若干卤键相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卤键是由卤原子(路易斯酸)与中性的或者带负电的路易斯碱之间形成的非共价相互作用。作为平行于氢键的一种分子间相互作用,卤键在分子识别、手性拆分、晶体工程和超分子组装等很多领域有着广泛的应用。另外在生命科学领域,卤键的重要性也初露端倪,这为基于结构的药物设计提供了新的思路。基于卤键与氢键的相似性,某一路易斯碱既可以作为卤键的电子给体,也可以作为氢键的电子给体。在具体的复合物中,这两种分子间相互作用存在竞争效应。在一个超分子中,可能同时卤键与氢键相互作用,这两种相互作用之间存在协同效应,即相互增加,或相互减弱,或有的增加,有的减弱。卤键R-X…Y(X为卤原子,Y为电子给体)形成过程中,R-X键的键长通常会发生变化,振动频率也会相应减小或增大。键缩短,频率增大的为蓝移卤键;而键伸长,频率减小的为红移卤键。取代基对卤键与氢键的强度有很大影响。一般来说,吸电子基使电子给体亲核能力减弱,使电子受体亲电能力增加,而给电子基使电子给体亲核能力增加,使电子受体亲电能力减弱。本论文对一些卤键与氢键复合物中两者的竞争效应和协同效应、蓝移卤键的化学本质以及取代基(主要为甲基和过渡金属元素)对卤键强度的影响进行了理论计算方面的研究。
     本论文的主要研究内容如下:
     1.在MP2/6-311++G(2d,2p)(其中碘采用赝势基组)水平下研究了次卤酸HOX(X=F,Cl,Br,I)与C6H6形成的氢键、卤键复合物。我们研究了次卤酸分子的静电势分布,分析了复合物的能量性质,并运用NBO与AIM分析了轨道相互作用、电荷转移以及键的拓扑性质。得出以下结果:(1)HOCl、HOBr、和HOI可以与C6H6形成氢键、卤键复合物,而HOF只能形成氢键复合物,这与HOX的静电势分布有关:HOF只有一个最大正静电势点,而其它次卤酸分子有两个。(2)卤键复合物的相互作用能顺序与次卤酸的静电势顺序一致,静电相互作用处于主导地位;氢键复合物的相互作用能顺序与次卤酸的静电势顺序相反,色散相互作用对体系起主要稳定作用。(3)氢键与卤键存在竞争效应,除HOI外,其它的复合物都是氢键比卤键更稳定。(4)NBO分析的结果表明,电子从C6H6转移到了HOX上,二阶稳定化能和电荷转移量的变化都符合相互作用能的变化规律。AIM分析的结果表明,此类氢键和卤键相互作用属于弱氢键、弱卤键,这与相互作用能的数值相吻合。
     2.用量子化学方法研究了XY…HNC…XY(X,Y=F,Cl,Br)形成的三元复合物中氢键和卤键的协同作用。分别计算了二元体系和三元体系中氢键和卤键的相互作用能以及协调能Ecoop,计算结果表明三元体系中的氢键和卤键相对于二元体系都所增强。我们分析了氢键和卤键相互作用能变化的绝对量和相对百分比,提出了两种加强氢键与卤键分子识别的思路:(1)引入的第二个卤键(或氢键)相互作用越大,原本的氢键(或卤键)得到的强化作用也就越强;(2)如果要加强一个氢键或卤键相互作用,那么最好引入一个比之强的卤键或氢键相互作用,而不要引入与之相当或比之弱的相互作用。我们分析了HNC分子的振动频率在形成复合物过程中的变化,发现N-H不对称伸缩频率蓝移,H-N-C对称伸缩频率红移。振动频率的变化量与相互作用能的变化一致。我们计算了复合物生成过程中体系偶极矩的变化,发现二元复合物和三元复合物的偶极矩较单体来说都有增加,并且三元复合物的增加量要比二元复合物大。我们对复合物的电子结构进行了AIM分析,计算了复合物BCP处电子密度的变化,发现三元复合物BCP处电子密度比二元复合物的大,这与相互作用能的分析相吻合。
     3.用量子化学的方法在MP2/aug-cc-pVDZ水平下研究了CFnH3-nCl(n=0~3)与H2O、H2S、NH3以及Br-等电子给体之间形成的卤键复合物。在这些复合物中,C-C1键较CFnH3-nCl单体都有所缩短。AIM分析的结果表明,C-C1键BCP处的电子密度值和Laplacian值都有所增加;NBO分析的结果表明,C-C1键的Wiberg键级增大。以上结果证实,C-C1键的键长减小对应着键的强度的加强。我们利用分子间超共轭、分子内超共轭与分子轨道重杂化的理论解释了C-C1键缩短的化学本质。我们定义了ΔAP,用来表征C-C1键轨道布局数变化的综合效应,并认为卤键复合物形成过程中C-C1键是否缩短主要由ΔAP和%AS决定。
     4.用量子化学的方法在MP2/6-311++G**水平下研究了MenH3-nY(Y=N,P; n=0,1,2,3)…XF(X=Cl,Br)的卤键复合物。首先,我们对比MenH2-nY(Y=O,S;n=0,1,2),从静电势和轨道能量两个方面讨论了甲基取代对电子给体性质的影响,解释了一些实验与理论计算结果。我们发现,由于MenH3-nY(Y=N,P;n=0, 1,2,3)…XF(X=Cl,Br)复合物中分子的变形特别大,造成了一些特殊的现象:P系列复合物的电荷转移量,偶极矩增加量以及双卤分子键长的增加量要比相应的N系列复合物大得多。如果考虑分子变形能对整体相互作用能的影响,除了NH3和PH3以外,其它P系列的复合物稳定性要比相应的N系列复合物大得多。这与我们得到的静电势与轨道能量差异性是不相符的。由此可见,MenH3-nY(Y=N, P;n=0,1,2,3)…XF(X=Cl,Br)的卤键复合物与O和S为电子给体的卤键复合物是有本质不同的,前者更接近于inner Mulliken complex,而后者更接近outer Mulliken complex.
     5.用量子化学的方法在MP2/6-311++G**研究了过渡金属Cu,Ag和Au取代卤代烷烃CH3X(X=F,Cl,Br)作为电子给体,与FCl分子之间的卤键相互作用。CH3X…ClF只有一种稳定结构:CH3X中的两个氢原子朝向FCI中的氯原子。CH2CuX…ClF和CH2AgX…ClF有两种稳定结构,而CH2AuX…ClF只有一种稳定结构。我们计算了这些复合物的相互作用能,发现过渡金属取代卤代烃中的氢原子对卤键有加强作用。我们对这些复合物进行了NBO分析和AIM分析。
     以上研究将有利于加深对卤键本质的理解,更好地认识卤键与氢键之间的竞争效应和协同效应,以及取代基对卤键强度的影响,给设计和合成新材料提供有用的信息。
Halogen bonding is the noncovalent intermolecular interaction between halogen atoms (lewis acids) and neutral or anionic Lewis bases. Most of the energetic and structural features found in the hydrogen-bonded complexes are reproduced in halogen-bonded complexes as well. By virtue of its strength selectivity, and directivity, halogen bonding has led to a number of applications in fields as diverse as molecualr recognition, enantiomer's separation, crystal engineering, and supramolecular architectures. Particularly, the utilization of this specific interaction in the context of drug design is nowadays coming to light. Based on the similarity of the hydrogen bond and halogen bond, one Lewis base can supply electrons to the hydrogen atom or halogen atom, so competitive effect can be found between hydrogen bond and halogen bond. There may exist two or more intermolecular interactions in one complex, and these interactions influence each other:both become stronger, or weaker, or one be stronger and one be weaker. Surely this cooperativity can be found between hydrogen bond and halogen bond. In the formation of R-X…Y halogen-boned complex, the length of the R-X bond can be shortened or lengthened, with the vibrational frequency shift. The former can be called blue-shift halogen bond, and the latter is referred to as red-shift halogen bond. The substituent group plays a very important role in the halogen-boned complex. Generally speaking, electronwithdrawing group weakens the electrondonating ability of the Lewis base and enhances the positive electrostatic potential of the halogen atom; electrodonating group enhances the electrondonating ability of the Lewis base and weakens the positive electrostatic potential of the halogen atom. The thesis is of quantum chemical study on the competitive and cooperative effects between hydrogen bonds and halogen bonds, the chemical origin of the blue-shift halogen bonds, and the influence of the substituent group on the strength of the halogen bonds.
     The main research contents of this thesis are as follows:
     1. The H…πand X (X=F, Cl, Br, I)…πinteractions between hypohalous acids and benzene are investigated at the MP2/6-311++G(2d,2p) level. We investigated the molecular electrostatic potential of the hypohalous acids and the interaction energies of the complexes. NBO analysis and AIM analysis have been performed to study the orbital interaction, the charge transfer and the topological properties. The main conclusion are as follows:(1) HOCl、HOBr、and HOI can form hydrogen and halogen-bonded complexes with C6H6, but there is only hydrogen bonding interaction between HOF and C6H6. This can be attributed to the electrostatic potential of the hypohalous acids. HOF has only one positive sites and the other hypohalous acids have two. (2) The strength of the H…πinteractions is contradictory to the MEP sequence, which is dominated by the dispersion interaction; the strength of the X…πinteractions follows the MEP sequence, which is dominated by the electrostatic interaction. (3)There exists competition between hydrogen bonding and halogen bonding. The hydrogen bonding is stronger than the halogen bonding except the HOI…C6H6 complex. (4) There exists charger transfer from C6H6 to HOX, and BCPs can be found between hydrogen or halogen atoms and carbon atom.
     2. The cooperativity between hydrogen and halogen bond in the XY…HNC…XY (X, Y=F, Cl, Br) complexes have been studied at the MP2/aug-cc-pVTZ level. Two hydrogen-bonded dimers, five hydrogen-bonded dimers, and ten trimers were obtained. The hydrogen-and halogen-bonded interaction energies in the trimers are larger than those in the dimers, indicating both the hydrogen bonding and the halogen bonding are enhanced. The binary halogen bonding plays the most important role in the ternary system. The hydrogen bonding influences the magnitude of the halogen bonding interaction much more than the hydrogen bonding in the trimers with respect to the dimers. Our calculations are consistent with the conclusion that the stronger noncovalent interaction has a bigger effect on the weaker one. The variation of the vibrational frequency in the HNC molecule has been considered. The NH antisymmetry vibration frequency has a blue shift, whereas the symmetry vibration frequency has a red shift. A dipole moment enhancement is observed in the formation of the trimers. The variation of the topological properties at BCP have been obtained using the AIM method, which is consistent with the results of the interaction energy analysis.
     3. We calculated a series of halogen-bonded complexes at the MP2/aug-cc-pVDZ level. The halogen bond donor is CFnH3-nCl, and the halogen bond acceptors are NH3, H2O, H2S, and Br-. Ten stable halogen-bonded complexes were obtained and the C-Cl bond length was contracted in all of these complexes. We carried out AIM and NBO analysis under the MP2/aug-cc-pVDZ optimized structures. The contracted C-Cl bond implies the enhancement of the bond strength. The variation of the electron density at the bond critical point of C-Cl bond correlates well with△r(C-Cl). A balance among intra-and inter-hyperconjugation and rehybridization determined the contracted C-Cl bond.
     4. We investigated the MenH3.nY(Y=N, P; n=0,1,2,3)…XF(X=Cl, Br) halogen-bonded complexes at the MP2/6-311++G** level. We discussed the electrondonating ability of 0, S, N, P from two aspects:molecular electrostatic potential and the orbital energies of the lone pairs, and some corresponding results can be explained. Compared with the 0 and S series, the halogen-bonded complexes containing N and P are very different. Very large amount of charge transfer and increment of dipole moment have been obtained in our calculations. The F-X bond length in the MenH3-nP…XF(X=Cl, Br) complex is larger than the corresponding MenH3-nN…XF(X=Cl, Br) complex. Deformation energy must be added to correct the interaction energy in order to obtain the regular intermolecular strength.
     5. We investigated the enhancing effect of halogen bonding induced by the transition metal Cu, Ag, and Au in the M-CH2-X…CIF (M=Cu, Ag, Au; X=F, Cl, Br) complexes. We obtained two optimized Cu-CH2-X…CIF and Ag-CH2-X…ClF structues, and only one Au-CH2-X…CIF structure. The comparison of the interaction energy between these complexes and the CH3X…CIF complex indicates that the substitution of the transition metal enhances the strength of the halogen bonding. The NBO results indicates that there exists an interaction between the lone pairs of the halogen atom and the antibonding orbital of the F-Cl and C-M bond. AIM analysis have been carried out to disclose the nature of these noncovalent interactions.
引文
[1]Schneider, H.J. Binding Mechanisms in supramolecular complexes, Angew. Chem. Int. Ed.2009,48:3924-3977.
    [2]Stone, A. J. The Theory of Intermolecular Forces, Clarendon, Oxford,1997.
    [3]Riley, K. E., Pitonak, M., Jurecka, P., Hobza, P. Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories, Chem. Rev.2010,110:5023-5063.
    [4]Scheiner, S. Molecular Interactions. From van der Waals to Strong Bound Complexes, Wiley, Chichester,1997.
    [5]Stone, A. J. Intermolecular Potentials, Science 2008,321:787-789.
    [6]Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford,1997.
    [7]Scheiner, S. Hydrogen Bonding-A Theoretical Perspective, Oxford University Press, Oxford,1997.
    [8]Desiraju, G. R., Steiner, T. The Weak Hydrogen Bonding in Structural Chemistry and Biology, Oxford University Press, Oxford,1999.
    [9]Nishio, M., Hirota, M., Umezawa, Y. The CH/π Interaction. Evidence, Nature, and Consequences, Wiley, New York,1998.
    [10]Grabowski, S. Hydrogen Bonding-New Insights, Springer,2006.
    [11]Kim, K. S., Tarakeshwar, P., Lee, J. Y. Molecular clusters of π-systems: theoretical studies of structures, spectra, and origin of interaction energies, Chem. Rev. 2000,100:4145-4185.
    [12]Sinnokrot, M. O., Sherrill, C. D. Substituent effects in π-π interactions: sandwich and T-shaped configurations, J. Am. Chem. Soc.2004,126:7690-7697.
    [13]Lee, E. C., Kim, D., Jurecka, P., Tarakeshwar, P., Hobza, P., Kim, K. Understanding of assembly phenomena by aromatic-aromatic interactions:benzene dimer and the substituted systems, J. Phys. Chem. A 2007,111:3446-3457.
    [14]Legon, A. C. The halogen bond:an interim perspective, Phys. Chem. Phys. Chem. 2010,12:7746-7747.
    [15]Dimitrijevic, E., Dimitrijevic,O., Taylor, M. Measurements of weak halogen bond donor abilities with tridentate anion receptors, Chem. Commun.2010, 46:9025-9027.
    [16]Gushehin, P. V., Starova, G. L., Haukka, M., Kuznetsov, M. L., Eremenko, L. L. Kukushkin, V. Y. Chloride-Chloroform Clusters Exhibiting Weak Hydrogen and Halogen Bondings Are Fully Characterized in the Solid State by X-ray Diffraction, Cryst. Grow. Des.2010,10:4839-4846.
    [17]Kilah, N. L., Wise, M. D., Serpell, C. J., Thompson, A. L., White, N. G., Christensen, K. E., Beer, P. D. Enhancement of Anion Recognition Exhibited by a Halogen-Bonding Rotaxane Host System, J. Am. Chem. Soc.2010,132: 11893-11895.
    [18]Bruce, D.W., Metrangolo, P., Meyer, F., Pilati, T., Praesang, C., Resnati, G., Terraneo, G., Wainwright, S. G., Whitwood, A. C. Structure-Function Relationships in Liquid-Crystalline Halogen-Bonded Complexes, Chem. Eur. J.2010,16:9511-9524.
    [19]Raatikainen, K., Rissanen, K. Modulation of N…I and +NH…Cl-…I Halogen Bonding:Folding, Inclusion, and Self-Assembly of Tri-and Tetraamino Piperazine Cyclophanes, Cryst. Grow. Des.2010,10:3638-3646.
    [20]Serpell, C. J., Kilah, N. L., Costa, P. J., Felix, V., Beer, P. D. Halogen Bond Anion Templated Assembly of an Imidazolium Pseudorotaxane, Angew. Chem. Int. Ed.2010,49:5322-5326.
    [21]Clemente-Juan, J. M., Coronado, E., Espallargas, G. M., Adams, H., Brammer, L. Effects of halogen bonding in ferromagnetic chains based on Co(II) coordination polymers, Cryst. Eng. Comm.2010,12:2339-2342.
    [22]Lapadula, G., Judas, N., Friscic,, T., Jones, M. A Three-Component Modular Strategy to Extend and Link Coordination Complexes by Using Halogen Bonds to O, S and pi Acceptors, Chem. Eur. J.2010,16:7400-7403.
    [23]Abate, A., Brischetto, M., Cavallo, G., Lahtinen, M., Metrangolo, P., Pilati, T., Radice, S., Resnati, G., Rissanen, K., Terraneo, G. Dimensional encapsulation of I-…I2…I- in an organic salt crystal matrix, Chem. Commun.2010,46:2724-2726.
    [24]Pigge, F. C., Vangala, V. R., Swenson, D. C., Rath, N. P. Examination of Halogen Bonding Interactions in Electronically Distinct but Structurally Related Tris(haloarenes), Cryst. Grow. Des.2010,10:224-231.
    [25]Sarwar, M. G., Dragisic, B., Sagoo, S., Taylor, M. S., A Tridentate Halogen-Bonding Receptor for Tight Binding of Halide Anions, Angew. Chem. Int. Ed.2010,49:11674-1677.
    [26]Arman, H. D., Gieseking, R. L., Hanks, T. W., Pennington, W. T. Complementary halogen and hydrogen bonding:sulfur…iodine interactions and thioamide ribbons, Chem. Commun.2010,46:1854-1856.
    [27]Cauliez, P., Polo, V., Roisnel, T., Llusar, R., Fourmigue, M. The thiocyanate anion as a polydentate halogen bond acceptor, Cryst. Eng. Comm.2010,12:558-566.
    [28]Mazik, M., Buthe, A. C., Jones, P. G. C-H…Br, C-Br…Br, and C-Br…pi interactions in the crystal structures of mesitylene-and dimesitylmethane-derived compounds bearing bromomethyl units, Tetrahedron 2010,66:385-389.
    [29]Praesang, C., Whitwood, A. C., Bruce, D. W. Halogen-Bonded Cocrystals of 4-(N,N-Dimethylamino)pyridine with Fluorinated Iodobenzenes, Cryst. Grow. Des. 2009,9:5319-5326.
    [30]Raatikainen, K., Rissanen, K. Hierarchical halogen bonding induces polymorphism, Cryst. Eng. Comm.2009,11:750-752.
    [31]Casnati, A., Cavallo, G., Metrangolo, P., Resnati, G., Ugozzol, F., Ungaro, R. The Role of Building-Block Metrics in the Halogen-Bonding-Driven Self-Assembly of Calixarenes, Inorganic Salts and Diiodoperfluoroalkanes, Chem. Eur. J.2009, 15:7903-7912.
    [32]Cabot, R., Hunter, C. A. Non-covalent interactions between iodo-perfluorocarbons and hydrogen bond acceptors, Chem. Commun.2005-2007.
    [33]Forni,, A. Experimental and Theoretical Study of the Br…N Halogen Bond in Complexes of 1,4-Dibromotetrafluorobenzene with Dipyridyl Derivatives, J. Phys. Chem. A 2009,113:3403-3412.
    [34]Matter, H., Nazare, M., Guessregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M., Wehner, V. Evidence for C-Cl/C-Br…pi Interactions as an Important Contribution to Protein-Ligand Binding Affinity, Angew. Chem. Int. Ed.2009,48:2911-2916.
    [35]Raatikainen, K., Huuskonen, J., Lahtinen, M., Metrangolo, P., Rissanen, K. Halogen bonding drives the self-assembly of piperazine cyclophanes into tubular structures, Chem. Commun.2009,2160-2162.
    [36]Hanson, G. R., Jensen, P., McMurtrie, J., Rintoul, L., Micallef, A. S. Halogen Bonding between an Isoindoline Nitroxide and 1,4-Diiodotetrafluorobenzene:New Tools and Tectons for Self-Assembling Organic Spin Systems, Chem. Eur. J.2009, 15:4156-4164.
    [37]Metrangolo, P., Pilati, T., Terraneo, G., Biella, S., Resnati, G. Anion coordination and anion-templated assembly under halogen bonding control, Cryst. Eng. Comm. 2009,11:1187-1196.
    [38]Aakeroey, C., Schultheiss, N. C., Rajbanshi, A., Desper, J., Moore, C. Supramolecular Synthesis Based on a Combination of Hydrogen and Halogen Bonds, Cryst. Grow. Des.2009,9:432-441.
    [39]Derossi, S., Brammer, L., Hunter, C. A., Ward, M. D. Halogen Bonded Supramolecular Assemblies of [Ru(bipy)(CN)(4)](2-) Anions and N-Methyl-Halopyridinium Cations in the Solid State and in Solution, Inorg. Chem. 2009,48:1666-1677.
    [40]Auffinger, P., Hays, F. A., Westhof, E., Ho, P. S. Halogen bonds in biological molecules,2004 Proc Natl Acad Sci USA 101:16789-16794.
    [41]Lenoir, D. The Electrophilic Substitution of Arenes:Is the pi complex a key intermediate and what is Its Nature? Angew. Chem. Int. Ed.2003,42:854-857.
    [42]Yadav, J. S., Reddy, B. V. S., Reddy, M. S., Prasad, A. R. Iodine as novel reagent for the 1,2-addition of trimethylsilyl cyanide to ketones including alpha,beta-unsaturated ketones, Tetrahedron lett.2002,43:9702-9706.
    [43]Guthrie, F. J. Chem. Soc.1863,16,239.
    [44]Dumas, J. M., Gomel, L., Guerin, M.. Molecular interactions involving organic halides. The Chemistry of Functional Groups, supplement D, Wiley:New York,1983, PP 985—1020.
    [45]Legon, A. C. Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase:A Systematic Case for the Halogen Analogue B…XYof the Hydrogen Bond B…HX, Angew. Chem. Int. Ed.1999,38:2686-2714.
    [46]Davey, J. B., Legon, A. C. A gas phase complex of acetylene and bromine: geometry, binding strength and charge transfer from rotational spectroscopy, Chem. Phys. Lett.2001,350:39-50.
    [47]Cavallo, G., Metrangolo, P., Pilati, T., Resnati, G., Sansotera, M., Terraneo, G. Halogen bonding:a general route in anion recognition and coordination, Chem. Soc. Rev.2010,39:3772-3783.
    [48]Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Terraneo, G. Halogen bonding in supramolecular chemistry, Angew. Chem. Int. Ed.2008,47:6114-6127.
    [49]Metrangolo, P., Resnati, G. Chemistry-Halogen versus hydrogen, Science 2008, 321:918-919.
    [50]Metrangolo, P., Pilati, T., Resnati, G. Halogen bonding and other noncovalent interactions involving halogens:a terminology issue, Cryst. Eng. Comm.2006, 8:946-947.
    [51]Metrangolo, P., Resnati, G., Pilati, T., Liantonio, R., Meyer, F. Engineering functional materials by halogen bonding, J. Poly. Sci. Part A:Poly. Chem.2007, 45:1-15.
    [52]Metrangolo, P., Meyer, F., Pilati, T., Proserpio, D. M., Resnati, G. Highly interpenetrated supramolecular networks supported by N…I halogen bonding, Chem. Eur. J.2007,13;5765-5772.
    [53]Mele, A., Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. A halogen-bonding-based heteroditopic receptor for alkali metal halides, J. Am. Chem. Soc.2005,127:14972-14973.
    [54]Metrangolo, P., Resnati, G. Halogen bonding:A paradigm in supramolecular chemistry, Chem. Eur. J.2001,7:2511-2519.
    [55]Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. Halogen bonding based recognition processes:A world parallel to hydrogen bonding, Acc. Chem. Res.2005, 38:386-395.
    [56]Li, Q. Z., Jing, B., Li, R., Liu, Z. B., Li, W. Z., Luan, F., Cheng, J. B., Gong, B. A., Sun, J. Z. Some measures for making halogen bonds stronger than hydrogen bonds in H2CS-HOX (X=F, Cl, and Br) complexes, Phys. Chem. Chem. Phys.2011, 13:2266-2271.
    [57]Solimannejad, M., Malekani, M., Alkorta, I. Cooperative and Diminutive Unusual Weak Bonding In F3CX…HMgH…Y and F3CX…Y…HMgH Trimers (X= Cl, Br; Y=HCN, and HNC), J. Phys. Chem. A 2010,114:12106-12111.
    [58]Shields, Z. P., Murray, J. S., Politzer, P. Directional Tendencies of Halogen and Hydrogen Bonds, Int. J. Quantum. Chem.2010,110:2823-2832.
    [59]Cheng, J. B., Li, R., Li, Q. Z., Jing, B., Liu, Z. B., Li, W. Z., Gong, B. A., Sun, J. Z. Prominent Effect of Alkali Metals in Halogen-Bonded Complex of MCCBr-NCM' (M and M'=H, Li, Na, F, NH2, and CH3), J. Phys. Chem. A 2010,114:10320-10325.
    [60]Donald, K. J., Wittmaack, B. K., Crigger, C. Tuning sigma-Holes:Charge Redistribution in the Heavy (Group 14) Analogues of Simple and Mixed Halomethanes Can Impose Strong Propensities for Halogen Bonding, J. Phys. Chem. A 2010,114:7213-7222.
    [61]Zhou, P., Ren, Y. R., Tian, F. F., Zou, J. W., Shang, Z. C. Halogen-Ionic Bridges: Do They Exist in the Biomolecular World? J. Chem. Theory Comput.2010, 6:2225-2241.
    [62]Politzer, P., Murray, J. S., Clark, T. Halogen bonding:an electrostatically-driven highly directional noncovalent interaction, Phys. Chem. Phys. Chem.2010, 12:7748-7757.
    [63]Lu, Y. X., Wang, Y., Zhu, W. L. Nonbonding interactions of organic halogens in biological systems:implications for drug discovery and biomolecular design, Phys. Chem. Chem. Phys.2010,12:4543-4551.
    [64]Li, Q. Z., Dong, X., Jing, B., Li, W. Z., Cheng, J. B., Gong, B. A., Yu, Z. W. A New Unconventional Halogen Bond C-X…H-M Between HCCX (X=Cl and Br) and HMH (M=Be and Mg):An Ab Initio Study, J. Comput. Chem.2010,31:1662-1668.
    [65]Eskandari, K., Zariny, H. Halogen bonding:A lump-hole interaction, Chem. Phys. Lett.2010,492:9-13.
    [66]Bayse, C. A., Rafferty, E. R. Is Halogen Bonding the Basis for Iodothyronine Deiodinase Activity? Inorg. Chem.2010,49:5365-5367.
    [67]Li, Q. Z., Xu. X., Liu, T., Jing, B., Li, W. Z., Cheng, J. B., Gong, B. A., Sun, J. Z. Competition between hydrogen bond and halogen bond in complexes of formaldehyde with hypohalous acids, Phys. Chem. Phys. Chem.2010,12:6837-6843.
    [68]McDowell, S. A. C. Halogen and hydrogen bonding to the Br atom in complexes of FBr, J. Chem. Phys.2010,132,044312.
    [69]Macaveiu, L., Goebel, M., Klapoetke. T. M., Murray, J. S., Politzer, P. The unique role of the nitro group in intramolecular interactions:chloronitromethanes, Struct. Chem.2010,21:139-146.
    [70]Duarte, D. J. R., de las Vallejos, M. M., Peruchena, N. M. Topological analysis of aromatic halogen/hydrogen bonds by electron charge density and electrostatic potentials, J. Mol. Model.2010,16:737-748.
    [71]Amezaga, N. J. M., Pamies, S. C., Peruchena, N. M., Sosa, G. L. Halogen Bonding:A Study based on the Electronic Charge Density, J. Phys. Chem. A 2010, 114:552-562.
    [72]Fan, H. Y., Eliason, J. K., Moliva, C. D., Olson, J. L., Flancher, S. M., Gealy, M. W., Ulness, D. J. Halogen Bonding in Iodo-perfluoroalkane/Pyridine Mixtures, J. Phys. Chem. A 2009,113:14052-14059.
    [73]Goebel, M., Tchitchanov, B. H., Murray, J. S., Politzer, P., Klapoetka, T. M. Chlorotrinitromethane and its exceptionally short carbon-chlorine bond, Nat. Chem. 2009,1:229-235.
    [74]Hauchecorne, D., Szostak, R., Herrebout, W. A., van der Veken, B. C-X center dot center dot center dot O Halogen Bonding:Interactions of Trifluoromethyl Halides with Dimethyl Ether Chem. Phys. Chem.2009,10:2105-2115.
    [75]Zou, W. S., Han, J., Jin, W. J. Concentration-Dependent Br…O Halogen Bonding between Carbon Tetrabromide and Oxygen-Containing Organic Solvents, J. Phys. Chem.A 2009,113:10125-10132.
    [76]Lu, Y. X., Shi, T., Wang, Y., Yang, H. Y., Yang, X. H., Luo, X. M., Jiang, H. L., Zhu, W. L. Halogen Bonding-A Novel Interaction for Rational Drug Design? J. Medic. Chem.2009,52:2854-2862.
    [77]Bernal-Uruchurtu, M. I., Hernandez-Lamoneda, R., Janda, K. C. On the Unusual Properties of Halogen Bonds:A Detailed ab Initio Study of X2-(H2O)n(n=1-5) clusters (X=Cl and Br), J. Phys. Chem. A 2009,113:5469-5505.
    [78]Tomura, M. Theoretical study of noncovalent interactions between triple bonds and chlorine atoms in complexes of acetylene and some chloromethanes, Chem. Phys. 2009,359:126-131.
    [79]Forni, A. Experimental and Theoretical Study of the Br…N Halogen Bond in Complexes of 1,4-Dibromotetrafluorobenzene with Dipyridyl Derivatives, J. Phys. Chem. A 113:3403-3412.
    [80]Alkorta, I., Blanco,F., Elguero, J. A computational study of the cooperativity in clusters of interhalogen derivatives, Struct. Chem.2009,20:63-71.
    [81]Li, Q. Z., Lin, Q. Q., Li, W. Z., Cheng, J. B., Gong, B. A., Sun, J. Z. Cooperativity between the Halogen Bond and the Hydrogen Bond in H3N…XY…HF Complexes (X, Y=F, Cl, Br), Chem. Phys. Chem.2009,9:2265-2269.
    [82]Alkorta, M., Blanco, F., Solimannejad, M., EIguero, J. Competition of Hydrogen Bonds and Halogen Bonds in Complexes of Hypohalous Acids with Nitrogenated Bases,J. Phys. Chem.A 2008,112:10856-10863.
    [83]Wu, J. Y., Zhang, J. C., Wang, Z. X., Cao, W. L. Theoretical study on intermolecular interactions in BrF/HnX adducts, Chem. Phys.2007,338:69-74.
    [84]Wang, W. Z., Wong, N. B., Zheng, W. X., Tian, A. M. Theoretical study on the blueshifting halogen bond, J. Phys. Chem A 2004,108:1799-1805.
    [85]Wang, W. Z., Hobza, P. Origin of the X-Hal (Hal=Cl, Br) bond-length change in the halogen-bonded complexes, J. Phys. Chem. A 2008,112:4114-4119.
    [86]Wang, W. Z., Zhang, Y., Ji, B. M. On the Difference of the Properties between the Blue-Shifting Halogen Bond and the Blue-Shifting Hydrogen Bond, J. Phys. Chem. A 2010,114:7257-7260.
    [87]Riley, K. E., Hobza, P. Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses, J. Chem. Theory Comput. 2008,4:232-242.
    [88]Politzer, P., Lane, P., Concha, M.C., Ma, Y. G., Murray, J. S. An overview of halogen bonding, J. Mol. Model.2007,13:305-311.
    [89]Murray, J. S., Lane, P., Clark, T., Politzer, P. sigma-hole bonding:molecules containing group VI atoms, J. Mol. Model.2007,13:1033-1038.
    [90]Politzer, P., Murray, J. S., Concha, M. C. Halogen bonding and the design of new materials:organic bromides, chlorides and perhaps even fluorides as donors, J. Mol. Model.2007,13:643-650.
    [91]Clark, T., Hennemann, M., Murray, J. S., Politzer, P. Halogen bonding:the sigma-hole, J. Mol. Model.2007,13:291-296.
    [92]Politzer, P., Murray, J. S., Concha, M. C. sigma-hole bonding between like atoms; a fallacy of atomic charges, J. Mol. Model.2008,14:659-665.
    [93]Murray, J. S., Concha, M. C., Lane, P., Hobza, P., Politzer, P. Blue shifts vs red shifts in sigma-hole bonding, J. Mol. Model.2008,14:699-704.
    [94]Murray, J. S., Lane, P., Politzer, P. A predicted new type of directional noncovalent interaction, Int. J. Quantum. Chem.2007,107:2286-2292.
    [95]Politzer, P., Murray, J. S., Lane, P. sigma-hole bonding and hydrogen bonding: Competitive interactions, Int. J. Quantum. Chem.2007,107:3046-3052.
    [96]Murray, J. S., Lane, P., Politzer, P., Expansion of the sigma-hole concept, J. Mol. Model.2009,15:723-729.
    [97]Politzer, P., Murray, J. S., Clark, T. Halogen bonding:an electrostatically-driven highly directional noncovalent interaction, Phys. Chem. Phys. Chem.2010, 12:7748-7757.
    [98]Riley, K. E., Murray, J. S., Politzer, P., Concha, M. C., Hobza, P. Br…O Complexes as Probes of Factors Affecting Halogen Bonding:Interactions of Bromobenzenes and Bromopyrimidines with Acetone, J. Chem. Theory Comput. 2009,5:155-163.
    [99]Lu, Y. X., Zou, J. W., Wang, Y. H., Yu, Q. S. Theoretical investigations of the C-X/pi interactions between benzene and some model halocarbons, Chem. Phys.2007, 334:1-7.
    [100]Lu, Y. X., Zou, J. W., Yu, Q. S., Jiang, Y. J., Zhao, W. N. Ab initio investigation of halogen bonding interactions involving fluorine as an electron acceptor, Chem. Phys. Lett.2007,449:6-10.
    [101]Lu, Y. X., Zou, J. W., Wang, Y. H., Jiang, Y. J., Yu, Q. S. Ab initio investigation of the complexes between bromobenzene and several electron donors:Some insights into the magnitude and nature of halogen bonding interactions, J. Phys. Chem. A 2007, 111:10781-10788.
    [102]Lu, Y. X., Zou, J. W., Fan, J. C., Zhao, W. N., Jiang, Y. J., Yu, Q. S. Ab Initio Calculations on Halogen-Bonded Complexes and Comparison with Density Functional Methods, J. Comput. Chem.2009,30:725-732.
    [103]Lu, Y. X., Zou, J. W., Wang, Y. H., Yu, Q. S. Substituent effects on noncovalent halogen/pi interactions:Theoretical study, Int. J. Quantum. Chem.2007, 107:1479-1486.
    [1]Clementi, E. Computational aspects for large chemical systems, Springer-Verlag, Belin,1980.
    [2]Georges, W. Computational approaches in supramolecular chemistry, Kluwer Academic Publishers, Dordrecht, The Nertherlands,1994.
    [3]Grimme, S. Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections, J. Comput. Chem.2004, 25:1463-1473.
    [4]Zhao, Y., Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc.2008,120:215-241.
    [5]Boys SF, Bernardi F (1970) Mol Phys 19:553-566.
    [6]Lowdin, P. O. Phys. Rev.1955,97:1474.
    [7]Reed, A. E., Curtiss, L. A., Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev.1988,88:899-926.
    [8]Bader R. F. W, Atoms in Molecules, A Quantum Theory. Oxford University Press, New York,1990.
    [1]Schneider, H.J. Binding Mechanisms in supramolecular complexes, Angew. Chem. Int. Ed.2009,48:3924-3977.
    [2]Stone, A. J. The Theory of Intermolecular Forces, Clarendon, Oxford,1997.
    [3]Riley, K. E., Pitonak, M., Jurecka, P., Hobza, P. Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories, Chem. Rev.2010,110:5023-5063.
    [4]Scheiner, S. Molecular Interactions. From van der Waals to Strong Bound Complexes, Wiley, Chichester,1997.
    [5]Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford,1997.
    [6]Scheiner, S. Hydrogen Bonding-A Theoretical Perspective, Oxford University Press, Oxford,1997.
    [7]Desiraju, G. R., Steiner, T. The Weak Hydrogen Bonding in Structural Chemistry and Biology, Oxford University Press, Oxford,1999.
    [8]Nishio, M., Hirota, M., Umezawa, Y. The CH/π Interaction. Evidence, Nature, and Consequences, Wiley, New York,1998.
    [9]Grabowski, S. Hydrogen Bonding-New Insights, Springer,2006.
    [10]Legon, A. C. The halogen bond:an interim perspective, Phys. Chem. Phys. Chem. 2010,12:7746-7747.
    [11]Auffinger, P., Hays, F. A., Westhof, E., Ho, P. S. Halogen bonds in biological molecules,2004 Proc Natl Acad Sci USA 101:16789-16794.
    [12]Legon, A. C. Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase:A Systematic Case for the Halogen Analogue B…XYof the Hydrogen Bond B…HX, Angew. Chem. Int. Ed.1999,38:2686-2714.
    [13]Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Terraneo, G. Halogen bonding in supramolecular chemistry, Angew. Chem. Int. Ed.2008,47:6114-6127.
    [14]Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. Halogen bonding based recognition processes:A world parallel to hydrogen bonding, Acc. Chem. Res.2005, 38:386-395.
    [15]Lu, Y. X., Shi, T., Wang, Y., Yang, H. Y., Yang, X. H., Luo, X. M., Jiang, H. L Zhu, W. L. Halogen Bonding-A Novel Interaction for Rational Drug Design? J. Medic. Chem.2009,52:2854-2862.
    [16]Politzer, P., Lane, P., Concha, M.C., Ma, Y. G., Murray, J. S. An overview of halogen bonding, J. Mol. Model.2007,13:305-311.
    [17]Clark, T., Hennemann, M., Murray, J. S., Politzer, P. Halogen bonding:the sigma-hole, J. Mol. Model.2007,13:291-296.
    [18]Politzer, P., Murray, J. S., Concha, M. C. Halogen bonding and the design of new materials:organic bromides, chlorides and perhaps even fluorides as donors, J. Mol. Model.2007,13:643-650.
    [19]Politzer, P., Murray, J. S., Clark, T. Halogen bonding:an electrostatically-driven highly directional noncovalent interaction, Phys. Chem. Phys. Chem.2010, 12:7748-7757.
    [20]Lu, Y. X., Zou, J. W., Yu, Q. S., Jiang, Y. J., Zhao, W. N. Ab initio investigation of halogen bonding interactions involving fluorine as an electron acceptor, Chem. Phys. Lett.2007,449:6-10.
    [21]Solimannejad, M., Alkorta, I., Elguero, J. Stabilities and properties of O-3-HOCl complexes:A computational study, Chem. Phys. Lett.2007,449:23-27.
    [22]Solimannejad, M., Alkorta, I., Elguero, J. A computational study of dimers and trimers of hypohalous acids, Chem. Phys. Lett.2008,454:201-206.
    [23]Jalbout, A., Li, X., Solimannejad, M. Thermochemical stability of the HO2-HOCl complex, Chem. Phys. Lett.2006,420:204-208.
    [24]Solimannejad, M., Scheiner, S. Complexes pairing hypohalous acids with nitrosyl hydride. Blue shift of a NH bond that is uninvolved in a H-bond, J. Phys. Chem. A 2008,112:4120-4124.
    [25]Solimannejad, M., Pejov, L. Computational investigation of the weakly bound dimers HOX…SO3 (X=F, Cl, Br), J. Phys. Chem. A 2005,109:825-831.
    [26]Li, Q. Z., Xu. X., Liu, T., Jing, B., Li, W. Z., Cheng, J. B., Gong, B. A., Sun, J. Z. Competition between hydrogen bond and halogen bond in complexes of formaldehyde with hypohalous acids, Phys. Chem. Phys. Chem.2010,12:6837-6843.
    [27]Blanco, F., Alkorta, I., Solimannejad, M., Elguero, J. Theoretical Study of the 1:1 Complexes between Carbon Monoxide and Hypohalous Acids, J. Phys. Chem. A 2009,113:3237-3244.
    [28]Alkorta, I., Blanco, F., Solimannejad, M., Elguero, J. Competition of Hydrogen Bonds and Halogen Bonds in Complexes of Hypohalous Acids with Nitrogenated Bases, J. Phys. Chem. A 2008,112:10856-10863.
    [29]Nishio, M., Hirota, M., Umezawa, Y. The CH/π Interaction. Evidence, Nature, and Consequences, Wiley, New York,1998.
    [30]Lu, Y. X., Zou, J. W., Wang, Y. H., Yu, Q. S. Substituent effects on noncovalent halogen/pi interactions:Theoretical study, Int. J. Quantum. Chem.2007, 107:1479-1486.
    [31]Frisch MJ et al (2004) Gaussian 03, Rev B.03. Gaussian Inc. Pittsburgh, PA
    [32]Boys SF, Bernardi F (1970) Mol Phys 19:553-566.
    [33]Bader RFW (1990) Atoms in Molecules, A Quantum Theory. Oxford University Press, New York
    [34]Todd A Keith (2010) AIMAll Version 10.05.04, aim.tkgristmill.com
    [35]Kim, K. S., Tarakeshwar, P., Lee, J. Y. Molecular clusters of π-systems: theoretical studies of structures, spectra, and origin of interaction energies, Chem. Rev. 2000,100:4145-4185.
    [36]Tsuzuki, S., Fujii, A. Nature and physical origin of CH/pi interaction:significant difference from conventional hydrogen bonds, Phys. Chem. Chem. Phys.2008, 10:2584-2594.
    [37]Grimme, S. Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections, J. Comput. Chem.2004, 25:1463-1473.
    [38]Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction, J. Comput. Chem.2006,27:1787-1799.
    [1]Schneider, H.J. Binding Mechanisms in supramolecular complexes, Angew. Chem. Int. Ed.2009,48:3924-3977.
    [2]Stone, A. J. The Theory of Intermolecular Forces, Clarendon, Oxford,1997.
    [3]Riley, K. E., Pitonak, M., Jurecka, P., Hobza, P. Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories, Chem. Rev.2010,110:5023-5063.
    [4]Scheiner, S. Molecular Interactions. From van der Waals to Strong Bound Complexes, Wiley, Chichester,1997.
    [5]Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford,1997.
    [6]Scheiner, S. Hydrogen Bonding-A Theoretical Perspective, Oxford University Press, Oxford,1997.
    [7]Desiraju, G. R., Steiner, T. The Weak Hydrogen Bonding in Structural Chemistry and Biology, Oxford University Press, Oxford,1999.
    [8]Nishio, M., Hirota, M., Umezawa, Y. The CH/π Interaction. Evidence, Nature, and Consequences, Wiley, New York,1998.
    [9]Grabowski, S. Hydrogen Bonding-New Insights, Springer,2006.
    [10]Legon, A. C. The halogen bond:an interim perspective, Phys. Chem. Phys. Chem. 2010,12:7746-7747.
    [11]Auffinger, P., Hays, F. A., Westhof, E., Ho, P. S. Halogen bonds in biological molecules,2004 Proc Natl Acad Sci USA 101:16789-16794.
    [12]Legon, A. C. Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase:A Systematic Case for the Halogen Analogue B…XYof the Hydrogen Bond B…HX, Angew. Chem. Int. Ed.1999,38:2686-2714.
    [13]Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Terraneo, G. Halogen bonding in supramolecular chemistry, Angew. Chem. Int. Ed.2008,47:6114-6127.
    [14]Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. Halogen bonding based recognition processes:A world parallel to hydrogen bonding, Acc. Chem. Res.2005, 38:386-395.
    [15]Lu, Y. X., Shi, T., Wang, Y., Yang, H. Y., Yang, X. H., Luo, X. M., Jiang, H. L Zhu, W. L. Halogen Bonding-A Novel Interaction for Rational Drug Design? J. Medic. Chem.2009,52:2854-2862.
    [16]Politzer, P., Lane, P., Concha, M.C., Ma, Y. G., Murray, J. S. An overview of halogen bonding, J. Mol. Model.2007,13:305-311.
    [17]Clark, T., Hennemann, M., Murray, J. S., Politzer, P. Halogen bonding:the sigma-hole, J. Mol. Model.2007,13:291-296.
    [18]Politzer, P., Murray, J. S., Concha, M. C. Halogen bonding and the design of new materials:organic bromides, chlorides and perhaps even fluorides as donors, J. Mol. Model.2007,13:643-650.
    [19]Politzer, P., Murray, J. S., Clark, T. Halogen bonding:an electrostatically-driven highly directional noncovalent interaction, Phys. Chem. Phys. Chem.2010, 12:7748-7757.
    [20]Estarellas, C., Frontera, A., Quinonero, D., Deya, P. M. Interplay between cation-pi and hydrogen bonding interactions:Are non-additivity effects additive? Chem. Phys. Lett.2009,479:316-320.
    [21]Estarellas, C., Frontera, A., Quinonero, D., Deya, P. M. Interplay between edge-to-face aromatic and hydrogen-bonding interactions, J. Phys. Chem. A 2008, 112:6017-6022.
    [22]Rutledge, L. R., Churchill, C. D. A., Wetmore, S. D. A Preliminary Investigation of the Additivity of pi-pi or pi(+)-pi Stacking and T-Shaped Interactions between Natural or Damaged DNA Nucleobases and Histidine, J. Phys. Chem. B 2010, 114:3355-3367.
    [23]Estarellas, C., Frontera, A., Quinonero, D., Deya, P. M. Interplay between Anion-pi and Hydrogen Bonding Interactions, J. Comput. Chem.2009,30:75-82.
    [24]Berryman, O. B., Johnson, D. W. Experimental evidence for interactions between anions and electron-deficient aromatic rings, Chem. Commu.2009,3134-3153.
    [25]Chin, J., Chung, S., Kim, D. H. Synergistic effect between metal coordination and hydrogen bonding in phosphate and halide recognition, J. Am. Chem. Soc.2002, 124:10948-10949.
    [26]Alkorta, I., Blanco, F., Elguero, J. A computational study of the cooperativity in clusters of interhalogen derivatives, Struct. Chem.2009,20:63-71.
    [27]Alkorta, I., Quinonero, D., Garau, C., Frontera, A., Elguero, J., Deya, P. M. Dual cation and anion acceptor molecules. The case of the (eta(6)-C6H6)(eta(C6F6)-C-6)Cr(0) complex, J. Phys. Chem. A 2007,111;3137-3142.
    [28]Alkorta, I., Blanco, F., Elguero, J. pi-systems as simultaneous hydride and hydrogen bond acceptors, J. Phys. Chem. A 2008,112:6753-6759.
    [29]Alkorta, I., Blanco, F., Elguero, J., Estarellas, C., Frontera, A., Quinonero, D., Deya, P. M. Simultaneous Interaction of Tetrafluoroethene with Anions and Hydrogen-Bond Donors:A Cooperativity Study, J. Comput. Theory Chem.2009, 5:1186-1194.
    [30]Mancin, F., Chin, J. An artificial guanine that binds cytidine through the cooperative interaction of metal coordination and hydrogen bonding, J. Am. Chem. Soc.124:10946-10947.
    [31]Lucas, X., Estarellas, C., Estarellas, C., Frontera, A., Quinonero, D., Deya, P. M. Very Long-Range Effects:Cooperativity between Anion-pi and Hydrogen-Bonding Interactions, Chem. Phys. Chem.2009,10:2256-2264.
    [32]Hunter, C. A., Ihekwaba, N., Misuraca, M. C., Segarra-Maset, M. D., Turega, S. M. Cooperativity in multiply H-bonded complexes, Chem. Commu.2009,3964-3966.
    [33]Estarellas, C., Frontera, A., Quinonero, D., Alkorta, I., Deya, P. M., Elguero, J. Energetic vs Synergetic Stability:A Theoretical Study, J. Phys. Chem. A 113:3266-3273.
    [34]Alkorta, I., Blanco, F., Deya, P. M., Elguero, J., Estarellas, C., Frontera, A., Quinonero, D. Theor. Chem. Acc.2010,126:1-14.
    [35]Lankau, T., Wu, Y. C., Zou, J. W., Yu, C. H. The cooperativity between hydrogen and halogen bonds, J. Theor. Comput. Chem.2008,7:13-35.
    [36]Voth, A. R., Khuu, P., Oishi, K., Ho, P. S. Halogen bonds as orthogonal molecular interactions to hydrogen bonds, Nat. Chem.2009,1:74-79.
    [37]Alkorta, I., Rozas, I., Elguero, J. Isocyanides as hydrogen bond acceptors, Theor. Chem. Acc.1998,99:116-123.
    [38]Li, Q. Z., Liu, Z. B., Cheng, J. B., Li, W. Z., Gong, B. A., Sun, J. Z. Theoretical study on the cooperativity of hydrogen bonds in (HNC)(2)…HF complexes, Theochem 2009,896:112-135.
    [39]Gong, B. A., Jing, B., Li, Q. Z., Liu, Z. B., Li, W. Z., Cheng, J. B., Zheng, Q. C., Sun, J. Z. Ab initio study of the cooperativity between NH…N and NH…C hydrogen bonds in H3N-HNC-HNC complex, Theor. Chem. Acc.2010,127:303-309.
    [40]Frisch MJ et al (2004) Gaussian 03, Rev B.03. Gaussian Inc. Pittsburgh, PA
    [41]Bader RFW (1990) Atoms in Molecules, A Quantum Theory. Oxford University Press, New York
    [42]Todd A Keith (2010) AIMAll Version 10.05.04, aim.tkgristmill.com
    [43]Del Bene, J. E., Alkorta, I., Elguero, J. Do Traditional, Chlorine-shared, and Ion-pair Halogen Bonds Exist? An ab Initio Investigation of FCl:CNX Complexes, J. Phys. Chem. A 2010,114:12958-12962.
    [1]Budesinsky, M., Fiedler, P., Arnold, Z. Triformylmethane-an efficient preparation, some derivatives, and spectra, Synthesis 1989,858-860.
    [2]Boldeskul, I. E., Tsymbal, I. F., Ryltsev, E. V., Latajka, Z., Barnes, A. J. Reversal of the usual nu(C-H/D) spectral shift of haloforms in some hydrogen-bonded complexes, J. Mol. Structure.1997,436:167-171.
    [3]Hobza, P., Havlas, Z. Blue-shifting hydrogen bonds, Chem. Rev.2000, 100:4253-4264.
    [4]Hobza, P., Havlas, Counterpoise-corrected potential energy surfaces of simple H-bonded systems, Theo. Chem. Acc.1998,99:372-377.
    [5]Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. Halogen bonding based recognition processes:A world parallel to hydrogen bonding, Acc. Chem. Res.2005, 38:386-395.
    [6]Riley, K. E., Hobza, P. Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses, J. Chem. Theory Comput.2008, 4:232-242.
    [7]Politzer, P., Lane, P., Concha, M.C., Ma, Y. G., Murray, J. S. An overview of halogen bonding, J. Mol. Model.2007,13:305-311.
    [8]Clark, T., Hennemann, M., Murray, J. S., Politzer, P. Halogen bonding:the sigma-hole, J. Mol. Model.2007,13:291-296.
    [9]Legon, A. C. The halogen bond:an interim perspective, Phys. Chem. Phys. Chem. 2010,12:7746-7747.
    [10]Auffinger, P., Hays, F. A., Westhof, E., Ho, P. S. Halogen bonds in biological molecules,2004 Proc Natl Acad Sci USA 101:16789-16794.
    [11]Politzer, P., Murray, J. S., Clark, T. Halogen bonding:an electrostatically-driven highly directional noncovalent interaction, Phys. Chem. Phys. Chem.2010, 12:7748-7757.
    [12]Hauchecorne, D., Szostak, R., Herrebout, W. A., van der Veken, B. C-X…O Halogen Bonding:Interactions of Trifluoromethyl Halides with Dimethyl Ether J. Chem. Phys. Chem.2009,10:2105-2115.
    [13]Wang, W. Z., Wong, N. B., Zheng, W. X., Tian, A. M. Theoretical study on the blueshifting halogen bond, J. Phys. Chem A 2004,108:1799-1805.
    [14]Wang, W. Z., Hobza, P. Origin of the X-Hal (Hal=Cl, Br) bond-length change in the halogen-bonded complexes, J. Phys. Chem. A 2008,112:4114-4119.
    [15]Hobza, P., Havlas, Z. The fluoroform…ethylene oxide complex exhibits a C-H…O anti-hydrogen bond, Chem. Phys. Lett.1999,303:447-452.
    [16]Hermansson, K. Blue-shifting hydrogen bonds, J. Phys. Chem. A 2002, 106:4695-4702.
    [17]Qian, W. L., Krimm, S. Vibrational Spectroscopy of hydrogen bonding:Origin of the different behavior of the C-H…O hydrogen bond, J. Phys. Chem. A 2002, 106:6628-6636.
    [18]McDowell, S. A. C., Buckingham, A. D. On the correlation between bond-length change and vibrational frequency shift in hydrogen-bonded complexes:A computational study of Y center dot center dot center dot HCl dimers (Y=N-2, CO, BF), J.Am. Chem. Soc.2005,127:15515-15520.
    [19]Gu. Y., Kar, T., Scheiner, S. Fundamental properties of the CH…O interaction:Is it a true hydrogen bond? J. Am. Chem. Soc.1999,121:9411-9422.
    [20]Scheiner, S., Kar, T. Red- versus blue-shifting hydrogen bonds:Are there fundamental distinctions? J. Phys. Chem. A 2002,106:1784-1789.
    [21]Masunov, A., Danneberg, J. J. C-H Bond-Shortening upon Hydrogen Bond Formation:Influence of an Electric Field, J. Phys. Chem. A 2001,105:4737-4740.
    [22]Li, X. S., Liu, L., Schlegel, H. B. On the Physical Origin of Blue-Shifted Hydrogen Bonds, J. Am. Chem. Soc.2002,124:9639-9647.
    [23]Alabugin, I. V., Manoharan, M., Peabody, S., Weinhold, F. Electronic basis of improper hydrogen bonding:A subtle balance of hyper conjugation and rehybridization J. Am. Chem. Soc.2003,125:5973-5987.
    [24]Inagaki, S., Takeuchi, T. Localization of electrons:Blue-shifting hydrogen bonds, Chem. Lett.2005,34:750-751.
    [25]Li, A. Y. Chemical origin of blue-and redshifted hydrogen bonds:Intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation, J. Chem. Phys.2007,126:154102.
    [26]Frisch MJ et al (2004) Gaussian 03, Rev B.03. Gaussian Inc. Pittsburgh, PA
    [27]Boys SF, Bernardi F (1970) Mol Phys 19:553-566
    [28]Bader RFW (1990) Atoms in Molecules, A Quantum Theory. Oxford University Press, New York
    [29]Todd A Keith (2010) AIMAll Version 10.05.04, aim.tkgristmill.com
    [30]Joseph, J., Jemmis, E. D. Red-, blue-, or no-shift in hydrogen bonds:A unified explanation, J. Am. Chem. Soc.2007,129:4620-4632.
    [1]Baker, F. W., Parish, R. C., Stock, L. M. Dissociation constants of bicyclo[2.2.2]oct-2-ene-l-carboxylicacids,dibenzobicyclo[2.2.2]octa-2,5-diene-l-carb oxylic acids, and cubanecarboxylic acids, J. Am. Chem. Soc.1967,89:5677-5685.
    [2]Brauman, J. I., Smyth, K. C. Photodetachment Energies of Negative Ions by Ion Cyclotron Resonance Spectroscopy. Electron Affinities of Neutral Radicals, J. Am. Chem. Soc.1969,91:7778-7780.
    [3]Brauman, J. I., Blair, L. K. Gas-Phase Acidities of Amines, J. Am. Chem. Soc. 1970.93:3911-3914.
    [4]Biswal, H. S., Shirhatti, P. R., Wategaonkar, S. O-H…O versus O-H…S Hydrogen Bonding I:Experimental and Computational Studieson the p-Creso…H2O and p-Creso…H2S Complexes, J. Phys. Chem. A 2009,113:5633-5643.
    [5]Biswal, H. S., Shirhatti, P. R., Wategaonkar, S. O-H…O versus O-H…S Hydrogen Bonding.2. Alcohols and Thiols as Hydrogen Bond Acceptors, J. Phys. Chem. A 2010, 114:6944-6955.
    [6]Biswal, H. S., Wategaonkar, S. O-H…O versus O-H…S Hydrogen Bonding.3. IR-UV Double Resonance Study of Hydrogen Bonded Complexes of p-Cresol with Diethyl Ether and Its Sulfur Analog, J. Phys. Chem. A 2010,114:5947-5957.
    [7]Lai, C. H., Chou, P. T. Can an OH Radical Form a Strong Hydrogen Bond? A Theoretical Comparison with H2O, J. Comput. Chem.2006,28:1357-1363.
    [8]Howard, D. L., Kjaergaard, H. G. Hydrogen bonding to divalent sulfur, Phys. Chem. Chem. Phys.2008,10:4113-4118.
    [9]Li, Q. Z., Wu, G. S., Yu. Z. W. The Role of Methyl Groups in the Formation of Hydrogen Bond in DMSO-Methanol Mixtures, J. Am. Chem. Soc.2006, 128:1438-1439.
    [10]Legon, A. C. The halogen bond:an interim perspective, Phys. Chem. Phys. Chem. 2010,12:7746-7747.
    [11]Auffinger, P., Hays, F. A., Westhof, E., Ho, P. S. Halogen bonds in biological molecules,2004 Proc Natl Acad Sci USA 101:16789-16794.
    [12]Legon, A. C. Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase:A Systematic Case for the Halogen Analogue B…XYof the Hydrogen Bond B…HX, Angew. Chem. Int. Ed.1999,38:2686-2714.
    [14]Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Terraneo, G. Halogen bonding in supramolecular chemistry, Angew. Chem. Int. Ed.2008,47:6114-6127.
    [15]Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. Halogen bonding based recognition processes:A world parallel to hydrogen bonding, Acc. Chem. Res.2005, 38:386-395.
    [16]Lu, Y. X., Shi, T., Wang, Y., Yang, H. Y., Yang, X. H., Luo, X. M., Jiang, H. L., Zhu, W. L. Halogen Bonding-A Novel Interaction for Rational Drug Design? J. Medic. Chem.2009,52:2854-2862.
    [17]Politzer, P., Lane, P., Concha, M.C., Ma, Y. G., Murray, J. S. An overview of halogen bonding, J. Mol. Model.2007,13:305-311.
    [18]Clark, T., Hennemann, M., Murray, J. S., Politzer, P. Halogen bonding:the sigma-hole, J. Mol. Model.2007,13:291-296.
    [19]Politzer, P., Murray, J. S., Concha, M. C. Halogen bonding and the design of new materials:organic bromides, chlorides and perhaps even fluorides as donors, J. Mol. Model.2007,13:643-650.
    [20]Politzer, P., Murray, J. S., Clark, T. Halogen bonding:an electrostatically-driven highly directional noncovalent interaction, Phys. Chem. Phys. Chem.2010, 12:7748-7757.
    [21]Li, Q. Z., Jing, B., Liu, Z. B., Li, W. Z., Cheng, J. B., Gong, B. A., Sun, J. Z. Surprising enhancing effect of methyl group on the strength of O…XF and S…XF (X =Cl and Br) halogen bonds, J. Chem. Phys.2010,133:134303.
    [22]Frisch MJ et al (2004) Gaussian 03, Rev B.03. Gaussian Inc. Pittsburgh, PA
    [23]Boys SF, Bernardi F (1970) Mol Phys 19:553-566.
    [1]Scheiner, S. Molecular Interactions. From van der Waals to Strong Bound Complexes, Wiley, Chichester,1997.
    [2]Schneider, H.J. Binding Mechanisms in supramolecular complexes, Angew. Chem. Int. Ed.2009,48:3924-3977.
    [3]Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford,1997.
    [4]Scheiner, S. Hydrogen Bonding-A Theoretical Perspective, Oxford University Press, Oxford,1997.
    [5]Legon, A. C. The halogen bond:an interim perspective, Phys. Chem. Phys. Chem. 2010,12:7746-7747.
    [6]Auffinger, P., Hays, F. A., Westhof, E., Ho, P. S. Halogen bonds in biological molecules,2004 Proc Natl Acad Sci USA 101:16789-16794.
    [7]Metrangolo, P., Meyer, F., Pilati, T., Resnati, G., Terraneo, G. Halogen bonding in supramolecular chemistry, Angew. Chem. Int. Ed.2008,47:6114-6127.
    [8]Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. Halogen bonding based recognition processes:A world parallel to hydrogen bonding, Acc. Chem. Res.2005, 38:386-395.
    [9]Clark, T., Hennemann, M., Murray, J. S., Politzer, P. Halogen bonding:the sigma-hole, J. Mol. Model.2007,13:291-296.
    [10]Politzer, P., Lane, P., Concha, M.C., Ma, Y. G., Murray, J. S. An overview of halogen bonding, J. Mol. Model.2007,13:305-311.
    [11]Politzer, P., Murray, J. S., Clark, T. Halogen bonding:an electrostatically-driven highly directional noncovalent interaction, Phys. Chem. Phys. Chem.2010, 12:7748-7757.
    [12]Espallargas, G. M., Brammer, L., Allan, D. R., Pulham, C. R., Robertson, N., Warren, J. E. Noncovalent interactions under extreme conditions:High-pressure and low-temperature diffraction studies of the isostructural metal-organic networks (4-chloropyridinium)(2)[CoX4] (X=CI, Br), J. Am. Chem. Soc.2008, 130:9058-9071.
    [13]Smart, P., Espallargas, G. M., Brammer, L. Competition between coordination network and halogen bond network formation:towards halogen-bond functionalised network materials using copper-iodobenzoate units, Cryst. Eng. Comm.2008, 10:1335-1344.
    [14]Brammer, L., Espallargas, G. M., Libri, S. Combining metals with halogen bonds, Cryst. Eng. Comm.2008,10:1712-1727.
    [15]Espallargas, G. M., Zordan, F., Marin, L. A., Adams, H., Shankland, K., van de Streek, J., Brammer, L. Rational Modification of the Hierarchy of Intermolecular Interactions in Molecular Crystal Structures by Using Tunable Halogen Bonds, Chem. Eur. J.2009,15:7554-7568.
    [16]Clemente-Juan, J. M., Coronado, E., Espallargas, G. M., Adams, H., Brammer, L. Effects of halogen bonding in ferromagnetic chains based on Co(II) coordination polymers, Cryst. Eng. Comm.2010,12:2339-2342.
    [17]Espallargas, G. M., Brammer, L., Sherwood, P. Designing intermolecular interactions between halogenated peripheries of inorganic and organic molecules: Electrostatically directed M-X…X'-C halogen bonds, Angew. Chem. Int. Ed.2006, 45:435-440.
    [18]Zordan, F., Espallargas, G. M., Brammer, L. Unexpected structural homologies involving hydrogen-bonded and halogen-bonded networks in halopyridinium halometallate salts, Cryst. Eng. Comm.2006,8:425-431.
    [19]Brammer, L., Espallargas, G. M., Adams, H. Involving metals in halogen-halogen interactions:second-sphere Lewis acid ligands for perhalometallate ions (M-X…X'-C), Cryst. Eng. Comm.2003,5:343-345.
    [20]Bertani, R., Sgarbossa, P., Venzo, A., Lelj, F., Amati, M., Resnati, G., Pilati, T., Metrangolo, P., Terraneo, G. Halogen bonding in metal-organic-supramolecular networks, Coord. Chem. Rev.2010,254:677-695.
    [21]Xu, L., Lv, J., Sang, P., Zou, J. W., Yu, Q. S., Xu, M. B. Comparative insight into the halogen bonding of 4-chloropyridine and its metal [CuⅠ,ZnⅡ] coordinations with halide ions:A theoretical study on M-C-X…X1, Chem. Phys.2011,379:66-72.
    [22]Frisch MJ et al (2004) Gaussian 03, Rev B.03. Gaussian Inc. Pittsburgh, PA
    [23]Bader RFW (1990) Atoms in Molecules, A Quantum Theory. Oxford University Press, New York
    [24]Todd A Keith (2010) AIMAll Version 10.05.04, aim.tkgristmill.com
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.