Dufour E,Bouchez M. Computational analysis of kerosene-fueled scramjet. AIAA Paper,2001-1817.
    [210] 刘陵,刘敬华,张榛,唐明. 超音速燃烧与超音速燃烧冲压发动机. 西北工业大学出版社,1993.1.
    [211] 叶中元. 思路决定出路,途径决定结局. 2003 高超技术研讨会论文集.
    [212] Sullins G A,Garpenter D A and Thomson M W. A demonstration of mode transition in a scramjet combustor. AIAA Paper,91-2395.
    [213] Kanda T,Chinzei N and Kudo K. Dual-mode operation in a scramjet combustor.AIAA Paper,2001-1816.
    [214] Dessorness O,Scherrer D and Novelli P. Tests of JAPHAR dual mode ramjet engine. AIAA Paper,2001-1886.
    [215] Rocci Denis,Kau H P,Brandstetter A. Experimental study on transition between ramjet and scramjet modes in a dual-mode combustor. AIAA Paper,2003-7048.
    [216] 叶中元,黄伏军,董建明. 多模态冲压发动机提高性能的技术途径. 推进技术,2001,22(6):441~445.
    [217] 龙玉珍. 高超音速巡航导弹用超燃冲压发动机特点与设计方案. 飞航导弹,1997 (8):29~37.
    [218] 占云,高超声速技术(HyTech)计划. 飞航导弹,2003(3):43~49.
    [219] George F O,Air-breathing hypersonics research at Boeing Phanton Works. AIAA Paper,2002-5251.
    [220] Thomas B Fortin,David P Wishart,Dan Guinan. Design, manufacturing and testing of an actively fuel-cooled scramjet propulsion system. AIAA Paper,2002-2680.
    [221] 比尔·斯威特曼,郭鹏. 谁来推动 8 马赫飞机. 科技新时代,2003(5):71~79.
    [222] Norris R B,Freejet test of the AFRL HySET scramjet engine model at mach 6.5 and 4.5. AIAA Paper,2001-3196.
    [223] Sillence Mark A. Hydrocarbon scramjet engine technology flowpath component development. AIAA Paper,2002-5131.
    [224] Faulkner Robert. The evolution of the Hyset hydrocarbon fueled scramjet engine. AIAA Paper,2003-7005.
    [225] http://www.spaceref.com/news/viewpr.html?pid=11888.
    [226] 陈菲,许红英. 美普惠公司完成超音速推进系统 5 马赫试验. 中国航天工程咨询中心. 2006,7.28.
    [227] http://www.aviationnow.com/avnow/news/channel_military.jsp?view=story&id=news/mdcrj0903.xml.
    [228] http://www.jhuapl.edu/newscenter/pressreleases/2002/020617.htm.
    [229] http://www.onr.navy.mil/media/release_display.asp?ID=107.
    [230] 烃燃料超燃冲压发动机在美首次试飞. 中国航天,2006(3):45~45.
    [231] Roudakov A S, Semenov V L, Kopchenov V I, Hicks J W. Future flight test plans of an axisymmetric hydrogen-Fueled scramjet engine on the hypersonic flying laboratory. AIAA Paper,96-4572.
    [232] Sonounov V,Research and Development of Ram/Scramjet and Turbojets in Russia. AGARD Lecture Ser.194,AGARD,1993.
    [233] Tretjakov P,Golovitchev V L,Bruno C. Supersonic Combustion:A Russia Review,1967-1993. Joint Meeting of the Italian and Spanish Sections of the Combustion Institute,Combustion Inst,Pittsburgn,PA,June-July 1993,VIII-1.1~1.4.
    [234] Ogorodnikov D A,Vinogradov V A,Shikhman J M,Strokin V N. Design and research Russian program of experimental hydrogen fueled dual mode scramjet - Choice of conception and results of pre-flight tests. AIAA Paper,98-1586.
    [235] Marc Bouchez,Francois Falempin,Vadim Levine,Valery Avrashkov and Dmitri Davidenko. Airbreathing space launcher interest of a fully variable geometry propulsion system. AIAA Paper,99-2376.
    [236] Bouchez M, Falempin F, Minard J P, Levine V, Avrashkov V, Davidenko D. French-Russian partnership on hypersonic wide range ramjets: status in 2002. AIAA Paper,2002-5254.
    [237] Marc Bouchez,Dmitri Davidenko,Valery Avrashkov. Airbreathing space launcher interest of a fully variable geometry propulsion system and corresponding French-Russian partnership. AIAA Paper,2000-3340.
    [238] Marc Bouchez,Dmitri Davidenko,Valery Avrashkov. Airbreathing space launcher interest of a fully variable geometry propulsion system. AIAA Paper,98-3728.
    [239] Ludovic Boselli,Thomas Giraudo,Aurélien Massot,Beno?t Talbot. Dual-fuel advanced high-speed ramjets. AIAA Paper,2002-5214.
    [240] Falempin F, Scherrer D, Laruelle G,Rostand G,Fratacci J L Schultz. French hypersonic propulsion program PREPHA -results, lessons and perspectives. AIAA Paper,98-1565.
    [241] Sancho M,Colin Y,Johnson C. The French hypersonic research program PREPHA. AIAA 7st International Space Plans and Hypersonic Systems and Technology Conference,Nov.1996.
    [242] Falempin F,Lacaze H. Reference and generic vehicle for the French hypersonic technology program. AIAA Paper,95-6038.
    [243] Falempin F. PREPHA Program-System studies synthesis. XIII ISABE-Chattanooga-1997.
    [244] Rothmund C,Scherrer D,Bouchez M. Propulsion system for airbeathing launcher in the french Prepha program. AIAA Paper,96-4498.
    [245] Emmanuel Dufour,Marc Bouchez. Computational analysis of a kerosene-fuelled scramjet. AIAA Paper,2001-1817.
    [246] Marc Bouchez,Hydrocarbon fueled airbreathing propulsion for high speedmissiles. AIAA Paper,98-2012.
    [247] Francois Falempin,The French PROMETHEE Program Main goals and Status in 1999. AIAA Paper,99-4814.
    [248] Serre L,Minard J P. French potential for semi-free jet test of an experimental dual mode ramjet in Mach 4-8 condintions. AIAA Paper,2002-5448.
    [249] Serre L,Falempin F. The French PROMETHEE Program on hydrocarbon fueled dual mode ramjet status in 2001. AIAA Paper,2001-1871.
    [250] Falempin F, Serre L. Promethee – The French Military Hypersonic Propulsion Program. AIAA Paper,2003-6950.
    [251] Laurent Serre,Francois Falempin. PROMETHEE : the french military hypersonic propulsion program Status in 2002. AIAA Paper,2002-5426.
    [252] Francois Falempin,The French PROMETHEE program status in 2000. AIAA Paper,2000-3341.
    [253] Fran?ois Falempin. A first step towards an operational application of high-speed airbreathing propulsion. AIAA Paper,2002-5249.
    [254] Fran?ois Falempin. LEA FLIGHT TEST PROGRAM – A mandatory step in the European R&T effort for hypersonic airbreathing propulsion. ISABE-2005-1089.
    [255] Dessornes O,Bouchez M. Combustion experiments of liquid kerosene and hydrogen/methane mixing in a dual mode ramjet. AIAA Paper,2005-3400.
    [256] 刘陵. 超音速燃烧与超音速燃烧冲压发动机. 西安:西北工业大学出版社. 1993.
    [257] 刘陵,张榛,牛海发,刘敬华. 超音速燃烧室燃烧效率数学模型及气流状态参数的计算. 推进技术. 1989,10(2): 1~7.
    [258] 刘陵,张榛,唐明,刘敬华等. 氢燃料超音速燃烧室实验研究. 航空动力学报. 1991, 6(3): 267~270.
    [259] 刘兴洲,刘敬华,王裕人等. 超声速燃烧实验研究(I). 推进技术. 1991,12(2): 1~8.
    [260] 刘兴洲,刘敬华,王裕人等. 超声速燃烧实验研究(II). 推进技术. 1993(4):1~8.
    [261] Gang Y,Guo L J,et al. Experimental Studies on H2/Air Supersonic Combustion. AIAA Paper,96-4512.
    [262] 张新宇,陈立红,顾洪斌,俞刚. 超燃冲压模型发动机实验设备和实验技术. 力学进展. 2003,33(4):491~498.
    [263] 张新宇,陈立红. 高焓高超声速自由射流风洞的建设与初步实验结果. 第十届全国激波与激波管学术讨论会. 2001.
    [264] 贺伟,刘伟雄,白菡尘,丛京伟,李向东,乐嘉陵. 脉冲燃烧风洞及其在超燃冲压发动机试验研究中的应用. 第十届全国激波与激波管学术讨论会. 2001.
    [265] 刘伟雄,谭宇,白菡尘,乐嘉陵. 激波风洞超燃发动机试验初步研究. 第十届全国激波与激波管学术讨论会. 2001.
    [266] 刘伟强,邹建军等. 单模块超燃冲压发动机试验样机方案及试验技术方案研究. 国防科技大学. 国防科技报告 2003.
    [267] 刘小勇,牛余涛等. 单模块超燃冲压发动机燃烧试验初步研究. 2003 高超技术研讨会论文集.
    [268] 黄伏军,王凯,叶中元. 模型发动机燃烧室试验研究. 2003 高超技术研讨会论文集.
    [269] 董建明, 刘小勇, 刘世俭, 牛余涛. 超燃冲压模型发动机自由射流试验研究. 2003 年高超声速技术研讨会. 2003.
    [270] Zhang X Y,Chen L H,Gu H B,Yu G. A hydrogen/kerosene fueled scramjet model test in free–jet tunnel. International Colloquium on Hypersonic Propulsion. Beijing,China,2003.
    [271] 顾洪斌,陈立红,张新宇. 超燃冲压模型发动机自由射流实验及实验技术研究. 2003 年高超声速技术研讨会.
    [272] 刘卫东, 梁剑寒, 王振国. 碳氢燃料超燃冲压发动机自由射流试验研究. 2003年高超声速技术研讨会. 2003.
    [273] 刘卫东, 梁剑寒等. 单模块超燃冲压发动机试验样机方案及试验研究. 国防科技大学. 国防科技报告. 2004.
    [274] Le J L,Liu W X,He W. CARDC’s new short duration facility and its application in scramjet research. International Colloquium on Hypersonic Propulsion. Beijing,China,2003.
    [275] 张育林. 变推力液体火箭发动机及其控制技术. 北京:国防工业出版社. 2001,1.
    [276] Settles G S,Willians D R,Baca B K,Bogdonoff S M. Reattachment of a compressibel turbulent free shear layer. AIAA Journal,1982,20(1):60~67.
    [277] Horstman C C,Settles G S,Williams D R,Bogdonoff S M. A reattaching free shear layer in compressible turbulent flow. AIAA Journal,1982,20(1):79~85.
    [278] 袁生学. 论超声速燃烧. 中国科学(A 辑). 1998,28(8):735~741.
    [279] 吴继平. 超声速气流中燃料雾化与超燃冲压发动机动态工作过程研究:[工学硕士学位论文]. 国防科学技术大学研究生院,2003,11.
    [280] F.Kremer. Heat Addition in a Non-Constant Area Supersonic Combustor. AIAA Paper,93-5020.
    [281] Frank R.Chavez and David K.Schmidt. An Integrated Analysis Aeropropulsive/Aeroelastic Model for the Dynamic Analysis of Hypersonic Vehicles. AIAA Paper,92-4567.
    [282] Sam Han and Jeremy Tomes. A Numerical Study of Marquardt’s Ejector-Scramjet Test Engine. AIAA Paper,2002-3606.
    [283] Bernstein,Arthur,Heiser,William and Hevenor. Compound-Compressible Nozzle Flow. AIAA Paper,66-663.
    [284] Kervyn D.Mach. One-dimensional Procedure for Estimating the Performance of Ejector Nozzle. AD-A122667,1983.
    [285] 庄逢辰等. 液体火箭发动机喷雾燃烧的理论、模型及应用. 长沙:国防科学技术大学出版社,1995.
    [286] Lewis W G E. and Armstrong F W. Some Experiments on Two-Stream Propelling Nozzles for Supersonic Aircraft. ICAS Paper NO.70-48,1970.
    [287] Kochendorfer Fred D. and Rouss Morris D. Performance Characteristics of Aircraft Cooling Ejectors Having Short Cylindrical Shrouds. NACA RM E51E01,1951.
    [288] Kochendorfer Fred D. Effect of Properties of Primary Fluid on Performance of Cylindrical Shroud Ejectors. NACA RM E53L24a,1954.
    [289] N.T.Smith,D.B.Landrum and M.D.Moser. Experimental Investigation of a Supersonic Non-Axisymmetric Cold Flow Ejector. AIAA Paper,2001-3195.
    [290] T.Sato , Sagamihara and S.Kaji. Study on Steady and Unsteady Unstart Phenomena Due to Compound Choking and/or Flunctuations in Combustor of Scramjet Engines. AIAA Paper,92-5102.
    [291] Yoshiaki,Jin-Kyung and Hiroshi. Experimental Investigation on Compound Choking of Two-Subsonic Stream through Converging Ducts. AIAA Paper,2002-0513.
    [292] L.Crocoo. 徐华舫译. 定常气体动力学的一维处理法. 北京:科学出版社,1988.
    [293] 孙承纬,卫玉章,周之奎. 应用爆轰物理. 北京:国防工业出版社,2000.
    [294] 潘锦珊等编. 气体动力学基础. 北京:国防工业出版社,1989.
    [295] 夏皮罗. 可压缩流的动力学与热力学(上). 北京:科学出版社,1966.
    [296] Tsuyoshi Kumasaka,Noritaka Ichikawa,Goro Masuya and Kenichi Takita. Influence of Combustion on Behavior of Pseudo-Shock Wave. AIAA Paper,2003-6912.
    [297] Adela Ben-Yakar and Alon Gany. Experimental Study of A Solid Fuel Scramjet. AIAA Paper,94-2815.
    [298] Mathur T.,Lin K.C.,Kennedy P.,Gruber M.,Donbar J.,Jackson T.,Biling F.,Liquid JP-7 combustion in a scramjet combustor. AIAA Paper,2000-3581.
    [299] 丁猛. 超声速/高超声速进气道-隔离段流场的数值模拟. [工学硕士学位论文]. 国防科学技术大学研究生院. 2000,12.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.