丁草胺—镉复合污染对土壤微生物的分子生态毒理效应与生物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤中农药和重金属是经常共存且广泛分布的典型土壤环境污染物。开展农药-重金属复合污染研究,对于正确评价土壤环境中复合污染条件下污染物质的迁移转化行为,帮助人们采取合理的整治措施,解决土壤的环境污染问题具有十分重要的理论和实践意义。本文以除草剂丁草胺和镉为典型的有机物和重金属污染物,在室内模拟条件下,开展了丁草胺-镉复合污染对两种土壤(黑土和水稻土)微生物分子生态毒理效应及生物修复研究。主要研究结果如下:
     1、以丁草胺、镉为目标污染物,通过室内模拟试验,研究了丁草胺-镉复合污染对土壤脲酶、磷酸酶和呼吸强度的影响。结果表明,丁草胺-镉复合污染对土壤酶活性的抑制和土壤呼吸作用的影响高于丁草胺和镉单一处理,复合污染对土壤酶的抑制作用更明显。复合污染的交互作用随着丁草胺和镉浓度比例的不同和处理时间的不同分别会产生拮抗作用和协同作用;其中,丁草胺(100 mg/L)+镉(10 mg/L)处理在整个处理过程为协同作用,而丁草胺(10 mg/L)+镉(10 mg/L)和丁草胺(50 mg/L)+镉(10 mg/L)处理初期为拮抗作用,在处理的后期则为协同作用。
     2、运用RAPD分子指纹技术,对丁草胺和镉单一处理及丁草胺-镉复合污染处理对土壤微生物种群结构的影响进行了初步研究。采用酶-化学联合原位提取法,提取土壤微生物总DNA并纯化,得到产量高而且纯度也较高的土壤微生物总DNA。采用10条随机引物的RAPD实验结果表明,丁草胺-镉复合污染土壤的RAPD多态性条带明显高于单一污染土壤;复合污染土壤微生物DNA序列与对照土壤中DNA序列的差异较大。表明丁草胺-镉复合污染对土壤微生物群落结构有着明显的影响。
     3、分析比较了丁草胺和镉对水稻土和黑土微生物的影响,结果表明在两种土壤中,丁草胺-镉复合污染对土壤微生物的影响有差异:水稻土脲酶、磷酸酶及呼吸强度受抑制的程度比黑土大;抑制程度出现变化的时间,水稻土中比黑土早。同时,复合污染对土壤微生物的RAPD分析结果表明,虽然黑土和水稻土中的对照处理扩增出的RAPD多态性条带数比较接近,但是丁草胺和镉处理的土样微生物DNA序列的多态性明显不同,水稻土的微生物多态性条带明显高于黑土。不同处理土样增加和缺失的DNA条带的分子量有明显差异,并且水稻土中变化的条带分子量大于黑土。微生物群落结构变化试验结果进一步验证了在研究复合污染对土壤酶和呼吸作用影响的试验中黑土比水稻土对丁草胺和镉的耐受和缓冲作用强于水稻土的结论。
     4、从农药厂排污口附近采集土样,进行富集驯化和反复纯化,筛选到一株能够有效降解丁草胺的细菌,在纯培养条件下,培养3d,对添加浓度为30 mg/L丁草胺的降解率可达90%以上;根据菌体形状、菌落形态以及生理生化反应特性初步鉴定降解菌属于革兰氏阴性好氧恶臭假单胞菌属(Pseudomonsa putida),命名为RE1。确定了降解菌RE1的生长和对丁草胺降解的最适宜温度为30℃~35℃,pH值6.0~8.0。RE1对镉有一定的耐受能力,在镉浓度为1 mg/L时降解菌能够正常生长,对丁草胺的降解率达到50%以上,表明降解菌RE1在耐受一定浓度镉的条件下,仍对丁草胺产生降解作用。
     5、对降解菌RE1的降解酶进行了研究,根据降解酶的降解活性结果确定降解酶既含有组成酶又含有诱导酶,组成酶具有降解丁草胺的活性,而经过丁草胺和镉诱导后产生的诱导酶增加了该菌的降解活性;酶蛋白的SDS-聚丙烯酰胺凝胶电泳实验结果表明,与对照处理相比,丁草胺单一处理和丁草胺-镉复合处理降解菌酶蛋白的含量增加了,但是两处理之间没有明显差异。该结果进一步验证了丁草胺单一处理和丁草胺-镉复合处理能够提高降解酶活性是因为降解菌产生了诱导酶,并且两种处理产生的诱导酶差异不大。
     6、双向电泳技术是研究蛋白质差异表达的关键技术,本研究比较了两种双向电泳样品蛋白制备方法,确立了以液氮研磨-TCA/丙酮沉淀为主要技术的降解菌样品蛋白质的制备方法,得到的蛋白样品用pH4-7的线性IPG和12.5%的SDS-聚丙烯酰胺凝胶电泳分离,该法简便,能够有效的去除蛋白质中干扰双向电泳的杂质,得到了高分辨率的双向电泳图谱;而且第二向凝胶电泳(SDS-聚丙烯酰胺)采用普通的垂直板凝胶电泳系统替代成套的Ettan DALTsix系统,结果证明重复性良好,操作简便,降低了实验成本和劳动强度。
     7、采用液氮研磨-TCA/丙酮沉淀为主的样品蛋白质制备方法进行双向电泳,研究降解菌在丁草胺和镉胁迫的条件下酶蛋白变化的特点。结果表明,丁草胺和镉处理的降解菌的蛋白发生了明显的变化,其中发生明显变化的11个蛋白点中,有10个蛋白为明显的上调蛋白,1个蛋白为新发现的蛋白。通过质谱分析和数据库搜索对差异蛋白进行鉴定,表明差异蛋白有氧化还原酶、水解酶等活性,参与细胞中物质的转移和转化作用。该研究从蛋白水平确定了丁草胺和镉能够诱导降解酶,从而提高降解能力。
Pesticide and heavy metals (HM) are frequently found together as contaminants in soils and have attracted much attention in recent decades. It is very important to investigate the compound pollution between pesticide and heavy metal for the management and diagnosis of soil pollution. In this paper, the combined effects of butachlor and cadmium (Cd) on soil microorganism were studied by using paddy and phaeozem soil. Moreover, the bioremediation of the combined pollution of butachlor and cadmium were also investigated. The main results are showed as follows:
     1. The effects of butachlor and Cd on soil urease, phosphatase and soil respiration were studied under control condition. The results showed that combined inhibition of butachlor and Cd was more significant than separate exposures on soil enzyme and soil respiration. In addition, inhibition of the combined pollutants on soil enzyme was more significant than that on soil respiration. The interaction of butachlor and Cd depend largely on incubation time and the concentration ratios of the pollutants. Joint effects of pollutants may be similar (additive) or stronger (synergistic, more than additive) or weaker (antagonistic, less than additive) than expected effects from separate exposures. In this study, the interaction of butachlor (100mg/kg) and Cd (10mg/kg) was synergistic during the whole incubation time, while the interaction of butachlor (10mg/kg or 50mg/kg) and Cd (10mg/kg) was antagonistic at the beginning of the incubation and synergistic in the end of the incubation.
     2. The genotoxicity of microorganism in soil contaminated with butachlor and Cd was studied by the random amplified polymorphism DNA (RAPD). The combined method with enzymatic and chemical lyses was effective for the microbial total DNA extraction. It had higher total DNA yield and purities in the products. Ten random primers were used to amplify the microbial community DNA. The results showed that combined pollution between butachlor and Cd changed the DNA sequence of soil microorganism, and caused DNA damnification. The microbial DNA damnification caused by butchlor-Cd was significantly different from their single pollution. Moreover, the number of amplified band increased with the incubation keeping on. Therefore, DNA sequence of soil microorganism was affected.
     3. The effects of butachlor and Cd on soil microorganism were different between in paddy and in phaeozem. The inhibition of butachlor and Cd on soil enzyme and soil respiration was more significant in paddy than that in phaeozem. Moreover, the time of inhibition in paddy occurred earlier than that in phaeozem. In addition, the number of amplified band was more in paddy than that in phaeozem according to analysis the results of RAPD. These compared results in paddy and in phaeozem showed that phaeozem had stronger ability than paddy in enduring pollutants.
     4. A butachlor-degrading bacterium (designated strain RE1) was isolated from the soil collected from a pesticide plant. The strain could degrade butachlor effectively. When the concentration of butachlor was 30mg/L, the degradation rate was about 90% within 3 days. Based on the general physiological and biochemical characteristics, strain RE1 was identified as Pseudomonsa putida. The degrading ability and the growth of strain RE1 was affected by incubation temperature and pH. The optimal temperature and pH for the strain’s growth and butachlor degradation was 30-35℃and 6.0-8.0. In addition, strain RE1 could grow normally when the concentration of Cd was below 1 mg/L. Moreover, when the concentration of Cd was 1mg/L and the concentration of butachlor was 30 mg/L, strain RE1 could degrade butchlor and the degradation rate was over 50%. The result indicated that strain RE1 could degrade butachlor at the combined condition of butachlor and Cd.
     5. In this study, we tested the degradation of butachlor by the crude enzyme of ER1. In addition, we also tested butachlor and Cd as inducers of butachlor-degrading enzyme synthesis. There were significantly different in enzyme activities between the cells incubated with butachlor, butachlor + Cd and without pollutants (the controls). The activities of the enzyme protein indicated that butachlor-degrading enzyme protein was not only constitutively expressed in RE1 and was also induced by butachlor and Cd. In addition, the results of SDS-PAGE showed that the amount of some enzyme proteins increased after the strain treated with the pollutants. So it seemed that butachor and Cd induced some enzyme proteins benefit for the degrading of butachlor.
     6. Two-dimensional gel electrophoresis is the key in protein analysis. The sample of strain RE1 was grinded with liquid nitrogen, 10% TCA-acetone precipitation. Proteins were analyzed by immobilize dry strip pH 4-7 (linear) and 12.5% SDS-PAGE. These methods could remove the impurity that could affect the resolving capability of 2-DE. So, with these methods high resolving capability 2-DE maps were achieved. A normal SDS-PAGE replaced the Ettan DALTsix system, which could get good protein spots effectively and also save labor costs.
     7. Of the total bacteria proteins, eleven protein spots were found significantly changed after treated by butachor and Cd. Among these proteins, ten proteins were found to be up regulated, while one protein spot was only detected in butachlor and Cd treated cells but not in the control treated cells. To make the identification more confident and specific, the spots were excised from preparative 2-DE gels and analyzed by MALDI-TOF MS. In order to identify their functions, they were subjected to database searching against SWISS-PROT, TrEMBL and NCBI using profound software. The results showed that the identified proteins might have oxidoreductase or hydrolase activity. These proteins might be responsible for degradation of pollutants and played an essential role in cell defense against environmental stresses.
引文
[1] 周启星,复合污染生态学,北京,中国环境科学出版社,1995
    [2] 何勇田,熊先哲,复合污染研究进展,环境科学,1994,15 (6),79-83
    [3] 沈国清,陆贻通,周培,重金属-多环芳烃复合研究进展,上海交通大学学报(农业科学版),2005,23(1),102-106
    [4] Bliss CI. The toxicity of poisons applied jointly. Ann Appl Biol, 1939, 26, 585-615
    [5] Shehata SA, Lasheen MR, Kobbia IA. Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water Air Soil Pollut, 1999, 110, 119-135
    [6] Forget J, Pavillon JF, Beleaeff B. Joint Action of Pollutant combinations (Pestivcides and Metals ) on Survial (LC50 Values) and Acetylcholinesterase Activity of Tigriapus Brevicomis(Copeapoda, Harpacticoida). Environ Toxicol Chem, 1999, 18(5), 912-918
    [7] Ribryre F, Amiard-Triquet C, Boudou A et al. Experimental study of interactions between five trace elements----Cu, Ag, Se, and Hg---toward their bioaccumulation by fish (Brachydanio rerio) from the direct route. Ecotoxicol. Environ. Saf, 1995, 32, 1-11
    [8] Hamilton SJ, Buhl KJ. Hazard evaluation of inorganics singly and in mixtures to Flannelmouth sucker Catostormus Latipinnis in the San Juan River, New Mexico. Ecotoxicol Environ Saf, 1997, 38, 296-308
    [9] Kostechi PT, Calabrese EJ, Dragun J. Contaminated soils, Amherst: Amherst Scientific Publishers, 2002, 7, 126
    [10] Canter LW, Knox RC. Ground water pollution control. Lewis Publisher Inc, 1986, 152
    [11] Kong I, Bitton G, Koopman B et al. Heavy metal toxicity testing in environmental samples. Rev Envrion Cont Toxicol, 1995, 142, 119-147
    [12] Luthy R, Dzombak D, Peters C et al. Remediating contaminated soil at manufactured gas plant sites. Environ Sci Technol, 1994, 28(6), 266-276
    [13] Knight L, Hadlec R, Ohlendorf H. The use of treatment wetlands for petroleum industry effluents. Env Sci Technol, 1999, 33(7), 973-980
    [14] Fisher C, Schmitter R, Lane E. Manufactured gas plants: The Environmental Legacy (technical report), Atlanta, Georgia, South & Southwest Center, 1999, 7
    [15] Patterson JW. Industrial wastewater treatment technology, 2nd ed., Butterworth Stoneham, MA, 1985, 37
    [16] Muller J, Chapman P, Prichard P. Creosote-contaminated sites: Their potential for bioremediation. Environ Sci Technol, 1989, 23(10), 1197-1120
    [17] 周东美,王慎强,陈怀满, 土壤中有机污染物-重金属复合污染的交互作用, 土壤与环境, 2000,9(2),143-145
    [18] 王连生,有机污染化学,科学出版社,1995
    [19] Lagas P. Sorption of chlorophenols in the soils. Chemosphere, 1988, 17(2), 205-216
    [20] Naidu RK, Sumner ME. Cadmium sorption and transport in variable charge soils: a review. J Environ Qual, 1997, 26, 602-617
    [21] Faberga JR, Jafvert CT, Li H et al. Modeling short-term soil-water distribution of aromatic amines. Environ Sci Technol, 1998, 32, 2788-2794
    [22] Cai Y, Jaffe B, Jones R. Ethymercury in the soils and sediments of the florida everglades. Environ Sci Technol, 1997, 31, 302-305
    [23] Khan KS, Huang CY. Effect of acetate on lead activity to microbial biomass in a red soil. J Environ Sci, 1999, 11(1), 40-47
    [24] Hiroyuki H. Decomposition of organic matter with previous cadmium adsorption in soils. Soil Sci Plant Nutr, 1994, 42(4), 745-752
    [25] Sylvia DM. Principles and applications of soil microbiology, Prentice Hall, New Jersey, 1998, 550
    [26] 陈杰,骆国保译,基础土壤科学研究的契机,北京, 中国农业科技出版社,1995,55-56
    [27] 吴金水,肖和艾,土壤微生物对硫素转化及有效性的控制作用,农业现代化研究,1999,20(6),350-354
    [28] Singh JS, Gupta SR. Plant decomposition and soil respiration in terrestrial ecosystems, Bot Rev, 1977, 43, 449-528
    [29] 李玉宁,王关玉,李伟,土壤呼吸作用和全球碳循环,地学前缘,2002,9(2),351-357
    [30] B??th E. Effects of heavy metals in soils on microbial processes and population(a review), Water Air Soil Pollut, 1989, 47, 335-379
    [31] 张清敏,李得翔,熊瑛等,涕灭威复合污染体系对土壤微生物的生态毒理效应,农业环境保护,2001,20(5),302-304
    [32] 张惠文,张倩如,周启星等,乙草胺及铜离子复合施用对黑土农田生态系统土著微生物的急性毒性效应,2003,22(2),129-133
    [33] 杨万勤,王开运,土壤酶研究动态与展望,应用与环境生物学报,2002,8(5),564-570
    [34] 周礼恺,张志明,曹承锦等,土壤的重金属污染与土壤酶活性,环境科学学报,1985,5(2),176-183
    [35] Kitagish. Heavy metal pollution in Soil of Japan, Jokyo: Japan Scientific Societies Press, 1981, 81-91
    [36] 杨志新,刘树庆,重金属Cd,Zn,Pb复合污染对土壤酶活性的影响,环境科学学报,2001,21(1),60-63
    [37] Brookes PC, McGrath SP. Effects of metal toxicity on the size of the soil microbial biomass, J Soil Sci, 1984, 35, 341-346
    [38] 龚平,李培军,孙铁珩,Cd、Zn、菲和多效唑复合污染土壤的微生物生态毒理效应,中国环境科学,1997,17(1),58-62
    [39] Atlas R M. Diversity of microbial community,Ad Microb Ecol, 1993, 7, 1-47
    [40] Zak JC, Willing MR, Moorehead DL et al. Functional diversity of microbialcommunities: a quantitative approach, Soil Biochem, 1994, 26, 1101-1108
    [41] 吴春华,植物多样性对铅污染土壤的响应及其生态效应,浙江大学,2004,15
    [42] 龚平,孙铁珩,重金属土壤微生物的生态效应,应用生态学报,1997,8(2),218-224
    [43] Babich E, Sto tzky G. Developing standard for environmental toxicants: The need to consider abio tic environmental factors and microbe mediated eco logical processes. Environ Health Perspect, 1983, 49, 345-353
    [44] Muyzer Ellen CW, Andre GU. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction genes coding for 16S rRNA. Appl Environ Microbial, 1993, 59, 695-700
    [45] Ranjard L, Poly F, Nazaret S. Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res Microbiol, 2000, 151, 167-177
    [46] 赵祥伟,骆永明,滕应等,重金属复合污染农田土壤的微生物群落遗传多样性研究,环境科学学报,2005,25(2),186-191
    [47] William SJ, Dubelik AR, Livak KJ et al. DNA polymorphism samplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18,6531-6535
    [48] Welsh J, Mcclelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990, 18, 7213-7219
    [49] Wilhelmina TG. Use of random amplified polymorphic DNA markers for the detection of Azispirillum strains in soil microcosms. Appl Microbiol Biotechnol, 1998, 49, 221-225
    [50] Dane K. Randomly amplified polymorphic DNA profile based measures of genetic diversity in crayfish correlated with environmental impacts. EnvironToxicol Chem, 1999, 30, 504-508
    [51] Bacerril C. Detection of mitomycin C induced genetic damage in fish, Mutagensis.1999, 14(5), 449-456
    [52] Conte C. DNA fingerprinting analysis by a PCR based method for monitoring the genotoxic effect of heavy metal pollution. Chemosphere, 1998, 37, 2739-2749
    [53] Frank C. Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyⅡfluorescence and growth in a marine macroalgae Palmaria palmate. Aquat Toxicol, 2000, 50, 1-12
    [54] Franck A. Quanlitative assessment of genotoxicity using random amplied polymorphic DNA: comparison of genomic temp late stability with key fitness parameters in daphnia magna exposed to benzo (a) pyrene. Environ Toxicol Chem, 1999, 18, 2275-2282
    [55] Lynch M. The similarity index and fingerprinting. Mol Biol Evol, 1990, 7(5), 478-484
    [56] 姚健,杨永华,沈晓蓉等,农用化学品污染对土壤微生物群落DNA序列影响研究生态学报,2000,20(6),1021-1027
    [57] Yang YH, Yao J, Hu S et al. Effects of Agricultural Chemicals on DNA Sequence Diversity of Soil Microbial Community: A Study with RAPD Marker. Microb Ecol, 2000, 39, 72-79
    [58] 刘志培,贾省芬,杨惠芳,单甲脒降解菌的分离筛选,微生物学通报,1995,22(5),285-288
    [59] 刘玉焕,李淑彬,刘芳,曲霉 L8 对有机磷农药乐果的降解作用,上海环境科学,1998,17(8),20-21
    [60] 王金花,朱鲁生,王军,3 株真菌对毒死蜱的降解特性,应用与环境微生物学报,2005,11(2),211-214
    [61] Hgue I, Freed NH. Environmental Dynamics of Pesticides. Plenum Press, New Yord and London, 1975, 136-157
    [62] Mandelbaum RT, Weckett LP. Rapid hydrolysis of atrazine to hydroxyatrazine by soil bacteria. Environ Sci Technol, 1993, 27, 1943-1946
    [63] Behki R M, Khan S. Degradation of atrazin,propazine, and simazine by Rhodococcusstrain B-30. Agric Food Chem, 1994, 42, 1237-1241
    [64] 虞云龙,宋凤鸣,郑重等,一株广谱性农药降解菌(Alcaligenes sp)分离与鉴定,浙江农业大学学报,1997,23(2),111-115
    [65] 王永杰,李顺鹏,沈标等,有机磷农药广谱活性降解菌的分离及其生理特性研究,南京农业大学学报,1999,22(2),42-45
    [66] Westerberg K, Elvang AM, Stackebrandt E et al. Arthrobacter chlorophenolicus sp. nov, a new species capable of degrading high concentrations of 4-chlorophenol. J Syst Evol Microbiol, 2000, 50(6), 2083-2092
    [67] Hayatsu M, Mizutani A, Hashimoto M et al. Purification and characterization of carbaryl hydrolase from Arthrobacter sp. RC100. FEMS. Micro Boil Lett, 2001, 201(1), 99-103
    [68] Widehem P, Ait-Aissa S, Tixier C et al. Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2. Chemosphere, 2002, 46(4), 527-534
    [69] Khadrani A, Seigle M, Steiman R. Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere (UK), 1999, 38(13), 3041-3050
    [70] 刘爱菊,阿特拉津高效降解细菌的筛选及降解特性研究,山东农业大学硕士学位论文,2003.
    [71] Mandelbaum RT, Deborrph L, Lawrenge PA. Isolation and Characterization of a Pesudomonas sp. That mineralizes the s-Triazine Herbicide Atrazine. Appl Environ Microbiol, 1995, 61(4), 1451-1457
    [72] Clotaire Y K, Nikolaus G. Mineralization of the herbicide atrazine as a carbon source by a Pesudomonas strain. Appl Environ Microbiol, 1994, 60(12), 4297-4302
    [73] Ledin M. Accumulation of metals by microorganisms-processes and importance for soil systems, Earth Sci Rev, 2000, 51, 1-31
    [74] Zouboulis AI, Loukidou MX, Matis KA. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem, 2004, 39, 909-916
    [75] 汪频,李福德,刘大江,硫酸盐还原菌还原铬(Ⅵ)的研究,环境科学,1993,14(6),1-5
    [76] Macaskie LE, Dean ACR. Cadmium accumulation by microorganisms. Environ Technol Lett, 1982, 3(2), 49-56
    [77] Belly RT, Kydd GC. Silver resistance in microorganisms. Dev Ind Microbiol, 1982, 23, 567-578
    [78] Allan VJM, Callow ME, Macaskie LE et al. Effect of nurient limitation on biofilm formation and phosphatase activity of a Citrobacter sp.. Microbiol Reading, 2002, 148(1), 277-288
    [79] Spangler WJ, Spigarelli JL, Rose JM et al. Degradation of methylmercury by bacteria isolated from environmental samples. Appl Microbiol, 1973, 25(4), 488-493
    [80] 刘爱民,耐镉细菌筛选与吸附镉机理研究及其在镉污染土壤修复中的应用,南京农业大学,博士论文,2005
    [81] Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol, 1999, 51, 730-750
    [82] Nies DH. Efflux-mediated heavy metal resistance in prokaryotes, FEMS Microbiol Rev, 2003, 27, 313-339
    [83] 虞云龙,盛国英,傅家谟,杀灭菊酯的微生物降解及酶促降解,环境科学,1997,18(2),5-8
    [84] Derbyshire MK. Purification and characterization of an N-methylcatbamate pesticide hydrolyzing enzyme. J Agric Food Chem, 1987, 35, 871-877
    [85] Topp E, Mubry WM, Hong Z et al. Characterization of s-Triazine herbicide metabolism by a Nocardiodes sp. isolated from agricultural soils. Appl Envron Microbiol, 2000, 66(3), 3134-3141
    [86] Karns JS, Richard WE. Genes encoding s-triazine degradation are plasmid-borne in Klebsiella pneumoniae strain 99. Journal Agri Food Chem, 1997, 45, 1017-1022
    [87] Karns JS. Gene sequence and properties of an s-Triazine ring-cleavage enzyme from Pesudomonas sp strain NRRL B-12227. Appl Environ Microbiol, 1999, 65, 3512-3517
    [88] 叶锦韶,尹华,彭辉,微生物抗重金属毒性研究进展,环境污染治理技术与设备,2002,3(4),1-4
    [89] Ferianc P, Farewell A, Nystrom T. The cadmium-stress stimulon of Escherichia coli K-12. Microbiology, 1998, 144, 1045-1050
    [90] Silver S. Toxic inorganics: Resistances to toxic heavy metals and mechanisms for bio-remediation. Cell Biochem, 1993, (Suppl), 176-189
    [91] Munchbach M, Dainese P, Staudenmann W. Proteome analysis of heat shock protein expression in Bradyrhizobium japonicum. Eur J Biochem, 1999, 263, 39-48
    [92] Phan Thanhl, Gormon T. Stress proteins in Listeria monocytogenes. Electrophoresis, 1997, 18, 1464-1471
    [93] Mannazzu L, Guerra E, Ferretti R. Vanadate and copper induce overlapping oxidative stress responses in the vanadate-tolerant yeast, Hansenula polymorpha Biochimicaet Biophysica Acta, 2000, 1475, 151-156
    [94] Encarnación S, Hernández M, Martínez-Batallar G et al. Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes. Biol Proced Online, 2005, 7, 117-135
    [95] 许克新,王云川,双向电泳及质谱分析与蛋白组研究,第四军医大学学报,2002,23,2017-2022.
    [96] G?rg A, Obermaier C, Boguth G et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21(6), 1037-1053
    [97] 杜鹏,冯伟华,郭俊生等,蛋白质组双向电泳技术研究进展,卫生研究,2005,34,237-240.
    [98] Dunn MJ. Gel electrophoresis of proteins. BIOS Scientific Publishers Ltd. Alden Press, Oxford, 1993
    [99] De Backer DM, De Hoogt RA, Froyen G et al. Single allele knock-out of Candida albicans CGT1 leads to unexpected resistance to hygromycin B and elevated temperature. Microbiology, 2000, 146, 353-365.
    [100] Guerreiro N, Ksenzenko VN, Djordjevic MA et al. Elevated levels of synthesis of over 20 protein results after mutation of the Rhizobium legumimosarum exopolysaccharide synthesis gene pssA. J Bacteriol, 2000, 182(16), 4521-4532
    [101] 陈怀满,郑春荣,中国土壤重金属污染现状与防治对策,人类环境杂志,1999,28(2),130-134
    [102] 刘长令,世界农药大全—除草剂卷,北京:化学工业出版社,2002,259-260
    [103] Yu YL, Chen YX, Luo YM et al. Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere, 2003, 50, 771-774
    [104] 胡笑形,我国农药工业的现状与发展方向,农药,1998,37(6),7-10
    [105] 华小梅,单正军,我国农药的生产、使用状况及其污染环境因子分析,环境科学进展,1996,4(2),33-45
    [106] Lee KM. Effects of butachlor on the growth of purplenon sulfur bacteria. Misaengmul Hakhoechi, 1991, 29(2), 130-135
    [107] Zager MY. Effects of benthiocarb and butachlor in growth and nitrogen fixation by cyanobacteria. Bull Environ Contam Toxical, 1990, 45(2), 232-234.
    [108] Bushra Ateeq M, Abul Farah M, Niamat Ali et al. Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test. Mutation Research, 2002, 514, 105-113
    [109] Sapna S, Natarajan P, Govindaswamy S. Genotoxicity of the herbicide butachlor incultured human lymphocytes. Mutat Res, 1995, 344, 63-67
    [110] Debnath A, Das AC, Mukherjee D. Persistence and effect of butachlor and basalin on the activities of phosphate solubilizing microorganisms in Wetland rice soil. Bull Environ Contam Toxicol, 2002, 68, 766-770.
    [111] Ou YH, Chung PC, Chang YC et al. Butachlor, a Suspected Carcinogen, Alters Growth and Transformation Characteristics of Mouse Liver Cells. Chem Res Toxicol, 2000, 13, 1321-1325
    [112] Ateeq B, Abulfarah M, Niamatali M et al. Induction of micronuclei and erythrocyte alteration in the catfish Clarias batrachus by 2.4-dichlorophenoxyacetic acid and butachlor. Mutation Research, 2002, 518, 135-144
    [113] 叶常明,王春霞,金龙珠主编,21 世纪的环境化学,北京:科学出版社,2004
    [114] Nriagu JO, Pacyna JM. Quantitative assessment of worldwide contamination of air, water and soils with trace metals. Nature, 1988, 333, 134-139
    [115] 吴燕玉,周启星,田均良,制定我国土壤环境质量标准(镉、汞、铅和砷)的探讨,应用生态学报,1991,2(4),334-339
    [116] 周锡爵,张士灌区镉污染及其解决和利用途径,农业环境保护,1978,6(2),17-19
    [117] 陈华勇,欧阳建平,马振东,大冶有色冶炼厂附近农田镉污染的现状与治理对策,土壤,2003,1,76-80
    [118] 顾继光,周启星,王新,土壤重金属污染的治理途径及其研究进展,应用基础与工程科学学报,2003,11(2),143-151
    [119] Dick RP, Tabatabai MA. Significance and potential uses of soil enzymes, In: Metting, F.B. (Ed), Soil Microbial Ecology: Application in Agricultural and Environmental Management, Marcel Dekker, New York, 95-125
    [120] Boton HJ, Elliott LF, Papendick RI et al. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biology andBiochemistry, 1985, 196, 80-83
    [121] Zelles L, Bahig ME. Measurement of bioactivity based on CO2-release and ATP content in soil after different treatments, Chemosphere, 1984, 13 (8), 899-913
    [122] Wardle DA, Parkinson D. Effect of three herbicides on soil microbial biomass and activity. Plant and Soil, 1990, 122, 21-28
    [123] 蔡玉祺,王珊龄,蔡道基,甲基异柳磷等四种农药对土壤呼吸的影响,农村生态环境,1992,3,36-40
    [124] Babich H, Stotzky G. Heavy metal toxicity to microbe-mediated ecologic processes. A review and potential application to environmental policies. Environ Res 1985, 36, 591-594
    [125] Sannino F, Gianfreda L. Pesticide influence on soil enzymatic activities. Chemosphere, 2001, 45, 417-425
    [126] Min H, Ye YF, Cheng ZY et al. Effects of butachlor on microbial enzyme activities in paddy soil. J Environ Sci. 2002, 14, 413-417
    [127] Shen GQ, Cao LK, Lu YT et al. Influence of phenanthrene on cadmium toxicity to soil enzymes and microbial growth. Environ Sci Pollut Res, 2005, 12, 259-263
    [128]周锡爵,张士灌区镉污染及其解决和利用途径,农业环境保护,1978,6(2),17-19
    [129] 关松荫,土壤酶及其研究法,北京:农业出版社,1986
    [130] L.佩奇,R. H.米勒,D. R.基尼等,土壤分析法,北京:中国农业出版社,1991
    [131] 许光辉,郑洪元,土壤微生物分析方法手册,北京:农业出版社,1986,227
    [132] Renellaa G, Menchb M, Leliec D. Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol Biochem, 2004, 36, 443-451
    [133] Tu CM. Effect of selected herbicides on activities of microorganisms in soils. J Environ Sci Health Part B, 1996, 31, 1201-1214
    [134] Nannipieri P. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst CE, Double BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. 1994, 238-244
    [135] Bruins MR, Kapil S, Oehme FW. Microbial resistance to metals in the environment. Ecotoxicol Environ Saf, 2000, 45, 198-207
    [136] 罗明,张国建,不同用量的氮磷化肥对棉田土壤微生物区系及活性的影响,土壤通报,2000,31(2),66-69
    [137] 叶央芳,闵航,周湘池,苯噻草胺对水田土壤呼吸强度和酶活性的影响,土壤学报,2004,41(1),93-96
    [138] 胡著邦,汪海珍,吴建军等,镉与苄嘧磺隆除草剂单一污染和复合污染土壤的微生物生态效应,浙江大学学报(农业与生命科学版),2005,151-156
    [139] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiogical Reviews, 1995, 59, 143-169
    [140] Engelen B, Meinken K, von Wintzingrode F. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl Environ Mirobiol, 1998, 64, 814-821
    [141] Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol, 1996 ,62 (2), 316-322
    [142] Duarte GF. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community. J Microbiol Methods, 1998, 32, 21-29
    [143] Elsas JD van, Smalla K. Extraction of microbial community DNA from soils . In : A D L Akkermans ,J D van Elsas and F J de Bruijn. Molecular Microbial EcologyManua. Kluwer Academic Publishers, 1995
    [144] Elsas JD. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environmen. J Microbiol Methods, 1998, 32, 133-154
    [145] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning :A laboratory Manual. 2nd Ed. New York: Cold Spring Harbor Laboratory Press, 1989
    [146] Smalla K. Rapid DNA extraction protocol from soil for polymerase chain reaction mediated amplification. J Appl.Bacteriology, 1993, 74, 78-85
    [147] Torsvik VL. High diversity in DNA of soil bacteria. Appl. Environ. Microbial. 1990, 56, 782-787
    [148] Yeates C, Gillings MR. Rapid purification of NDA from soil for molecular biodiversity analysis. Lett Appl Microbiol, 1998, 27, 49-53
    [149] Atienzar FA, Cordi B, Evenden AJ. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[a]pyrene. Environ Toxicol Chem, 1999, 18, 2275-2282
    [150] Atienzar FA, Cordi B, Donkin ME. Comparison of ultraviolet- in ducedgenotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae. Palnaria palnata. Aquat Toxicol, 2000, 50, 1-12
    [151] Atienzar FA, Venier P, Jha A N. Evaluation of the randomamplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat Res, 2002, 521, 151-163
    [152] Atienzar FA, Billinghurst Z, Depledge MH. 4- n- Nonylphenol and 17- βestradiol may induce common DNA effects in developing barnacle larvae. Environ Pollution, 2002, 120, 735-738
    [153] Mengoni A, Gonnelli C, Galardi F. Genetic diversity and heavy metal tolerance inpopulations of Silene paradoxa L. (Caryophyllaceae): a randomamplified polymorphic DNA analysis. Mol Ecol, 2000, 9 (9), 1319-1324
    [154] Nelson JR, Lawrence CW, Hinkle DC. Thymine–thymine dimmer bypass by yeast DNA-polymerase-zeta, Science, 1996, 272, 1646-1649
    [155] Bisova K, Hendrychova J, Cepak V. Cell growth and division processes are differentially sensitive to cadmium in Scenedesmus quadricauda. Folia Microbiol (Praha), 2003, 48(6), 805-816
    [156] Hsiao CJ, Stapleton SR. Characterization of Cd- induced molecular events prior to cellular damage in primary rat hepatocytes in culture: activation of the stress activated signal protein JNK and transcription factor AP-1. J BiochemMol Toxicol, 2004, 18(3), 133-142
    [157] Besarati Nia A, Van Schooten FJ, Schiderman P. A multi- biomarker approach to study the effects of smoking on oxidative DNA damage and repair and antioxidative defense mechanisms. Carcinogenesis, 2001, 21, 395-401
    [158] 朱鲁生,辛承友,王倩等,莠去津高效降解细菌 HB- 5 的固定化研究,农业环境科学学报,2006,25(5),1271-1275
    [159] Min H, Ye YF, Cheng ZY et al. Effects of butachlor on microbial enzyme activities in paddy soil. J Environ Sci, 2002, 14, 413-417
    [160] Shen GQ, Lu YT, Zhou QX et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme. Chemosphere, 2005, 61, 1175-1182
    [161] Su YH, Zhu YG, Lin AJ et al. Interaction between cadmium and atrazine during uptake by rice seedlings (Oryza sativa L.). Chemosphere, 2005, 60, 802-809
    [162] 王秀丽,徐建民,姚槐应等,重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响,环境科学学报,2003,23,22-27
    [163] 钱存柔,黄仪秀,林稚兰等,微生物学实验教程,北京大学出版社,1999
    [164] 中国科学院微生物研究所细菌分类组,一般细菌常用的鉴定方法,北京:科学出版社,1978,37-39
    [165] 东秀珠,蔡妙英等,常见细菌系统鉴定手册,北京:科学出版社,1987
    [166] 布坎南 RE,吉本斯 NE 等,中国科学院微生物研究所<伯杰细菌鉴定手册>翻译组,伯杰细菌鉴定手册(第 8 版),北京:科学出版社,1984
    [167] 岳永德,农药残留分析,北京:中国农业出版社,2002(1),53-87
    [168] 朱鲁生,林爱军,王军,孙瑞莲,刘爱菊,二甲戊乐灵降解细菌HB27 的分离及降解特性研究,环境科学学报,2004(24),360-365
    [169] 王保军,杨惠芳,微生物与重金属的相互作用,重庆环境科学,1996,18 (1),35-38
    [170] 夏立江,华珞,李向东,重金属污染生物修复机制及研究进展,核农学报,1998,12 (1),59-64
    [171] Wnorowski AU. Selection of bacterial and fungal strains for bioaccumulation of heavy metals from aqueous solutions. Water Sci Technol, 1991, 23, 309-318
    [172] Hoskin FCG, Kirkish MA, Steinmann KE. Two enzymes for the detoxification of organophosphorus compounds: sources, similarities, and significance. Fundam Appl Toxicol, 1984, 4, 165-172
    [173] Brown HM, Van JAT, Carski TH et al. Degradation of thifensulfuron methyl in soil: role of microbial carboxyesterase activity. J Agric Food Chem, 1997, 45, 955-961
    [174] Munneche D M. Enzymatic detoxification of waste organophosphate pesticides. J Agric Food Chem, 1980, 28, 105-111
    [175] Nannipieri PB. Hydrolase extracted from soil.their properties and activities. Soil Biol Bilchem, 1982, 14, 257-263
    [176] Wasinger VC, Cordwell SJ, Cerpa Poljak A et al. Progress with gene-product mapping the Mollicutes: mycoplasma genitalium. Electrophoresis, 1995, 16, 1090-1094
    [177] 陈主初,梁宋平,肿瘤蛋白质组学,湖南科技出版社,2002
    [178] Shevchenko A, Wilm M, Vorm O et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68: 850-858
    [179] 赵渝,郭鲁申,徐亚同,芳香烃龙胆酸降解途径蛋白质组学的研究,微生物学通报,2005,32,95-100
    [180] 宋晟,夏立秋,黄江丽等,苏云金杆菌 4.0718 菌株杀虫晶体蛋白的双向电泳-飞行时间质谱分析,微生物学报,2005,45,467-471
    [181] 汪家政,范明主编,蛋白质技术手册,科学出版社,2000
    [182] Neuhoff V, Arold N, Taube D et al. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 1988, 9, 255-262
    [183] 辛普森 RJ,蛋白质与蛋白质组学实验指南,科学出版社,2003,190-191
    [184] Bouquard C, Ouazzani J, Prome JC et al. Dechlorination of Atrazine by a Rhizobium sp. Isolate. Appl Enrion Microbiol, 1997, 63, 862-866
    [185] 王秀国,朱鲁生,王军等,细菌 HB-5 对除草剂莠去津的酶促降解研究,环境科学学报,2006,26,579-583
    [186] 楚晓娜,张先恩,陈亚丽等,假单胞菌WBC-3甲基对硫磷水解酶性质的初步研究,微生物学报,2003,43,453-459
    [187] 吴楚,一株十二烷基苯磺酸钠降解菌的分离鉴定及降解特性研究,微生物学报,2006,46 (6),988-993
    [188] G?rg A, Weiss W, Dunn MJ. Review: Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004, 4, 3665-3685
    [189] Silver S. Bacterial resistances to toxic metal ions - a review. Gene, 1996, 179, 9-19
    [190] Hassan MT, Lelie D vander, Springael D et al. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene, 1999, 238, 417-425
    [191] 郑智国,张春潮,华跃进,耐辐射球菌pprI突变株的蛋白质组学分析,浙江大学学报(农业与生命科学版),2005,31,27-31
    [192] Hoshino T, Kose K. Cloning, nucleotide sequences, and identification of products of the Pseudomonas aeruginosa PAO bra genes, which encode the high-affinity branched-chain amino acid transport system. J Bacteriol, 1990, 172, 5531-5539
    [193] Nelson KE, Weinel C, Paulsen IT et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol, 2002, 4 (12), 799-808
    [194] Kurbatov L, Albrecht D, Herrmann H, Petruschka L. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Environ Microbiol, 2006, 8, 466-478
    [195] Thapper A, Rivas MG, Brondino CD et al. Biochemical and spectroscopic characterization of an aldehyde oxidoreductase isolated from Desulfovibrio aminophilus. J Inorg Biochem 2006, 100, 44-50
    [196] Mulbry WW, Karns JS, Kearney PC et al. Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 1986,51, 926-930
    [197] Siddavattam D, Raju ER, Emmanuel Paul PV et al. Overexpression of parathion hydrolase in Escherichia coli stimulates the synthesis of outer membrane porin OmpF. Pestic Biochem Phys, 2006, 86, 146-150
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.