共聚物渗透汽化膜的制备、结构及分离水中微量有机物性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高渗透汽化膜的分离性能、成膜性、热稳定性以及强度等综合性能,共聚物渗透汽化膜材料已开始引起人们的关注。与均聚合物相比较,共聚物具有复杂的链结构和聚集态结构,两者共同决定了共聚物膜的渗透汽化性能。本文从共聚物膜材料的结构和分离性能出发,选择和合成了常温下力学形为不同的共聚物,即橡胶态共聚物HTPB-PU和HTPB-DVB-PU,部分结晶共聚物EVA和玻璃态共聚物PTET-60,制备出相应的渗透汽化分离膜,进而考察各类共聚物膜的结构、渗透汽化性能及其分离机理。
     1.橡胶态共聚物
     合成了端羟基聚丁二烯(HTPB)基聚氨酯(脲),(HTPB-PU)并制得相应的渗透汽化膜,用于分离水中微量的乙酸乙酯。实验研究了HTPB数均分子量、料液浓度、料液温度和膜厚对渗透汽化性能的影响。HTPB-PU膜具有很好的优先从水中分离乙酸乙酯的性能,并具有较高的分离因子和通量。DSC研究结果表明,该膜存在两个玻璃化转变温度;透射电镜图像显示明暗相间的微区。可见,该膜具有微相分离结构。表面接触角实验结果显示,成膜时膜的空气接触面比玻璃接触面具有更大的接触角,即空气面更疏水。这归结于疏水的聚丁二烯链段和亲水的氨基甲酸酯(脲)链段分别向空气和玻璃表面迁移的结果。进而,渗透汽化性能结果显示,膜的空气接触面对料液比玻璃接触面对料液具有更高的分离因子和通量。
     采用疏水性交联剂DVB合成了新型的交联网络膜HTPB-DVB-PU。并制得相应的渗透汽化膜,用于分离水中微量的乙酸乙酯。当料液浓度为2.5wt%时,该膜呈现很强的优先渗透乙酸乙酯的性能,随DVB用量的增加分离因子增加,通量稍微下降。当膜厚为100微米时,分离因子和通量分别可达656和253 g/m~2h,均比HTPB-PU膜高。HTPB-DVB-PU膜材料只存在一个T_g,表明HTPB-DVB-PU中的亲水链段没有形成较大的微区。而且膜的空气和玻璃两侧面接触角之差随着DVB含量的增加也逐渐消失,即膜的均一性增加。可见,在HTPB-DVB-PU膜中小的亲水PU相尺寸具有更佳的渗透汽化性能。其分离过程主要由吸附过程控制;膜的密度更小,因而溶涨度比较大,通量高;HTPB-DVB-PU膜的温度敏感性小于HTPB-PU膜。
     2.结晶态共聚物
     选用了可部分结晶的EVA共聚物,考察了EVA共聚物的组成和成膜技术对分离水中微量乙酸乙酯性能的影响。发现EVA膜的渗透汽化性能、溶胀行为和膜的聚集行为如结晶度、密度和接触角等与组成密切相关。30℃时,38 wt%VA含量的EVA(EVA38)膜具有最佳的分离性能,分离因子和乙酸乙酯通量分别达118和543 g/m~2h。同时,还发现EVA膜的渗透汽化性能,溶胀度和扩散选择性在VA链段含量为38 wt%时都出现转折现象。EVA膜的聚集态结构如结晶度,表面接触角和膜密度随VA含量的变化趋势在EVA38处出也出现转折现象。实验还进一步考察了三种铸膜溶剂,氯仿(CF)、1,2-二氯乙烷(DCE)和环己烷(CYH)对EVA38在溶液中的链形态、本体中聚集态以及对膜的渗透汽化性能影响。研究发现,不仅三种EVA38溶液性质、即特性粘数[η]和相互作用常数K_H不同,而且其本体膜的渗透汽化性能、平衡溶涨度、吸附选择性、广角X射线衍射图和表面接触角等也存在明显差异。提出了由不同选择性溶剂CF、DCE和CYH所得EVA膜呈现不同聚集结构的模型。认为由CF所得EVA38膜中,VA链段和乙烯链段呈无序均一分布的结构,而由DCE和CYH分别所得EVA38膜,分别呈现两种微相分离的核壳结构。并得出了EVA38膜的PV性能与其聚集态结构的关系为,VA链段和乙烯链段都呈无序均一分布结构>乙烯链段为核VA链段为壳的核壳结构>VA链段乙烯为壳的的核壳结构。这种聚集态结构的差异随热处理条件增强逐渐减弱。在80℃热处理约12小时后完全消失。
     3.玻璃态共聚物
     合成了不同组成的聚对苯二甲酸丙二醇-乙二醇芳香性共缩聚酯(PTET)。广角X射线衍射分析发现当丙二醇含量为60wt%时,即PTET-60为非晶态的无定形共聚物。采用稀溶液粘度法研究了PTET-60和醋酸纤维素(CA)共混物的相容性。发现共混膜中PTET-60含量(W_(PTET-60))小于0.35和大于0.5时两者相容,当W_(PTET-60)在0.35~0.50区间时则不相容。在PTET-60/CA相容区(W_(PTET-60)≤0.35)内,PTET-60/CA共混物成膜性好,并用于水脱乙酸乙酯分离。纯CA膜是水优先透过膜,但W_(PTET-60)为0.1的PTET-60/CA共混膜则为乙酸乙酯优先透过膜,而且通量在W_(PTET-60)为0.25时出现最小值,分离因子出现最大值。
     总体而言,本文所述共聚物膜用于分离水中微量乙酸乙酯的渗透汽化性能为,橡胶类膜优于部分结晶性膜和玻璃态膜。即,交联网络HTPB-DVB-PU膜>微相分离HTPB-PU膜>部分结晶EVA膜>共缩聚芳香酯共混PTET-60/CA膜。交联网络HTPB-DVB-PU膜分离因子和渗透性(J×d)分别可达656和30300 gμm/m~2h。
To improve the overall performance of pervaporation (PV) membranes, including separation performance, membrane formation property, heat stability and mechanical strengh and so on, copolymer membrane materials have been paid attention now. Compared with homopolymer, copolymers possess more complicated chain structure and aggregated structure, which determine the separation performance and other properties together. The main aim of this paper was to discuss the aggregated structure of different kinds of copolymers as well as their pervaporation performance and separation mechanism for recovery of trace aroma compounds from their aqueous solutions. So, three kinds of typical copolymers, ie, rubbery copolymer HTPB-PU and HTPB-DVB-PU, semi-crystalline copolymer EVA and glassy copolymer PTET were synthesized or selected as pervaporation membranes respectively.
    1 .Rubbery copolymer Hydroxyterminated polybutadiene (HTPB)-based polyurethaneurea (PU),
    HTPB-PU, was synthesized and firstly used as membrane materials to recover aroma compound, ethyl acetate (EA), from aqueous solution by PV. The effects of the number average molecular weight (M_n) of HTPB, EA in feed, operating temperature and membrane thickness on the PV performance of HTPB-PU membranes were investigated. The membranes demonstrated high EA permselectivity as well as high EA flux. Two transition temperatures (T_g) were observed from DSC curve and distinct micro phase domain existed in transmission electron micrographs (TEM) of cross sections, which means HTPB-PU membrane had micro-phase separation structure From the results of contact angle measurements, we concluded that the air-side surface is more hydrophobic than that of the glass-sides surface, which were induced
    by glass plate and air respectively due to movement of the soft hydrophobic polybutadiene (PB) segments in HTPB-PU chains. Furthermore, the PV performance of the HTPB-PU membrane with the hydrophobic surface facing the feed was much better than that with the hydrophilic surface.
    A new PV membrane material, HTPB-DVB-PU, was synthesized and the effect of cross-linker DVB content on the pervaporation performance for recovery of EA from its aqueous solution was investigated. When an aqueous solution of 2.5 wt% EA was permeated through the cross-linked HTPB-DVB-PU membranes, they showed a high EA permselectivity and permeability of these membranes was enhanced with increasing DVB content significantly. The best permeation rate and separation factor of HTPB-DVB-PU membrane were 253 g/m~2h and 656 respectively with membrane thickness of about 100 μm. Only one T_g can be observed from DSC curve, which means the hard segments did not form bigger micro domain in HTPB-DVB-PU. Furthermore, with the increasing DVB content the differnce of PV performance between the two sides of the membrane disspeared, that is, the membrane became more homogeneous. In conclusion, the smaller dimension of hard segments micro domain led to a better PV performance. Compared with HTPB-PU membrane, the separation process was mainly governed by sorption process.and the density of HTPB-DVB-PU membrane was smaller, so the degree of swelling (DS) and the total flux were larger. HTPB-DVB-PU membrane had low heat sensitivity than HTPB-PU membrane. 2.Crystalline copolymer
    Aggregated behavior and pervaporation characterization of ethylene-vinyl acetate (EVA) copolymer membranes with different vinyl acetate (VA) cotent from 26 (EVA26) to 100 (EVA100) wt% for recovery of ethyl acetate (EA) from water were investigated. The pervaporation (PV) characterization, such as separation factor, EA
    flux, diffusion selectivity, and the swelling behavior of EVA membranes with VA content displayed a turning phenomena at 38 wt% VA content. Aggregated behavior of the crystallization degree, the bulk density and contact angle of EVA membranes with VA content were also turned at 38 wt% VA content. The PV characterization and the swelling behavior of EVA membranes with different VA contents could be explained in terms of the aggregated behavior of the EVA copolymer.
    The solution property [η] and K_H of EVA copolymer with 38 wt% VA content in selective solvents of chloroform (CF), 1, 2-dichloroethane (DCE) and cyclohexane (CYH) and the bulk properties the swelling degree at equlibrium, sorption selectivity, contant angle and crystalinity of EVA membranes cast in selective solvents above were measured by an Ubbelohode viscometer, swelling, sorption, contact angle and wide-angle X-ray diffraction (WAXD) experiments respectively. It was drawn that the solution structures of the EVA and the aggregated structures of its membrane were quite different, i.e., displaying a random homogeneous structure, a core-shell structure with the shell of VA sequences and a core-shell structure with the shell of ethylene sequences, due to different selective solvents, CF, DCE and CYH used respectively. The pervaporation performance of the EVA membrane with 38 wt% VA content increased with the aggregated structures of its membrane, the core-shell structure with the shell of ethylene sequences, the core-shell structure with the shell of VA sequences and the random homogeneous structure in order. These aggregated structures disappeared basically after the EVA membranes annealed for 12 hours at 80℃. 3.Glassy copolymer
    Aromatic copolyester of poly(trimethylene-co-ethylene terephthalate) (PTET) with different composition was synthesized and the PTET sample with 60 percent weight fraction of polytrimethylene (PTET-60) was amorphous. The compatibility of PTET-60/cellose acetate (CA) blends and the pervaporation of their membranes for
    separation of EA/water mixtures were investigated. It was found that PTET-60 is compatible with CA when the weight fraction of PTET-60 (W_(PTET-60)) in PTET-60/CA blends is lower than 0.35 and more than 0.5. In the region of compatibility (W_(PTET-60)≤ 0.35), the PTET-60/CA blend membrane showed good film-forming property. So , we prepared PTET-60/CA blend membrane with W_(PTET-60)≤0.35 for separation EA from water. The pure CA membrane showed water selective, while EA could preferentially permeat through PTET-60/CA blend membrane and both the maximum value of total flux and minimum value of the separation factor existed at W_(PTET-60)= 0.25.
    As a whole, in our study the PV performance of the rubbery copolymers for recovery of EA from aqueous solution is better than that of semi-crystilline copolymer and glassy copolymer, ie, HTPB-DVB-PU>HTPB-PU>EVA > PTET-60/CA, and the separation factor and the permeability of HTPB-DVB-PU membrane reached 656 and 30300 gμm/m~2h, respectively
引文
[1] 刘茉娥,陈欢林.新型分离技术基础.浙江大学出版社.浙江,1999.
    [2] 郑领英,王雪松.膜技术.化学工业出版社,北京,2000.
    [3] 时钧,袁权,高丛楷,膜技术手册,化学工业出版社,北京,2001.
    [4] 胡云光.膜生物反应器在石油化工中的应用.石油化工,1994,6:400-406.
    [5] 薛德明.膜分离技术在医药食品工业中的应用.中国海洋药物,1994,5:247-253.
    [6] 尹沛松.微孔膜滤器在医药工业中的应用.过滤与分离,1998,4:32-34.
    [7] 顾瑾,郑成.膜分离在生物工程应用中存在的问题及对策.合肥工业大学学报(自然科学版),1998,2:102-108.
    [8] 徐又一.聚烯烃中空纤维膜及其分离新技术在环保工程中的开发、应用.中国环保产业,1996,Z1:38-40.
    [9] Abraham K. M., Alamgir M., Hoffman D. K. Polymer electrolytes reinforced by Celgard membrane. J. Electrochem. Soc., 1995, 142: 683-687.
    [10] 郑领英.国外膜技术在食品工业中的应用现状和发展动向.水处理技术,1994,5:247-253.
    [11] 孙晓辉,郝建飞,王竞.膜技术在醋酸生产中的应用.中国调味品,1995,4:6-7.
    [12] 宋锦安.膜分离及应用.化学工程师,1995,3:28-29.
    [13] 于丁一,陈培祺,呼丙辰.我国膜法海水淡化技术现状与发展前景.给水排水,1994.8:15-18.
    [14] 高丛楷.膜技术与相关海洋产业.海洋通报,1997,4:44-51.
    [15] 裴玉新,沈新元,王庆瑞.血液净化用高分子膜的现状及发展.膜科学与技术,1998,18:10-13.
    [16] 徐又一,徐志康.高分子膜材料.化学工业出版社,北京,2005.
    [17] Mulder M.,李琳译,膜技术基本原理,清华大学出版社,北京,1999.
    [18] Kober P A., Pervaporation, perstillation and percrystallisation, J. Am. Chem. Soc. 1917, 39: 944-948.
    [19] Rautendach R, Albecht R. Membrane Processes. New York: John Wiley Sons, 1989
    [20] Huang R Y M ed. Pevaporation Membrane separation Processes. Amsterdam: Elsevier, 1991
    [21] Ho W S W, Sirkar K K ed. Membrane Handbook. New York: Van Nostrand Reinold, 1992
    [22] 刘茉娥.膜分离技术.北京:化学工业出版社,1998
    [23] Bining R C, James F E. New sepatate by membrane permeate,Petrol Refiner. 1958, 37 (5): 214-215.
    [24] Bining R C, James F E. Sepatation by membrane permeate, Oil Gas J. 1958, 56 (21): 104-105.
    [25] Neel J. Nguyen Q. T., Clement R., Le Blanc, L., Fractionation of a binary liquid mixture by continuous pervaporation, J. Membr. Sci. 1983, 15: 43-62
    [26] Rautenbach R, Albrecht R. Separation of Organic Binary Mixtures by Pervaporation. J. Membr. Sci. 1980, 7: 203-223.
    [27] Rautenbach R, Albrecht R. On the Behaviour of Asymmetric Membranes in Pervaporation, J Membr Sci. 1984, 19: 1-12.
    [28] Schmittecker B, Lichtenthaler R N, Proceeding of the 1st international conference on pervaporation in the chemical industry, Bakish Red. Atlanta, Georgia: 1986. 96~100
    [29] Bruschke H D. EP 0096340. 1983
    [30] Bruschke H D. EP 0096339. 1983
    [31] 陈翠仙,韩宾兵,朗宁威编著。渗透蒸发和蒸汽渗透。北京:化学工业出版社,2004
    [32] Hildebrandm, J., Scott, R.L. Solubility of Nonelectrolytesm, Reinhold Publishing Corporation, New York, 1949, Chapter 7.
    [33] Lloyd D, Meluch T. Selection and evaluation of membrane materials for liquid separations. Acs Symposium Series, 1985, 269, 47-79
    [34] Kujawski W., Application of pervapration and vapor permeation in environmental protection, Polish J. Environ. Studies, 2000, 9:13-26.
    [35] Karlson. H.O.E., Tragardh. G., Pervaporation of dilute organic-waters mixtures. A literature review on modeling studies and applications to aroma compound recovery, J. Membr. Sci. 76 (1993) 121-146.
    [36] Olsson. J., Tragardh G., Influence of feed flow velocity on pervaoratiove aroma recovery from a model solution of apple juice aroma compounds, J. Food Eng., 1999, 39: 107-115.
    [37] 谭淑娟,肖泽仪,李磊,膜渗透蒸发用于葡萄酒脱醇的实验研究,精细化工,2003,20:69-71.
    [38] Lee. E. K., Kalyani, Process of treating alcoholic beverages by vapor arbitrated pervaooration, US: 5013447, 1991.
    [39] Edmund J. Bishop, Somenath Mitra On-line membrane preconcentration for continuous monitoring of trace pharmaceuticals, Journal of Pharmaceutical and Biomedical Analysis, 37 (2005) 81-86.
    [40] Gracia L. G., Castro M.D.L., Integrated pervaporation:detection for the determination of fluoride in pharmaceuticals, Journal of Pharmaceutical and Biomedical Analysis 22 (2000) 909-913.
    [41] Peng, M. Leland M. V. S., Liu X.. Recent advances in VOCs removal from water by pervaporation, Journal of Hazardous Materials B98 (2003) 69-90.
    [42] Yeom C.K., Kim H.K., Rhim J.W., Removal of Trace VOCs from Water Through PDMS Membranes and Analysis of Their Permeation Behaviors. J. Appl. Polym. Sci. 73 (1999) 601-611.
    [43] Ji. W., Sikdar. S.K., Hwang S.T., Modeling of multicomponent pervaporation for removal of volatile organic compounds from water, J. Membr.Sci., 1994,93:1-19.
    [44] Nijhuis H H., Mulder M.H.V., Smolders C. A., Removal of trace organics from aqueous solutions. Effect of membane thickness, J. Membr. Sci., 1991, 61:99-111.
    [45] Lau W.W.Y., Finlayson J.J., Dickson J. M., Jiang J., Brook M. A., Pervaporation performance of oligosilylstyrene-polydimethylsiloxane membrane for separation of organics from water, J. Membr. Sci., 1997, 134:209-217
    [46] Borjesson J., Karlsson H.O.E., Tragardh G., Pervaporation of a model apple juice aroma solution: comparison of membrane performance, J. Membr. Sci. 119 (1996)229-239.
    [47] Raghunath G., Hwang S.T., General treatment of liquid aqueous boundary layer resistance in pervaporation of dilute aqueous organic through tubular membranes, J. Membr. Sci., 1992, 75(1):29-46.
    [48] Wijmans J.G., Baker R.W., A simple predictive treatment of the permeation process in pervaporation, J. Membr. Sci., 1993, 79(1):101-l 13.
    [49] Baker R.W.,Wijmans J.G., Athayde A.L., Daniels R., Le J.H., The effect of concentration of polarization on the separation of volatile organic compounds from water by pervaporation, J. Membr. Sci.,1997,137(1-2):159-172.
    [50] Wijmans J.G., Sikdar S.K., Hwang S.T., Modeling of multicomponent pervaporation for removal of volatile organic compounds from water, J. Membr. Sci.,1994, 93(1):1-19.
    [51] Feng X., Huang R.Y.M., Organic vapor/gas mixture separation by membrane a parametric study, Sep. Sci. Technol., 1992, 27(15):2109-2129.
    [52] Smart J., Schucker R.C., Loyd D.R., Pervaporative extraction of volatile organic compounds from aqueous systems with use of a tubular transverse flow module Part I. Composite membrane study, J. Membr. Sci.,1998, 143(1-2):137-157.
    [53] Blume I., Wijmans J.G., Baker R.W.,The separation of dissolved organics from water by pervaporation, J. Membr. Sci., 1990, 49:253-286.
    [54] Lu, S.Y.; Chiu C.P., Huang, H.Y. Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membranes J Membr Sci. 2000, 176: 159-167
    [55] Mishima S., Kaneokai H., Nakagawa T., Characterization and Pervaporation of Chlorinated Hydrocarbon-Water Mixtures with Fluoroalkyl Methacrylate-Grafted PDMS Membrane J Appl Polym Sci 1999, 71: 273-287.
    [56] Roualdes S., Durand J., Field R.W., Comparative performance of various plasma polysiloxane films for the pervaporative recovery of organics from aqueous streams, J Membr Sci.211 (2003) 113-126
    [57] Uragami T., Meotoiwa T., Miyata T., Effects of orphology of Multicomponent Polymer Membranes Containing Calixarene on Permselective Removal of Benzene from a Dilute Aqueous Solution of Benzene, Macromolecules 2003,36, 2041-2048
    [58] Wu P., Brisdon B.J., England R., Field R.W., Preparation of modified ifunctional PDMS membranesand a comparative evaluation of their performance for thepervaporative recovery of p-cresol from aqueous solution, J Membr Sci. 2002, 206: 265-275
    [59] Liu Q.L., Xiao J., Silicalite-filled poly(siloxane imide) membranes for removal of VOCs from water by pervaporation, J Membr Sci. 2004, 230: 121-129.
    [60] Jiraratananon R., Sampranpiboon P., Uttapap D., Huang R.Y.M., Pervaporation separation and mass transport of ethylbutanoate solution by polyether block amide (PEBA) membranes, J. Membr. Sci. 2002,210: 389-409.
    [61] Djebba M. K., Nguyen Q.T., Clement, R. Germain Y., Pervporation of aqueous ester solutions through hydrophobic poly(ether-block-amide) copolymer membranes, J. Membr. Sci. 1998,, 146:125-133.
    [62] Sampranpiboon P., Jiraratananon R., Uttapap D., Pervaporation separation of ethyl butyrate and isopropanol with polyether block amide (PEBA) membranes, J.Membr. Sci. 173 (2000) 53-59
    [63] Grob.A, Heintz A, Diffusion coefficients of aromatics in nonporous PEBA membranes, J. Membr. Sci.2000 168: 233-242.
    
    [64] Baudot A., Marin M., Dairy aroma compounds recovery by pervaporation, J. Membr. Sci., 1996, 120: 207-220.
    
    [65] Gisela B., Michael O., Detlev F., Improved dense catalytically active polymer membranes of different configureuration to separate and react organics simultaneously by pervaporation, Chemical Engineering and Processing, 2004, 43: 1159-1170.
    [66] Kujawski W., Warszawski A., Ratajczak W., Porebski T., Capala W., Ostrowska I., Application of pervaporation and adsorption to the phenol removal from wastewater, Sep. Purif. Technol., 2004, 40: 123-132.
    [67] Urkiaga A., Bolano N., De Las Fuentes L., Removal of micropollutants in aqueous streams by organophilic pervaporation, Desalination, 2002,149: 55-60.
    
    [68] Kuiawski W., Warszawski A., Ratajczak W., Porebski T., Capala W., Ostrowska I., Removal of phenol from wastewater by different separation techniques, Desalination, 2004, 163: 287-296.
    [69] Djebbar M. K., Nguyen Q. T., Clement R., Germain Y., Pervaporation of aqueous ester solutions through hydrophobic poly(ether-block-amide) copolymer membranes, J. Membr. Sci. 1998. 146: 125-133.
    [70] Ji W., Sikdar S.K, Hwang S.T., Modeling of multicomponent. pervaporation for removal of volatile organic compounds, from water,.J. Membr. Sci. 93 (1994) 1-9.
    
    [71] M. Hoshi, M. Ieshige, T. Saitoh, T. Nakagawa, Separation of aqueous phenol through polyurethane membranes by pervaporation. III. Effect of the methylene group length in poly(alkylene glycols), J. Appl. Polym. Sci. 76 (2000) 654-664.
    [72] Huang R.Y. M., Moon G. Y., Pal R., Ethylene Propylene Diene Monomer (EPDM) Membranes for the Pervaporation Separation of Aroma Compound from Water Ind. Eng. Chem. Res. 2002, 41, 531-537
    [73] Dutta B., Sikdar S., Separation of Volatile Organic Compounds from Aqueous Solutions by Pervaporation Using S-B-S Block Copolymer Membranes Environ. Sci. Technol. 1999, 33, 1709-1716
    [74] Polyakov A.M., Starannikova L.E., Yampolskii Y P., Amorphous Teflons AF as organophilic pervaporation materials Transport of individual components J. Membr. Sci. 216 (2003) 241-256
    [75] Jian K., Piintauro P.N., Asymmetric PVDF hollow fiber membranes for organic/water pervaaporation separations, J. Membr. Sci. 1997,135,41-53
    [76] Lee G.T., Krovvidi K.R., Greenberg D.B., Pervaporation of trace chlorinates organics from water through irradiated polyethylene membrane J. Membr. Sci. 47 (1989) 183-202
    [77] Tian.X.Z., Zhu B.K., Xu Y.Y., P(VDF-co-HFP) membrane for recovery of aroma compounds from aqueous solutions by pervaporation Ⅰ. Ethyl acetate/water system J. Membr. Sci. 248 (2005) 109-117
    [78] Tian.X.Z., Jiang X., Zhu B.K., Xu Y.Y., Effect of the casting solvent on the crystal characteristics and pervaporative separation performances of P(VDF-co-HFP) membranes J. Membr. Sci. 279 (2006) 479-486
    [79] Gonziilez-Velasco J.R., Gonzilez-Marcos J.A., Lbpez-Dehesa C., Pervaporation of ethanol-water mixtures through poly(1-trimethylsilyl-1-propyne) (PTMSP) membranes, Desalination, 2002, 149: 61-65.
    [80] Nagase Y, Takamura Y, Matsui K, Chemical modification of poly(substituted-acetylene).:Ⅴ. Alkylsilylation of poly(1-trimethylsilyl-1-propyne) and improved liquid separating property at pervaporation, J. Appl. Polym. Sci., 1991, 42: 185-190.
    [81] Nagase Y, Sugimoto K, Takamura, Y, Matsui K, Chemical modification of poly(substituted-acetylene).:Ⅵ. Introduction of fluorolkyl group into poly(1-trimethylsilyl-1-propyne) and the improved ethanol permselectivity at pervaporation, J. Appl. Polym. Sci., 1991,43: 1227-1232.
    [82] Nagase Y, Ishihara K, Matsui K, Chemical modification of poly(substituted-acetylene):Ⅱ, Pervaporation of ethanol/water mixture through poly(1-trimethylsilyl-1-propyne)/poly(dimethylsilioxane) graft copolymer membrane, J. Polym. Sci.,Part B:Polym. Phys., 1990, 28: 377-386.
    [83] Kang Y.S.,Shin E. M., Jung B., Kim J. J., Composite membranes of poly(1-trimethylsilyl-1-propyne) and poly(dimethylsilioxane) and their pervaporation properties for ethanol-water mixture, J. Membr. Sci., 1994, 53: 317-323.
    [84] Uragami T., Doi T., Miyata T., Control of permselectivity with surface modifications of poly[1-(trimethylsilyl)-1-propyne] membranes International Journal of Adhesion & Adhesives 19 (1999) 405}409
    [85] Ulutan S., Nakagawa T., Separability of ethanol and water mixtures through PTMSP-silica membranes in pervaporation, J. Membr. Sci., 1998, 143: 275-284
    [86] 王信玮,陈观文,有机液体优先透过渗透汽化及其过程,高分子通报,1995,3:163—169.
    [87] 方军,黄继才,郭群辉,有机物优先透过的渗透汽化分离膜,膜科学与技术,1998,18(5):1—6.
    [88] Hoshi M., Saitoh T., Yoshioka C., Higuchi A., Nakagawa T., Pervaporation separation of 1,1,2-thrichloroethane-water mixture through crosslinked acrylate copolymer composite membranes, J. Appl. Polym. Sci., 1999, 75:983-994.
    [89] 王建中,郑载兴,孙培松,陈嘉彦,聚苯并咪唑酮膜与有机物质相互作用的研究,水处理技术,1991,17(2):381—402.
    [90] Roizard D., Pineau P., Lochon P., Transport properties of polybisphenoxyphosphazene towards various solvents from sorption and pervaperation experiments, in Recent Progress en Genie des Procedes, 1992, 6(21): 381-402.
    [91] Pereira C.C., Rufino J.R.M., Habert A.C., Nobrega R., Cabral L.M.C., Borges C.P., Aroma compounds recovery of tropical fruit juice by pervaporation: membrane material selection and process evaluation, J. Food Eng. 66 (2005) 77-87.
    [92] Karlsson H.O.E., Loureiro S., Tragardh G., Aroma compounds recovery with pervaporation-temperature effects during pervaporation of a Muscat wine, J. Food Eng. 26 (1995) 177-191.
    [93] Miyata T., Yakagi T., Uragami T., Microphase Separation in Graft Copolymer Membranes with Pendant Oligodimethylsiloxanes and Their Permselectivity for Aqueous Ethanol Solutions Macromolecules 1996, 29, 7787-7794
    [94] Miyata T., Yamada H., Uragami T., Surface Modification of Microphase-Separated Membranes by Fluorine-Containing Polymer Additive and Removal of Dilute Benzene in Water through These Membranes Macromolecules 2001, 34, 8026-8033
    [95] Uragami T., Yamada H., Miyata T., Effects of Fluorine-Containing Graft and Block Copolymer Additives on Removal Characteristics of Dilute Benzene in Water by Microphase-Separated Membranes Modified with These Additives Macromolecules 2006, 39, 1890-1897
    [96] Miyata T., Obata S., Uragami T., Annealing Effect of Microphase-Separated Membranes Containing Poly(dimethylsiloxane) on Their Permselectivity for Aqueous Ethanol Solutions Macromolecules 1999, 32, 8465-8475
    [97] Borjesson J., Karlsson H.O.E., Tragardh G., Pervaporation of a model apple juice aroma solution: comparison of membrane performance, J. Membr. Sci. 119 (1996) 229-239.
    [98] Schafer T., Bengtson G., Pingel H., Baddeker K. W., Crespo J.P.S.G., Recovery of aroma compounds from a wine must fermentation by organophilic pervaporation. Biotechnol. Bioeng. 62 (1999) 412-421.
    [99] Kanani D.M., Nikhade B.P., Singh P.B.G., Pangarkar V.G., Recovery of valuable tea aroma components by pervaporation, Ind. Eng. Chem. Res. 42 (2003) 6924-6932
    [100] Sampranpiboon P., Jiraratananon R., Uttapap D., Feng X., Huang R.Y.M., Separation of aroma compounds from aqueous solutions by pervaporaation using polyoctylmethyl siloxane (POMS) and polydimethyl siloxane (PDMS) membranes, J. Membr. Sci.174 (2000) 55-65.
    [101] Huang R. Y. M., Moon G.Y., Pal R., Ethylene Propylene Diene Monomer (EPDM) membranes for the pervaporation separation of aroma compound from water, Ind. Eng. Chem. Res. 41 (2002) 531-537.
    [102] Lee K.R., Teng M.Y., Hsu T.N., Lai J.Y., A study on pervaporation of aqueous ethanol solution by modified polyurethane membrane, J. Membr. Sci. 162 (1999) 173-180.
    [103] Huang S.H., Chao M.S., Laf J.Y., Diffusion of ethanol and water through polyurethane membranes, Eur. Polym. J. 34 (1998) 449-454.
    [104] Chen S.H., Yu K.C., Houng S.L., Lai J.Y., Gas transport properties of HTPB based polyurethane/cosalen membrane, J. Membr. Sci. 173 (2000) 99-106.
    [105] Miyata T., Yamada H., Uragami T., Surface modification of microphase-Separated membranes by fluorine-containing polymer additive and removal of dilute benzene in water through these membranes, Macromolecules 34 (2001) 8026-8033.
    [106] Uragami T., Meotoiwa T., Miyata T., Effects of morphology of multicomponent polymer membranes containing calixarene on permselective removal of benzene from a dilute aqueous solution of benzene, Macromolecules 36 (2003) 2041-2048.
    
    [107] Miyata T., Obata S., Uragami T., Annealing effect of microphase-separated membranes containing poly(dimethylsiloxane) on their permselectivity for aqueous ethanol solutions, Macromolecules 32 (1999) 8465-8475.
    [108] Uragmi T., Yamada H., Miyata T., Effects of fluorine-containing graft and block copolymer additives on removal characteristics of dilute benzene in water by microphase-separated membranes modified with these additives, Macromolecules 39(2006)1890-1897.
    [109] Miyata T,, Obata S,, Uragami T,. Morphological effects of microphase separation on the permselectivity for aqueous ethanol solutions of block and graft copolymer membranes containing poly(dimethylsiloxane), Macromolecules 32 (1999) 3712-3720.
    [110] Miyata T., Takagi T., Uragami T., Microphase separation in graft copolymer membranes with pendant oligodimethylsiloxanes and their permselectivity for aqueous ethanol solutions, Macromolecules 29 (1996) 7787-7794.
    [111] Tretinnikov O.N., Selective Accumulation of Functional Groups at the Film Surfaces of Stereoregular Poly(methyl methacrylate)s, Langmuir 13 (1997) 2988-2992.
    
    [112] 复旦大学高分子科学系高分子科学研究所编著,高分子实验技术,(修订版), 复旦大学出版社, 1996.
    
    [113] Miyata T., Yamada H., Uragami T., Surface Modification of Microphase-Separated Membranes by Fluorine-Containing Polymer Additive and Removal of Dilute Benzene in Water through These Membranes Macromolecules 2001,34, 8026-8033.
    [114] Uragami T., Tsukamoto K., Miyata T. Performance of butyrylcellulose membranes for benzene/cyclohexane mixtures containing a low benzene concentration by pervaporation, Biomacromolecules 2004, 5,2116-2121.
    [115] Lau W. W. Y.; Finlayson, J.; Dickson, J. M. Jiang J.X., Brook M.A,. Pervaporation performance of oligosilylstyrene-polydimethylsiloxane membrane for separation of organics from water, J. Membr. Sci. 1997, 134, 209-217.
    [116] Yeom C. K.; Kim, H. K.; Rhim, J. W. Removal of trace VOCs from water through PDMS membranes and analysis of their permeation behaviors, J. Appl. Polym. Sci. 1999,73,601-611
    [117] Nair P.D., Jayabalam M., Krishramurthy V.N., Polyurethane-polyacrylamide IPN's. I: Synthesis and characterization, J. Polym. Sci., Part A, Polym. Chem., 28 (1990) 3775-3786.
    [118] Yoshikawa M., Tsubouchi K., Specialty polymeric membrane. 9. Separation of benzene/cyclohexane mixture through poly(vinyl chloride)-graft-poly(butyl methacrylate), J. Membrane Sci. 158 (1999) 269-276.
    [119] H. Naarain, Ethylene-vinyl acetate (EVA) Copolymers: Preparation, Properties and Applications. J .Sci. Indus. Res. 38 (1979)25-30.
    [120] J. Kim, S.C. Shin. Controlled release of atenolol from the ethylene-vinyl acetate matrix, Int. J. Pharm. 273 (2004) 273 (2004) 23-27
    [121] J.W.Qian, G.R.Qi, X.Z.Ding and S.L.Yang. Assessment of polymer of flow improver by viscosity, Fuel 75 (1996) 307-321.
    
    [122] J.W.Qian, G.R.Qi, D.L.Han and S.L.Yang. Influence of incipient chain dimension of EVA flow improver on the rheological behavior of crude oil, Fuel 75 (1996) 161-166.
    [123] J.W.Qian, G.H.Zhou, W.Y. Yang and Y.L.XU Studies on pour point depression of EVA polymers in solvent mixtures containing wax, J. Appl. Polym. Sci. 83 (2002) 815-821.21-23
    [124] J.W.Qian, X.H.Wang, G.R.Oi and C.Wu. Inter- and intrachain association of an ethylene vinyl acetate random copolymer in dilute 1,2-dichloroethane solutions, Macromolcules 30 (1997) 3283-3287.
    [125] J.W.Qian, G.H.Zhou, J.Li and G.R.Oi. Association of ethylene vinyl acetate copolymer in dilute solutions V. Stability and pour point depression to wax solutions, J. Appl. Polym. Sci.78 (2000) 836-841.
    [126] J.W.Qian, J.Li , G.R.Oi and L.X.Feng. Association of ethylene vinyl acetate copolymer in dilute solutions IV. Solvent mixture and additive effect of C_A Chinese J. Polym. Sci. 17 (1999) 323-328.
    [127] J.W.Qian, J.Li, Y.S.Yang and G.R.Oi Association of ethylene vinyl acetate copolymer in dilute solutions III. Critical association concentration. Chinese J. Polym. Sci.16 (1998) 327-331.
    [128] J.W.Qian, G.R.Oi and R.S.Cheng. Association of ethylene vinyl acetate copolymer in dilute solutions II. MW,VA content and cooling rate effect, Eur. Polym. J. 34 (1998)445-447.
    [129] J.W.Qian, G.R.Oi and R.S.Cheng Association of ethylene vinyl acetate copolymer in dilute solutions I. Solvent, concentration and annealing temperature effect, Eur. Polym.J. 38(1997)1263-1265.
    [130] J.W.Qian G.R.Qi, Y.L.Xu and S.L.Yang. Solvent effect on the action of EVA pour point depressant in wax solutions. J. Appl. Polym. Sci. 60 (1996) 1575-1580.
    [131] J.W.Qian, G.H.Zhou, and Y.L. An. Ultrasonic disassociation of EVA random copolymer in dilute solutions J. Appl. Polym. Sci. 81 (2001) 2798-2802.
    [132] J.W.Qian, Q.F.An, G.H.Zhou. Study on conformational transition of EVA random copolymer in selective solvent mixtures, Eur.Polym.J. 39 (2003) 375-379.
    [133] J.W.Qian, G.H.Zhou, and W.Y. Yang Conformational inversion of polyethylene-polyvinyl acetate graft copolymer in selective solvent by viscometry, Eur Polym J. 37(2001)1871-1875.
    [134] Q.F.An, J.W.Qian, H.B Sun, L.N.Wang, L.Zhang, H.L.Chen, Compatibility of PVC/EVA blends and the pervaporation of their blend membranes for benzene/cyclohexane mixtures, J. Membr. Sci. 222 (2003) 113-122.
    [135] C.C. Pereira, J.R.M. Rufino, A.C. Habert, R. Nobrega, L.M.C. Cabral, C.P. Borges, Aroma compounds recovery of tropical fruit juice by pervaporation: membrane material selection and process evaluation, J. Food Eng. 66 (2005) 77.
    [136] McEvoy R.L., Krause S., Wut P., Surface characterization of ethylene-vinyl acetate (EVA) and ethylene-acrylic acid (EAA) co-polymers using XPS and AFM Polymer. 39 1998 5223-5239,
    [137] Brandrup J., Immergut E.H., Polymer handbook, second edition, Wiley Inter science publication, 1989.
    
    [138] Narain H., Kapur S.L., Ethylene Vinyl acetate (EVA) Copolymer: Preparation, Properties and Applications. J. Sci. and Ind. Res.38 (1979) 25-30.
    [139] Buggada D.C., Rudin A., Molecular Structure and Melting Behaviour of Ethylene-vinyl Acetate Coplmers, Eur.Polym.J. 28 (1992) 219-227.
    [140] Yeom C.K., Kim H.K, Rhim J.W., Removal of Trace VOCs from Water Through PDMS Membranes and Analysis of Their Permeation Behaviors. J. Appl. Polym. Sci. 73(1999)601-611.
    [141] Miyata T., Yamada H., Uragami T., Surface modification of microphase-Separated membranes by fluorine-containing polymer additive and removal of dilute benzene in water through these membranes, Macromolecules 34 (2001) 8026-8033
    [142] Larhrafi M., Mas A., Toreis N., Blancou H. Schue F., Hydrophobic surface properties of fluoropolyetherimide blends for pervaporation membranes, Polym Int. 52(2003)1795-1798.
    [143] Blanco J.F., Sublet J., Nguyen Q. T. Schaetzel P., Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process, J. Membr. Sci. 283 (2006) 27-37
    [144] Kim S. S., Lloyd D. R., Microoporous membrane formation via themally-iinduced phase separation. IV. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes, J. Membr. Sci. 64 (1991) 31-40.
    
    [145] Frommer M.A., Lancer D., The mechanism of membrane formation. V. The structure of membranes and its relation to their preparation conditions, Polym. Prep. 12(1971)245-252.
    
    [146] Kinnerle K., Strathmann H., Analysis of the structure-determining process of phase inversion membranes. Desalination, 1990, 79: 283-302
    
    [147] Jung B., Yoon J. K., Kim B., Rhee H. W., Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J. Membr. Sci., 2004, 243: 45-57
    
    [148] Li J. T., Wang S. C., Nagai K., Nakagawa T., Mau A. W., Effect of polyethyleneglycol (PEG) on gas permeabilityies and permselectivies in its cellulose acetate (CA) blend membrane. J. Membr. Sci., 1998, 138: 143-152.
    
    [149] Wang D. M. Lin F. C., Wu T. T. Lai J. Y., Formation mechanism of the macrovoids induced by surfactant additives. J. Membr. Sci., 1998, 142, 191-204
    
    [150] Qian J.W., An Q.F., Wang L.N., Influence of the dilute solution properties of cellulose acetate in solvent mixtures on the morphology and pervaporation performance of their membranes, J. Appl. Polym. Sci. 97 (2005) 1891-1898.
    
    [151] Uragami T., Meotoiwa T., Miyata T., Effects of morphology of multicomponent polymer membranes containing calixarene on permselective removal of benzene from a dilute aqueous solution of benzene, Macromolecules 36 (2003) 2041-2048.
    
    [152] Cai B.X., Permselectivity of polyamide composite membrane modified by solvent,J. Appl. Polym. Sci. 92 (2004) 1005-1010.
    
    [153] Uragami T., Matsugi H., Miyata T., Pervaporation characteristics of organic-inorganic hybrid membranes composed of poly(vinyl alcohol-co-acrylic acid) and tetraethoxysilane for water/ethanol separation, Macromolecules 38 (2005) 8440-8446.
    
    [154] Miyata T., Obata S., Uragami T., Annealing effect of microphase-separated membranes containing poly(dimethylsiloxane) on their permselectivity for aqueous ethanol solutions, Macromolecules 32 (1999) 8465-8475.
    
    [155] Uragmi T., Yamada H., Miyata T., Effects of fluorine-containing graft and block copolymer additives on removal characteristics of dilute benzene in water by microphase-separated membranes modified with these additives, Macromolecules 39(2006)1890-1897.
    
    [156] Miyata T,, Obata S,, Uragami T,. Morphological effects of microphase separation on the permselectivity for aqueous ethanol solutions of block and graft copolymer membranes containing poly(dimethylsiloxane), Macromolecules 32 (1999) 3712-3720.
    
    [157] Miyata T., Takagi T., Uragami T., Microphase separation in graft copolymer membranes with pendant oligodimethylsiloxanes and their permselectivity for aqueous ethanol solutions, Macromolecules 29 (1996) 7787-7794.
    [158] Qian J.W., Zhou G.H., Yang W.Y., Conformational inversion of polyethylene-polyvinyl acetate graft copolymer in selective solvent by viscometry, EurPolym J. 37(2001)1871-1875.
    [159] Qian J.W., Li J., Yang Y.S., Oi G.R., Association of ethylene vinyl acetate copolymer in dilute solutions III. Critical association concentration. Chinese J. Polym. Sci.16 (1998) 327-331.
    [160] Qian J.W., Wang X.H., Oi G.R. Wu C., Inter- and intrachain association of an ethylene vinyl acetate random copolymer in dilute 1,2-dichloroethane solutions, Macromolcules 30 (1997) 3283-3287.
    [161] Qian J.W., Miao Y.M., Zhan L., Chen H.L., Influence of viscosity slope coefficient of CA and its blends in dilute solutions on permeation flux of their membranes for MeOH/MTBE mixture, J. Membr. Sci. 203 (2002) 167-173.
    [162] Qian J.W., An Q.F., Wang L.N., Shen L., Dilute solution behavior of CA and their relationship to PV performance of CA membrane from selective solvent mixtures, J. Appl. Polym. Sci, 97 (2005) 1891-1898.
    [163] Huggins M.L., Am J., The viscosity of dilute solutions of long-chain molecules, IV. dependence on concentration, Chem. Sci. 64 (1942) 2716-2718.
    
    [164] Bohdanechy M., Kovar J., Viscosity of Polymer Solutions, Elsevier-Scientific, Amsterdam, 1982
    
    [165] Gooda S.R., Huglin M.B., Preferential adsorption and viscometric behavior of poly(2-acrylamido-2-methylpropane sulphonamide) in formamide/water mixtures, Eur. Polym. J. 39 (1992) 365-369.
    [166] Dondos A., Tsitsilianis C., Viscometric study of extremely dilute macromolecular solution: Critical concentration c~(**) and Huggins constant, Polymer International 28(1992)151-156.
    [167] Katime I., Cabanas P.G., Ochoa J.R., Garay M., Vera C.R., Conformational transition in syndiotactic PMMA.Part 6. Mono- and dichlorobenzene, Polymer 24 (1983)1015-1017.
    [168] Gosa K.L., Papanagopoulos D., Dondus A., Study of the conformational trasition of polystyrene-poly(methyl methacrylate) block coplymers with temperature using measurements of the c~(**) criyical concentration, Colloid Polym. Sci. 282 (2003) 84-87.
    [169] Wang S., Wang Q.H., Cheng R.S., IR study on monomolecular particle agglomerates of polystyrene obtained by freeze-drying of its dilute solution, Chinese J. of Polym. Sci. 20 (2002) 381-383.
    [170] Hopkins A.R., Rasmussen P.G., Basheer R.A., Characterization of solution and solid state properties of undoped and doped polyanilines processed from hexafluoro-2-propanaol, Macromlecules 29 (1996) 7838-7846.
    [171] George S.C., Thomas S., Transport phenomena through polymeric systems, Prog. Polym. Sci. 26 (2001) 985-1017.
    [172] Bai Y.X., Qian J.W., Zhang P., Zhu Z.H., Zhao Q., Pervaporation characterization of ethylene-vinyl acetate copolymer membrane for recovery of ethyl acetate from aqueous solution, J. Membr. Sci. (submitted)
    [173] 江明,高分子合金的物理化学,四川教育出版社,1988.
    [174] 金日光,华幼卿,高分子物理,北京,化学工业出版社,2000.
    [175] Authowy T. C., Ultrafiltration membrane and application, New York and London: plenum press, 1980, 1-82.
    [176] 俞三传,高从增,聚砜-聚醚砜共混物相容性及凝胶特性研究,膜科学与技术,1999,19(5):23-26.
    [177] Sivakumar M., Malaisarry T., Preparation and performance of cellulose acetate-polyurethane blend membranes and their applications-Ⅱ J. Membrane Sci., 2000, 169: 215-228.
    [178] Suzana P., Peinemann N. K. V., Ultrafiltration membrane from PVDF/PMMA blends, J. Membrane Sci., 1992, 73: 25-35.
    [179] Blicke C., Peinemann N. K. V., Ultrafilration membrane from poly(ether sulfonamide)/poly(ether imide) blend, J. Membrane Sci., 1993, 79: 83-91.
    [180] Wayne W. Y. L., Jinag Y., Performance of polusulfone/carboxylated polysulfone membranes, Polym. Inter., 1994, 33: 413-417.
    [181] Yu S. C., Gao C. J., Liu X. R. A study of PSF and PES binary alloy UF membrane, Water Treatment, 1994, 9: 87-93.
    [182] Uragami I., Tsukamoto K., Miyata T., Heinze T., Permeation and separation characteristics for benzene/cyclohexane mixtures through tosylcellulose membranes in pervaporation, Cellulose, 1999, 6: 221-231.
    [183] Cabasso I., Organic liquid mixtures separation by permselective polymer membrane Ⅰ. Selection and characteristics of dense isotropic membrane employed in the pervaporation process, Ind. Eng. Chem. PROD. Tes. Dev., 1983, 33: 313-319.
    [184] Cabasso I., Grodzinski J. J., Vofsi D., Polymeric alloys of polyphosphonates and acetyl cellulose Ⅰ. Sorption and diffusion of benzene and cyclohexane, J. Appl. Polym. Sci., 1974, 18: 2117-2136.
    [185] Acharya H. R., Stern S. A., Liu Z. Z., Cabasso I., Separation of liquid benzene/cyclobexane mixtures by perstraction and pervaporation, J. Membr. Sci., 1998, 37: 205-232.
    [186] Mathai A. Z., Thomas S., Transport of aromatic hydrocarbons through cross-linked nitrile rubber membranes, J. Macromol. Sci. B: Phys., 1996, 35: 229-236.
    [187] George S., Varughese K. T., Thomas S., Molecular transport of aromatic solvents in isotactic polypropylene/acrylonitrile-co-butadiene rubber blends, Polymer, 2000, 41: 579-594.
    [188] George S. C., Ninan K. N., Thomas S., Styrene butadiene rubber/natural rubber blends morphology, transport behaviour, dynamic mechanical and mechanical properties, J. Appl. Polym. Sci., 2000, 78: 1280-1287.
    [189] Mathew A. P., Pachirisamy S., Stephen T., Thomas S., Transport of aromatic solvents through natural rubber/polystyrene (NR/PS) interpenetration polymer network membranes, J. Membr. Sci., 2002, 201: 213-227.
    [190] Mathai, Singh T. P., Thomas S., Transport of substituted benzenes through nitrile rubber/natural rubber blend membranes, J. Membr. Sci., 2002, 202: 35-54.
    [191] Joseph A., Mathai A. E., Thomas S., Sorption and diffusion of methyl substituted benzenes through cross-linked nitrile bubber/poly(ethylene-co-vinyl acetate) blend membranes, J. Membr. Sci., 2003, 220: 13-30.
    [192] Niang M., Luo G. S., Schaetzel P., Pervapration of methyl tert-butyl ether/methanol mixtures using a high-performance blended membrane, J. Appl. Polym. Sci., 1997,64:875-882.
    [193] Nam S. Y., Lee Y. M., Pervaporation and properties of chaitosan-poly(acylic acid) complex membranes, J. Membr. Sci., 1997, 135: 161-171.
    [194] Park H. C., Meertens R. M., Mulder M. H. V., Smolders C. A., Pervaporation of alcohol/toluene mixtures through polymer blend membranes of poly(acrylic acid) and poly(vinyl alcohol), J. Membr. Sci., 1994, 90: 265-274.
    [195] Cabosso I., Grodzinski J. G., A study of permeation of organic solvents through polymeric alloys of polyphosphonates and acetyl cellulose. II. Separation of benzene, cyclohexene, cyclohaxene, J. Appl. Polym. Sci., 1974,18: 2137-2147.
    [196] Luo G. S., Niang M., Schaetzel P., Pervaporation separation of ethyl tert-butyl ether and ethanol mixtures with a blend membrane, J. Membr. Sci., 1997, 125: 237-244.
    [197] Balakrishnan M., Huang R. Y. M., Pervaporation separation of pentane/alcohol mixtures through ionically corsslinked blended membranes, Die Angevandte Markromolekulare Chemie, 1991,191: 36-69.
    [198] Nguyen Q. T., Clement R., Noezar I., Lochon P., Performance of poly(vinyl pyrrolidone-co-vinyl acetate)-cellulose acetate blend membranes in the pervaporation of ethanol-ethyl tert-butyl ether mixtures simplified model for flux prediction, Sep. Purf. Tech., 1998, 13: 237-245.
    [199] Huang R. Y. M., Rhim J. W., Prediction of pervaporation separation characteristics for the methanol/pentane nylon6 poly(acrylic acid) blended membrane system, J. Membr. Sci., 1992, 71: 211-220.
    [200] George S. C., Prasad K., Misra J. P., Thomas S., Separation of alkane-acetone mixtures using styrene butadiene rubber/natural rubber blend membranes, J. Appl.Polym. Sci. 1999, 74: 3059-3068.
    [201] Park H. C., Meertens R. M., Mulder M. H. V., Sorption of alcohol-toluene mixtures in poly(acrylic acid)-poly(vinyl alcohol) blend membranes and its role on pervaporation, Ind. Eng. Chem. Res., 1998, 37: 4408-4417.
    [202] Qian J. W., Chen H. L., Zhang L., Qin S. H., Wang M., Effect of cellulose acetate/poly(vinyl butyral) blends on pervaporation behavior of their membranes for methanol/methyl tert-butyl ether mixture, J. Appl. Polym. Sci., 2002, 83: 2434-2439.
    [203] Kulshreshtha A. K, Singh B. P., Sharma Y. N., Viscometric determination of compatibility in PVC/ABS polyblends. Part Ⅲ. Choice of a common solvent and its effect on results, European Polymer Journal, 1988, 24, 191-194.
    [204] Branford N. A., Eur. Pat. Appl. EP37181, 1981.
    [205] 凌爱莲,焦庆影,鲍世耀,范松春,Research on Polyacrylonitrile Blend UF Membranes,膜科学与技术,1994,14(2):8-16.
    [206] Schneire B., Wu G. J., Use of a gee relationship in a diffusion study J. Appl. Polym. Sci. 1972, 16: 2343-2352.
    [207] Monteiro E. E. C., Thumaturgo C., Miscibility of PVA/EVA systems by viscometry, Polym. Bull., 1993, 30: 697-703.
    [208] Lizymol P. P., Thomas S., Miscibility studies of polymer blends by viscometry method, J. Appl. Polym. Sci., 1994, 51: 635-641.
    [209] Kulshreshtha A. K., Singh B. P., Sharma Y. N., Viscometric determination of compatibility in PVC/ABS polymer blend: I, Viscosity-composition plots, Eur. Polym. J., 1988, 24: 29-34.
    [210] Qian J. W., Qi G. R., Ding X. Z., Yang S. L., Compatibility studies on polymer/wax and polymer/resin-asphaltene by viscometry and photomicrography, Chinese J. Polym. Sci., 1997, 15: 35-39.
    [211] Yang H. Y., Zhu P. P., Wang S. Q., Guo Q. P., Viscometric study of polymer-polymer interactions in ternary systems: viscometric behavior of compatible polymers in solutin, Eur. Polym. J., 1998, 34: 463-467.
    [212] Stasyewska D., Kovar J., Bohclanechy M., A note on the viscosity of dilute solutions of polymer mixtures, Colloid & Polym. Sci., 1980, 258: 600-604.
    [213] Yang Y., Yan X. H., Cheng R. S., Determination of the adsorbed layer thickness of polystyrene on glass surface by viscosity measurements to the extremely dilute concentration region, J. Macromolecular Sci. Phys., 1999, B38(3): 237-249.
    [214] 潘雁,程镕时,薛锋,傅伟文,一种新的判断高分子相容性的粘度判据,高分子学报,2002,746-749.
    [215] Zunde G. G., "Hydration and Intermolecular Interactions, Infrared Investigations with Polyelctrolyte Membranes", Academic Press, NY, 1969.
    [216] Cruz-Ramos C. A., Paul D. R., Evaluation of interactions in blends of ethylene-vinyl acetate copolymers with poly(vinyl chloride) using model compounds, Macromolecules, 1989, 22: 1289-1300.
    [217] Crispim, E. G.; Rubira, A. F.; Muniz, E. C. Solvent effects on the miscibility of poly(methyl methacrylate)/poly(vinyl acetate) blends: Ⅰ: Using differential scanning calorimetry and viscometry techniques, Polymer, 1999, 40, 5129-5139.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.