垃圾焚烧烟气高温干式净化及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前基于中低温段的焚烧烟气净化方式不利于飞灰的后续处理、难以避免过热器的高温腐蚀,并对抑制二噁英的生成不利。为此本研究提出了焚烧烟气高温净化的思路。即在过热器前的高温烟气段用干式净化的方法将大部分酸性气体和飞灰除去,以保护过热器并控制飞灰的毒性,达到提高焚烧炉的安全性和降低整体处理费用的目的。基于这一思路,研究工作主要针对焚烧烟气的高温净化(包括对HCl和NO_x的净化)展开。研究了采用石灰类吸收剂对焚烧烟气中HCl气体进行高温净化的机理,并探索了提高干式净化效率的措施。在实验研究的基础上,对吸收剂喷入烟道后的混合、扩散过程进行了数值模拟,并据此对实验系统的进一步完善提出了改造方案。为了在中高烟温段同时净化NO_x,研究了肼类物质作为还原剂在中、高温段对NO_x的净化效果,并同氨的还原性能进行了比较。最后探索了用肼类物质处理的石灰类吸收剂在过热器前的高温段同时净化HCl气体和NO_x的效果。
     为提高HCl气体的干式净化效率,研究了钠碱改性石灰吸收HCl气体的过程。结果表明,与普通石灰相比,改性石灰在高温段具有更好的活性。其原因是改性石灰的晶体规则程度较低;产物层多孔;且其煅烧分解速度能适应反应持续进行的要求。普通石灰在不同温度下的产物成分相同,而改性石灰在各温度下的反应产物成分并不一致。
     为确定合适的HCl气体高温净化温度,研究了石灰吸收HCl气体对应的平衡浓度随温度的变化、石灰的热分解规律及温度对反应率的影响。结果表明:石灰吸收HCl气体对应的平衡浓度随温度的升高而升高;烟气中CO_2浓度增大,HCl平衡浓度亦升高,但改性石灰可在一定程度上消除CO_2对HCl吸收的不利影响。石灰在高温下的反应率明显高于低温时的值。即使200℃下已达最大反应率的石灰,在升温到600℃时仍能继续反应,高温提高了反应率。
     在水平烟道加旋风除尘器这一连续加料的反应系统上的研究表明,石灰干式净化HCl气体的效率随温度的上升而上升,在650℃时达到峰值后降低。净化效率随HCl初始浓度增加而升高,在HCl浓度为400-1400mg/Nm~3时基本呈线性关系;Ca/Cl当量比越高,净化效率越高,但当量比大于4后,效率上升缓慢。综合考虑温度对净化效率和收尘效率的影响,HCl气体的干式净化温度宜设在600℃左右。
     实验发现,500℃以上的高温条件下,喷入烟道中的很大一部分石灰会与烟
Presently most of incineration flue gas scrubbers are running at moderate to low temperature. This kind of scrubbing mode separates flue gas purification from fly ashes disposal. Thus superheater corrosion cannot be avoided. Meanwhile, the fly ashes and flue gas purification products collected in those scrubbers are toxic because of their dioxin and heavy metal contents. In this work a new scrubbing mode, namely, flue gas dry scrubbing at high temperature was put forward. According to this mode, most of the acidic gas and fly ashes are removed at high temperature before superheater, so that superheater corrosion can be avoided and fly ashes collected under high temperature are less toxic and easy to dispose of. Based on the above idea, this work mainly focused on high temperature scrubbing of gas pollutants (including HCl and NO_x) from incinerators. Firstly, HCl scrubbing with Ca-based absorbents was investigated and measures to improve HCl dry interception efficiency were explored. On the basis of experimental research, numerical simulation on diffusion of absorbent particles sprayed into flue gas scrubber was carried out. The simulation results provided a guide for improving performance of the dry scrubber. Secondly, De-NO_x effect with hydrazine-based compounds as reductants at moderate to high temperatures was examined and the results were compared with having ammonia as reductant. Finally, the possibility of simultaneous HCl and NO scrubbing with Ca-based absorbents treated by hydrazine-based compounds was explored.
    In order to improve HCl dry interception efficiency, HCl dry scrubbing with modified lime treated by NaOH was studied which proved that at high temperature modified lime's reactivity is better than normal lime, because of modified lime's crystal structure being irregular, its product layer being porous and its calcination rate being low to fit reaction process. Modified lime forms different product components at different temperature, which is not the same as normal lime.
    In order to obtain the optimum temperature for HCl high temperature scrubbing, temperature influence on HCl equilibrium concentration, lime decomposition and lime conversion rates was investigated. The results showed that HCl equilibrium concentration rises when temperature rises or CO_2 partial pressure increases, but modified lime can partially eliminate CO_2's negative impact on HCl absorption. Lime has higher conversion rate at high temperature than low temperature. Completely reacted lime at 200℃ regains its reactivity when the temperature is raised to 600 ℃.
    Experiments on a continuous absorbent-feeding scrubbing system which is composed of a horizontal reaction pipe and a Stairmand cyclone indicated that HCl removal efficiency of slaked lime increases with rising temperature until 650°C of its peak temperature. In the range of 400-1400mg/m~3, removal efficiency increases with
引文
[1] 芈振明等.固体废弃物的处置与处理.北京:高等教育出版社,1993
    [2] 张益,赵由才.生活垃圾焚烧技术.北京:化学工业出版社,2000
    [3] 唐鸿寿.城市生活垃圾处理和管理.北京:气象出版社,2002
    [4] 杨国清.固体废物处理工程.北京:科学出版社,2000
    [5] 王磊.焚烧城市垃圾同收新能源.新能源,1997,Vol.19(5):44~47
    [6] Commission of the European Communities. Towards a thematic strategy on the prevention and recycling of Waste. 2003
    [7] Information about waste management option in Europe Commission of the European Communities. A work document compiled during COSTAction E9. 2001
    [8] Waste incineration. Social and General Statistics House &Commons Library. 2002
    [9] Dimitrios Tsotsos. Information about waste management facilities in EEA member countries, European Environment Agency. 2000
    [10] 江玉林.垃圾发电技术及工程实例.北京:化学工业出版社,2003
    [11] Council Directive 2000/76/EC of 4 December 2000 on the incineration of waste. Official Journal. 28/12/2000, L332/91-111.
    [12] A. John Chandler et al. Municipal solid waste incinerator residues. Studies in Environmental Sciences 67, The Netherlands: Elsevier Science B.V.: Amsterdam, 1997, 101~133
    [13] Mill igan Michael. S. et al.. Mechanistic aspects of the de novo synthesis of polychlorinated dibenzo-p-dioxins and furans in fly ash from experiments using isotopically labeled reagents. Environmental Science and Technology - Columbus, 1995, Vol.29 (5): 1353~1358
    [14] Gullet B. K., Lemieux P. M., Dunn J. E.. Role of combustion and sorbent parameters in prevention of PCDD/PCDF formation during waste combustion. Environ. Sci. Tech., 1994, Vol.28: 107~118
    [15] Hinton W. S., Lane A. M.. Characteristic of municipal solid waste incinerator fly ash promoting the formation of polychlorinated dioxins. Chemosphere, 1991, Vol.22: 473~483
    [16] Dickson L. C., Lenior D., Hutzinger O.. Surface-catalyzed formation of chlorinated dibenzodioxins and dibenzofurans during incineration. Chemosphere, 1989, Vol.19(1): 277~282
    [17] 王华.二恶英零排放城市生活垃圾份烧技术.北京:冶金工业出版社,2001
    [18] K. Lundtorp, D.L. Jensen, M.A. Sorensen, et al.. On-site treatment and landfilling of MSWI air pollution control residues. Journal of Hazardous Materials, B97 (2003): 59~70
    [19] 张鹤声,简瑞明.垃圾焚烧锅炉受热面管壁金属的高温腐蚀.能源技术,1994(4):24~28
    [20] 马晓茜.硫和氯及其化合物对垃圾焚烧炉的高温腐蚀与对策.电站系统工程,1997,13(5):38~42
    [21] Spiegel, M. et al.. Corrosion of high alloy steels and Fe-Cr-alloys beneath deposits from waste incinerator plants. Materials Science Forum, High Temperature Corrosion and Protection of Materials 4th International Symposium, 1997, Vol.251~254 Part.2, 527-34, Conference Paper
    [22] Spiegel, M., Gralke H. J.. High temperature corrosion of high alloy steels in simulated waste incineration environments. Materials and Corrosion, 1996, Vol.47 (4): 179~189
    [23] T. Valente. Fireside corrosion of superheater materials in chlorine containing flue gas. Journal of Materials Engineering and Performance, 2001, Vol.10(5): 608~613
    [24] lnokuchi M.. Maintenance of instruments in a garbage incineration plant which employs distributed DDC. Instrumentation and Control Engineering, 1988, Vol.31(12): 45~49
    [25] K Tuppurainen, I. Halonen, R Ruokojarvi, et al.. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review. Chemosphere, 1998, Vol.36(7): 1493~1511
    [26] Gordon McKay. Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal, 2002, Vol.86: 343~368
    [27] B. K. Gullett, A. F. Sarofim, K.A. Smith, et al.. The role of chlorine in dioxin formation. Trans IChemE, 2000, Vol. 78, PartB, January, 47~52
    [28] 徐旭.燃烧过程中二嗯英的生成及排放特性的研究:[博士学位论文].杭州:浙江大学,2001
    [29] B. R. Stanmore. The formation of dioxins in combustion systems. Combustion and Flame, 2004, Vol.136: 398~427
    [30] Weber R., H Hagenmaier. PCDD/PCDF formation in fluidized bed incineration. Chemosphere, 1999, Vol.38: 2643~2654
    [31] F. Iino, T. hnagawa, M. Takeuchi. De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes. Environ. Sci. Tech., 1999, Vol.33 (7): 1038~1043
    [32] F. Iino, T. Imagawa, M. Takeuchi, et al.. Formation rates ofpolychlorinated dibenzofurans and dibenzo-p-dioxins from polycyclic aromatic hydrocarbons, activated carbon and phenol. Chemosphere, 1999, Vol.39 (15): 2749~2756
    [33] Dickson L. C., Lenior D., Hutzinger O.. Quantitative comparison of de-novo and precursor formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incinerator postcombustion conditions. Environ. Sci. Tech., 1992, Vol.26: 1822~1828
    [34] Faengmark I., Van Bavel B., Marklund S., et al.. Influence of combustion parameters on the formation of polychlorinated dibenzo-p-dioxins, dibenzofurans, benzenes, and biphenyls and poly aromatic hydrocarbons in a pilot incinerator. Environ. Sci. Tech., 1994, Vol.27: 1602~1610
    [35] M. B. Chang, C. H. Lee. Dioxin levels in the emissions from municipal waste incinerators in Taiwan. Chemosphere, 1998, Vol.36(11): 2483~2490
    [36] B. K. Gullett, K. R. Bruce, L. O. Beach, et al.. The effect of metal catalysts on the formation of polychlorinated dibenzofuran precursors. Chemosphere, 1990, Vol.20 (10): 1945~1952
    [37] L. Stieglitz, G. Zwick, J. Beck, et al.. On the de novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators. Chemosphere, 1989, Vol.18 (1): 1219~1226
    [38] M. Horaguchi, H. Ogawa, K. Ose, et al.. PCDDs&PCDFs from the MSW Incinerator. Chemosphere, 1988, Vol.18 (9): 1785~1797
    [39] P. Wunsch, S. Leichsenring, K. W. Shramm, et al.. Temperature dependence of PCDD/F formation in boiler ash. Chemosphere, 1994, Vol.29: 1235~1243
    [40] G. Toschi, D. K. Moyeda, W. R. Seeker, et al.. The formation and control of PCDD/PCDF from RDF-fired combustion systems. Chemosphere, 1990, Vol.20 (10-12): 1817~1824
    [41] L. Stieglitz, H. Bautz, W. Roth, et al.. Investigation of precursor reactions in the de-novo synthesis of PCDD/PCDF on fly ash. Chemosphere, 1997, Vol.34 (5): 1083~1090
    [42] ASME. The relationship between chloride in waste streams and dioxin emissions from waste combustor stacks. ASME Report CRTD, 1995, Vol.36
    [43] Takeshi Sakurai, et al.. Formation of PCDD/Fs from chlorophenols(CPs) on fly ash in municipal solid waste incinerator, manuscript, 1997
    [44] Halonen.I. et al.. Influence of HCl and Cl_2 on the formation of polychlorinated dibenzo-p-dioxins / dibenzofurans in a carbon/fly ash mixture. Chemosphere, 1993, Vol.26: 1869-1880
    [45] J. Ruuskanen, T. Vartiainen, I. Kojo, et al.. Formation ofpolychlorinated dibenzo-p-dioxins and dibenzofurans in co-combustion of mixed plastics with coal.. Exploratory principal component analysis. Chemosphere, 1994, Vol.28 (11): 1989~1999
    [46] T. D. Goldfarb. Evidence for post-furnace formation of PCDDs and PCDFs—implications for control. Chemosphere, 1989, Vol.18: 1051~1055
    [47] E. Wikstrom, S. Ryan, A. Touati, et al.. Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ. Sci. Tech., 2003, Vol.37(6): 1108~1113
    [48] 李晓东,杨忠灿,陆胜勇等.氯源对焚烧炉HCl和二恶英排放的影响.2002年中国工程热物理学会,燃烧学会议论文集:269~275
    [49] H. Matzing, W. Baumann, B. Becker, et al.. Adsorption of PCDD/F on MWI fly ash. Chemosphere, 2001, Vol.42 (5): 803-809
    [50] The incineration of waste in Europe: issues and perspective——a report prepared by IPTS for the Committee for Environment, Public Health and Consumer Protection of the European Parliament, European Commission Joint Research Center, 1999
    [51] Exposure and human health reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and related compounds, EPA/6OO/P-OO/OOIBb, National Center for Environmental Assessment - Washington Office, 2000
    [52] Johnson C. A., G. Furrer. Influence of biodegradation processes on the duration of CaCO_3 as a pH buffer in municipal solid waste incinerator bottom ash. Environ. Sci. Tech., 2002, Vol.36 (2): 215~220
    [53] Crawford J. A et al., In Proceedings Sardinia 97, Sixth International Landfill Symposium, 13-17, Oct. 1997; Edited by Christensen T. H., Cossu R., Stegmann R. Vol.5: 545~552.
    [54] Autrup T et al.. Characterization of MSWI residues with respect to long-term pH development. Submitted to Environ. Sci. Technol, 2004
    [55] 赵由才,朱青山.《城市生活垃圾卫生填埋场技术与管理手册》,北京:化学工业出版社,1999
    [56] 李建新.垃圾焚烧产生的重金属污染物及垃圾飞灰中重金属的稳定化处理技术研究:[博士学位论文].杭州:浙江大学,2004.6.
    [57] 章骅,何晶晶.城市生活垃圾焚烧灰渣的资源化利用.上海环境科学,2002,Vol,10(1):4~10
    [58] H. Ecke, H. Sakanakura, T Matsuto, et al.. State-of-the-art treatment processes for municipal solid waste incineration residues in Japan. Waste Management and Research, 2000, Vol. 18 (1): 41~51
    [59] P. Pisciella, S. Crisucci, A. Karamanov, et al.. Chemical durability of glasses obtained by vitrification of industrial wastes. Waste Management, 2000, Vol.21 (1): 1~9
    [60] 蒋建国,王伟,李国鼎.重金属螯合剂处理焚烧飞灰的稳定化技术研究.环境科学,1999,Vol.50:1~3
    [61] G. Maruzzo, E Medici, L. Panei, et al.. Characteristics and properties of a mixture containing fly ash, hydrated lime, and an organic additive. Environ. Eng. Sci., 2001, Vol.18 (3): 159~165
    [62] Q. Y. Ma, T. J. Logan, S. J. Traina. Lead immobilization from aqueous solutions and contaminated soil using phosphate rock. Environ. Sci. Tech., 1995, Vol.29: 941~950
    [63] 张简国平,洪忠贤,林柏廷.焚化炉厂飞灰、飞灰固化物及其萃出物戴奥辛成分浓度分析.21世纪可持续发展之环境保护(上卷),917~924
    [64] K. Tagashira, I. Torii, K. Myouyou, et al.. Combustion characteristics and dioxin behavior of waste fired CFB. Chem. Eng. Sci., 1999, Vol.54 (22): 5599~5607
    [65] Hydrogen Chloride. Agency For Toxic Substances and Disease Registry, U. S. Department of Health and Human Service.
    [66] A. McCulloch, M. L. Aucott, C.M. Benkovitz, et al.. Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities. Journal of Geophysical Research, 1999, Vol.104, No.D7: 8391~8403
    [67] Halogen emissions from coal combustion, lEA Coal Res. Rep. IEACR/45, 62 pp., Int. Energy Agency, London, 1992
    [68] 许适群.关于露点腐蚀及用钢的综述.石油化工腐蚀与防护,2000,Vol.17(1):1~4
    [69] Kwon M. H. et al.. A study on behavior of PCFFs/PCDFs and heavy metals of fly ash from municipal solid waste incinerator by thermal treatment. Proceeding of ICIPEC, 2002, 841~847
    [70] M. Y. Wey et al.. The concentration distribution of heavy metals under different incineration operation conditions. The Science of the Total Environment, 1998, Vol.212: 183~193
    [71] 李建新,严建华,池涌等.垃圾组分中氯对重金属迁移特性的影响.燃料化学学报,2003,Vol.31(6):579~583
    [72] I. Halonen, J. Tarhanen, P. Ruokojaervi, et al.. Effect of catalysts and chlorine source on the formation of organic chlorinated compounds. Chemosphere, Vol.30(7), 1995, 1261~1273
    [73] M. Kiwala, A. Dalek, S. Krauze. Determination of hydrogen chloride concentration during decomposition and combustion of textile fabrics use as interior decorations. Fibers & Textiles in Eastern Europe, October, 2002, 73~77
    [74] P. L. Lightowlers, J. N. Cape. Sources and fate of atmospheric HCl in the UK and western Europe. Atmos. Environ., 1988, Vol.22(1): 7~15
    [75] (日)新井纪南,三浦隆利,宫前茂广等.燃烧生成物的发生与抑制技术.北京:科学出版社,2001
    [76] H. Bockhorn, A. Hornung, U. Hornung, et al.. Dehydrochlorination of plastic mixtures. Journal of Analytical and Applied Pyrolysis, 1999, Vol.49: 97~106
    [77] K. S. Wang, K. Y. Chiang, S. M. Lin, et al.. Effects of Chlorides on Emissions of Hydrogen Chloride Formation in Waste Incineration. Chemosphere, 1999, Vol.38(7): 1571~1582
    [78] S. Uchida, H. Kamo, H. Kubota. The source of HC1 emission from municipal refuse incinerators. Ind. Eng. Chem. Res., 1998, Vol.27: 2188~2190
    [79] R. Addink, W. C. M. Bakker, K. Olie. Influence of HCl and Cl_2 on the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans in a carbon/fly ash mixture. Environ. Sci. Tech., 1995, Vol.29: 2055~2058
    [80] A. D. Lawrence, J. Bu. The Reactions between Ca-based solids and gases representatives of those found in a fluidized-bed incinerator. Chem. Eng. Sci., 2000, Vol.55(24): 6129-6137
    [81] W. Jozewicz, B. K. Gullett. Reaction mechanisms of dry Ca-based sorbents with gaseous HCI. Ind. Eng. Res., 1995, Vol.34 (22): 607~612
    [82] C. E. Weinell, P. I. Jensen, K. D. Johansen, et al.. Hydrogen chloride reaction with lime and limestone: kinetics and sorption capacity. Ind. Eng. Chem. Res., 1992, Vol.31: 164~171.
    [83] O. A. Markova. Physical chemistry of calcium hydroxide chlorides. Russ. J. Phys. Chem., 1973, Vol.109: 16~24
    [84] G. T. Kosnyrev et al.. Changes in the Ca(OH)_2-CaCl_·2H_2O system during thermal dehydration. J. Appl. Chem. USSR, 1990, Vol.63 (1): 171~174
    [85] M. Daoudi, J. K. Walters. A thermogravimetric study of the reaction of hydrogen chloride gas with calcined limestone: determination of kinetic parameters. Chemical Engineering Journal, 1991, Vol. 47 (11): 1~9
    [86] M. Daoudi, J. K. Walters. The reaction of HCl gas with calcined commercial limestone particles: the effect of particle size. Chemical Engineering Journal, 1991, Vol. 47 (11): 11~16
    [87] W. Wuyin, Y. Zhicheng, I. Bjerle, et al.. The kinetics of the reaction of hydrogen chloride with fresh and spent Ca-based desulfurization sorbents. Fuel, 1996, Vol.75(2): 207~212
    [88] G. Mura, A. Lallai. On the kinetics of dry reaction between calcium oxide and gas hydrochloric acid. Chem. Eng. Sci., 1992, Vol.47(9-11), 2407~2411
    [89] G. Mura, A. Lallai. Reaction kinetics of gas hydrogen chloride and limestone. Chem. Eng. Sci., 1996, Vol.49(24): 4491-4500
    [90] H. Munzner. Fluorine and Chlorine emissions from FBC. Eighth international conference on FBC, 1985, Vol.8: 1219~1226
    [91] D. T. Liang. Halogen capture by limestone during fluedized bed combustion, 11th international conference onFBC, 1991, Vol.2: 917~922
    [92] B. Shemwell, Y. A. Levendis, G. A. Simons. Laboratory study on the high-temperature capture of HC1 gas by dry-injection of calcium-based sorbents. Chemosphere, 2001, Vol.42 (5): 785~796
    [93] B. K. Gullett, W. Jozewicz, L. A. Stefanski. Reaction kinetics of Ca-based sobents with HCl. Ind. Eng. Chem. Res., 1992, Vol.31: 2437~2446
    [94] N. H. Dabies. Limestone as a desulphurising sorbent in power generating systems. Ph. D. thesis, University of Cambridge, 1994
    [95] A. D. Lawrence, J. Bu, R Gokulakrishnan. The interactions between SO_2, NO_x, HCl and Ca in a bench-scaled fluidized bed combustor. Journal of Institution of Energy, 1999, Vol.72: 34~40
    [96] M. Matsukata, K. Takeda, T. Miyatani, et al.. Simultaneous chlorination and sulphation of calcined limestone. Chem. Eng. Sci., 1996, Vol.51(11): 2529~2534
    [97] Jens stein. The influence of HCl on SO_2 adsorption in the spray dry scrubbing process. Chemical EngineeringJournal, 2002, Vol.86: 17~23
    [98] W. Duo, N. F. Kirkby, J. R. K Seville, et al.. Alteration with reaction progress of the rate limiting step for solid-gas reaction of Ca-compounds with HCl. Chem. Eng. Sci., 1995, Vol.50 (13): 2017~2027
    [99] A. M. Fonseca, J. J. Orfao. A new approach to the kinetic modeling of the reaction of gaseous HCl with solid lime at low temperatures. Chem. Eng. Sci., 2003, Vol.58 (15), 3499~3506
    [100] W. Duo, J. P. K Seville, N. F. Kirkby, et al.. Formation of product layers in solid-gas reaction for removal of acid gases. Chem. Eng. Sci., 1994, Vol.49 (24A): 4429-4442
    [101] 陈德珍,何于涛,张鹤声等.HCl干式净化过程中平衡浓度计算及其应用.燃料科学与技术,2001,Vol.7(3),311~315
    [102] 刘妮,路春美.石灰石颗粒固硫反应特性的模型研究.环境科学学报,2001,Vol.21(2):172~177
    [103] G. A. Simons. The pore tree structure of porous char. In: Proceedings of the 19th Symposium (International) on Combustion, 1982, 1067~1076
    [104] G. R. Gavalas. A random capillary model with application to char gasification at chemically controlled rates. AIChE J., 1980, Vol.26 (4): 577~585
    [105] G. R. Gavalas. An analysis of char combustion including the effect of pore enlargement. Combust. Sci. Tech., 1981, Vol. 24: 197~210
    [106] 陈德珍,张鹤声.模拟石灰颗粒干式除酸的分形Bethe孔网模型.同济大学学报,2000,Vol.28(1):46~50
    [107] 祁海鹰,由长福,王爱军等.温度对脱硫剂钙利用率何蒸汽活化效果的影响.工程热物理学报,2003,Vol.24(4):717~719
    [108] M. F. Couturier, D. L. Marquis, F. R. Steward, et al.. Reaction of partially-sulphated limestone particles from a CFB combustor by hydration. Canada Journal of Chemistry Engineering, 1994, Vol.72(1): 91~98
    [109] 刘现卓,赵长遂,钱晓东等.石灰石孔隙结构改性及其脱硫性能研究.燃烧科学与技术,2003,Vol.9(3):280~284
    [110] 赵长遂,刘现卓,吴新等.石灰石闪蒸改性及脱硫性能的试验研究.工程热物理学报,2003,Vol.24(4):714~716
    [111] J. Adanez, V. Feerro, L. F. Garcia, et al. Study of modified calcium hydroxides for enhancing SO_2 removal during sorbent injection in pulverized coal boilers. Fuel, 1997, Vol.76(3): 257~265
    [112] A. A. Shawabkeh, H. Matsuda, M. Hasatani. Enhanced SO_2 abatement with water-hydrated dotomiticparticle. AIChE, 1997, Vol.43(1): 173~179
    [113] Paolo Davini, G. D. Micheld. An investigation of the influence of sodium chloride on the desulphurization properties of limestone. Fuel, 1992, Vol.71: 831~834
    [114] 陈德珍,张鹤声.中低温下钠碱对氢氧化钙干式吸收HCl的改良.工程热物理学报,1999,Vol.20(4):520~524
    [115] 时黎明,徐旭常.水合作用对钙基吸收剂脱硫特性的影响.环境工程,1998,Vol.16(4):37~40
    [116] Paoto Davini. Investigation of the SO_2 adsorption properties of Ca(OH)_2-Fly ash system. Fuel, 1996, Vol.75 (6): 713~716
    [117] 钟北京,姚海军.超细CaO粉炉内喷射脱硫的实验研究.工程热物理学报,2002,Vol.23(1):127~129
    [118] J. Steciak, Y. A. Levendis, D. L. Wise, et al. Dual SO_2-NO_x concentration reduction by calcium salts of carboxylic acids. J. Environ. Eng., 1995, Vol.121: 595~604
    [119] J. Steciak, Y. A. Levendis, D. L. Wise, et al. The effectiveness of calcium magnesium acetate as a dual SO_2-NO_x emission control agent. AIChE, 1995, Vol.41: 712~722
    [120] J. Steciak, W. Zhu, Y. A. Levendis, et al. The effectiveness of calcium magnesium acetate and calcium benzoate as NO_x reduction agent in coal combustion. Combust. Sci. Tech., 1994, Vol.102: 193~203
    [121] J. I. Shuckerow, J. Steciak, D. L. Wise, et al. Control of air toxin particulate and vapor emissions after coal combustion utilizing calcium magnesium acetate. Resource Conservation Recycling, 1996, Vol.16 (1-4): 15~69
    [122] B. Courtemanche, Y. A. Levendis. Control of the HCl emissions from the combustion of PVC by in-furnace injection of calcium / magnesium based sorbents. Environ. Sci. Tech., 1998, Vol.15 (2): 123~135
    [123] 陈德珍,张鹤声,何于涛等.改性消石灰吸收剂用于干法脱除HCl的研究.工程热物理学报,2000,Vol.21(3):388~392
    [124] 江雄平,陈德珍,张鹤声等.改性石灰中高温净化HCl气体的试验研究.工程热物理学报,2002,V01.23(增刊):229~232
    [125] 陈德珍,张鹤声,洪鎏等.改性石灰中温流化态干法净化HCl的试验研究.工程热物理学报,2001,Vol.22(3):390~393
    [126] 汪雄平,陈德珍等.废弃物焚烧炉烟气中HCl的脱除.能源技术,200l,Vol.22(6):268~271
    [127] 董建勋,李成之,李振中.燃煤电站氮氧化物控制技术现状与发展.中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集,中国,海南,317~320
    [128] 李振中.中国电站环保现状与发展.国家电站燃烧工程技术中心,2004.5
    [129] 中国电力投资集体公司.中国燃煤电站脱硫和脱硝技术现状与发展.中国科协2004年学术年会电力分会场暨中国电机工程学会2004年学术年会论文集,中国,海南,260~264
    [130] 国家环保局.GB13223—1996.火电厂大气污染排放标准.北京:中国环境科学出版社,1996.03.07
    [131] 国家环保局.GB13223—2003.火电厂大气污染排放标准.北京:中国环境科学出版社,2003.12.30
    [132] Ron D. Bell, Fred R Buckingham. An overview of technologies for reduction of oxides of nitrogen from combustion furnaces. MPR Associates, Inc. 1~20
    [133] Donald N. Dewees. Emission trading.. ERCs or Allowances. CEA meetings in Toronto, May29, 1999: 1~35
    [134] 刘文莹编译.低NO_x排放控制新技术.国际电力.2001,Vol.1:59~62
    [135] 张清峰,陈德强.煤粉锅炉运行中的氧量问题.华北电力技术,2002,Vol.9.:1~2,49
    [136] 潘朝红,魏春枝,李永华.锅炉改造对结渣的影响.锅炉制造,2002,Vol.3:22-23
    [137] 沙志强,王敏文,杜建东等.氧量与锅炉主要运行指标的试验关系.能源研究与利用,2003,Vol.6:20~22
    [138] 曾汉才.大型锅炉高效低NOx燃烧技术的研究.锅炉制造,2001(1):1~11
    [139] 张惠娟,宋洪鹏,惠世恩.四角切圆空气分级燃烧技术及应用.热能动力工程,2003,Vol.18(3):224~229
    [140] 李芳芹,魏敦崧,马京程等.燃煤锅炉空气分级燃烧降低NOx排放的数值模拟.燃料化学学报,2004,Vol.32(5):537~541
    [141] 刘燕燕.电厂锅炉分级技术的模拟和试验研究:[硕士学位论文].上海:同济大学,2005
    [142] 马瑞存,姚旭坤、张栋.锅炉烟气再循环调整炉膛燃烧温度的探讨.中国电力,2003,Vol.24(1):10~12
    [143] 毛健雄,毛健全,赵树民.煤的清洁燃烧.北京:科学出版社,1998
    [144] 黄少鹗.中小型锅炉采用简易烟气再循环减少氮氧化物污染气体排放.环境技术,1998(5):38~40
    [145] Hongjie Xu. Modeling of nitrogen oxides control through advanced rebuming: [PH. D. Dissertation]. Brighan Young University, US, 1999
    [146] L. D. Smoot, S. C. Hill, H. Xu. NOx control through reburning. Prog. Energy. Combust. Sci., 1998, Vol.24 (5): 385~408
    [147] P. Dagaut, F. Lecomte, S. Chevailler, et al. Experimental and detail kinetic modeling of nitric oxide reduction by natural gas blend in simulated reburning condition. Combustion Sci. Tech., 1998, Vol.139 (2): 329~363
    [148] P. Dagaut, G. Dayma. The high-pressure reduction of nitric oxide by a natural gas blend. Combustion and Flame, 2005, Vol.143 (1): 135~137
    [149] Reburning technologies for the control of nitrogen oxides emissions from coal-fired boilers. The U. S. Department of Energy and the Babcock & Wilcox Company. Clean Coal Technology, Topical Report Numberl4, 1999, Sep., 1~32
    [150] Babcock & Wilcox Company. Demonstration of coal reburning for cyclone boiler NO_x control. Comprehensive Report to Congress Clean Coal Technology Program, DOE/FE-0157, February, 1990
    [151] The U. S. Department of Energy & Energy and Environmental Research Corporation. Reduction of NO_x and SO2 using gas reburning, sorbent injection and integrated technologies. Clean Coal Technology, Topical Report Number 3, 1993, Sep., 1~35
    [152] The U. S. Department of Energy, ABB Environmental Systems, The Babcock & Wilcox Company. Technologies for the combined control of sulfur dioxide and nitrogen oxides emissions from coal-fired boilers. Clean Coal Technology, Topical Report Number 13, 1999, Sep., 1~25
    [153] 罗永浩,周新雅,张怡.燃煤锅炉天然气再燃技术研究报告.上海市科学技术委员会重大项目“天然气发电关键技术研究与示范”成果鉴定报告之二
    [154] W. Y. Chen, L. Ma. Effect of heterogeneous mechanisms during rebuming of nitrogen oxide. AICHE Journal, 1996, Vol.42(7): 1968~1975
    [155] D. K. Moyeda, B. Li, Payne R.. Experimental/modeling studies of the use of coal-based reburning fuels for NO_x control. Pittsburgh Coal Conference, 1995, 1195~1124
    [156] T. E. Burch, W. Y. Chen, T. W. Lester, et al. Interaction offuel-N with nitric oxide during reburning with coal. Combustion and Flame, 1994, Vol.98 (4): 391~401.
    [157] A. Indrek, M. S. Eric. A review of the kinetics of the nitric oxide-carbon reaction. Fuel, 1997, Vol.76(6): 475~491
    [158] J. K. Lee, D. J. Sun, S. Park, et al. Effects of pyrolysis conditions on the reacting of char for the reduction of nitric oxide with ammonia. Fuel, 1993, Vol.72 (7): 935~939
    [159] 徐璋.超细粉再燃降低NO_x排放的热态试验研究与数值模拟.[博士学位论文].杭州:浙江大学,2003
    [160] Micronized coal reburning demonstration for NO_x control: A DOE assessment. U. S. Department&Energy, National Energy Technology Laboratory. 2001
    [161] Micronized coal reburning demonstration project for NO_x control at the New York State Electric & Gas tangentially-fired Milloken unit 1.1999
    [162] M. M. Peter, M. Z. Vladimir, H. Loc, etal. Alternative fuel reburning. Fuel, 1999, Vol.78 (3): 327~334
    [163] A. Kicherer, H. Splethoff, H. M. Maier, et al. The effect of different reburning fuels on NO-reduction. Fuel, 1994, Vol.73 (9): 1443~1446
    [164] J. Brouwer, M. P. Heap, F. E. Bale, et al. The use of wood as a reburning fuel in combustion system. Proceeding of BioEnergy Conference, Reno, NV, Oct. 1994
    [165] H. Donghee, M. G. Mungal, V. M. Zamansky. Prediction of NO_x control by basic and advanced gas reburning using the Two-Stage Lagrangian model. Combustion and Flame, 1999, Vol.119 (4): 483~493
    [166] V. M. Zamansky, P. M. Maly, Q. Nguyen. Second generation advanced reburning for high efficiency NO_x control. Energy and Environmental Research Corporation, 1~30
    [167] W. Nimmo, A. A. Patsias, E. Hampartsoumian, et al. Calcium magnesium acetate and urea advanced reburning for NO control with simultaneous SO_2 reduction. Fuel, 2004, Vol.83: 1143~1150
    [168] Hongjie Xu, L. D. Smoot. Prediction of nitric oxide destruction by advanced reburning. Energy&Fuel, 2001, Vol.15 (3): 541~551
    [169] 钟北京,徐旭常.低NOx煤粉燃烧器的设计原理.动力工程,1995,Vol.15(5):18~23
    [170] 谈理,唐胜利.四角切圆燃烧锅炉直流燃烧器技术探讨.电站系统工程,2003,Vol.19(6):41~42,49
    [171] 秦裕琨,李争起,吴少华.旋流煤粉燃烧技术的发展.热能动力工程,1997,Vol.12(4):241~244
    [172] H. S. Rosenberg, J. H. Oxley. Selective catalytic reduction for NOx control at coal-fired power plants. ICAC Forum 93, Controlling Air Toxics and NOx Emissions, Baltimore, MD, February 24-26, 1993
    [173] D. C. Mussatti, R. K. Srivastava, P. M. Hemmer, et al. NO_x controls--selective catalytic reduction. EPA/452/B-02-001, 2000
    [174] Selective catalytic reduction for NOx control on coal-fired boilers. Draft Report, prepared for the U. S. Environmental Protection Agency by The Cadmus Group, Inc., Bechtel Power Corporation, and Science Applications International Corporation. May 1998
    [175] 姚强.洁净煤技术.北京:化学工业出版社,2005
    [176] Institute of Clean Air Companies (ICAC). Selective Catalytic Reduction (SCR) Control of NO_x Emissions. Prepared by the ICAC SCR Committee, November 1997.
    [177] H. G. Stenger. Low temperature selective catalytic reduction of NO. Presented at the Institute of Clean Air Companies ICAC Forum 2000, Washington D.C., March 23-24, 2000
    [178] J.. R. Cochran. SNCR, SCR, and hybrid systems capabilities, limitations and costs. In: Proceedings of the EPRI/EPA 1995 joint symposium on stationary combustion NO_x control Kansas City, MO, USA, 16-19 May 1995
    [179] 钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社,2002
    [180] 杨睿戆,吴彦,毛本将.电子束辐照烟气脱硫脱硝机理研究现状.环境科学动态,2003,Vol.4:43~45
    [181] 毛本将,丁伯南.电子束烟气脱硫技术及工业应用.环境保护,2004,Vol.9:15~18
    [182] 朱益民.脉冲电晕法脱硫脱硝研究概述.环境科学进展,1997,Vol.5(5):75~80
    [183] 王耀昕.活性炭联合脱硫脱硝技术综述.电站系统工程,2004,Vol.20(6):41~42
    [184] 张鹏宇.催化活性炭脱硫脱硝除汞的试验研究:[硕士学位论文].武汉:华中科技大学,2004
    [185] 李开喜,凌立成,刘朗等.氨水活化的活性炭纤维的脱硫作用.环境科学学报,2001,Vol.21(1).74~78
    [186] 苏胜,向军,马新灵等.铝基氧化铜干法烟气脱硫及再生研究。燃料化学学报,2004,Vol.32(4):407~412
    [187] 马新灵,王亚立,邓德兵等.CuO/Al_2O_3干法烟气脱硫研究.华中科技大学学报,2002,Vol.30(12):95~97
    [188] 侯相林,高荫本,陈诵英。载体对氧化铜高温脱硫过程影响的研究.燃料化学学报,1998,Vol.26(5):452~456
    [189] J. E. Standt, R. P. Casill. SNOX demonstration project performance data: one year interim report.. In: Proceedings of the 1993 joint symposium on stationary combustion NO_x control, Mitami Beach, FL, USA, 24—27, May 1993
    [190] SNOX flue gas cleaning demonstration project: A DOE Assessment. U. S. Department of Energy, National Energy Technology Laboratory
    [191] R. Martinelli, J. B. Doyle, K. E. Redinger. SO_x-NO_x-Rox-Box technology review and global commercial opportunities. Presented to 4th Annual Clean Coal Technology Conference, Sep. 5-8, 1995, Denver, Colorado, U.S.A.
    [192] U. S. Department of Energy. "SO_x-NO_x-Rox-Box flue gas clean-up demonstration". Final Report, U. S. DOE, September, 1994
    [193] B. K. Gullett, K. R. Bruce, W. F. Hansen, et al. Furnace slurry injection for simultaneous SO_2/NO_x control. Paper presented at the 1991 SO_2 control symposium, Washington, DC, USA, 3-6 Dec 1991
    [194] R. E. Thompson, L. J. Muzio. United States Patent 4731233.. Method and composition for utilizing lime-urea hydrates to simultaneously reduce NO_x and SO-x in combustion effluents
    [195] GB/T 19587-2004《气体吸附BET法测定固态物质比表面积》
    [196] 岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行.北京:中国电力出版社,1998
    [197] 岑可法,倪明江,严建华等.气固分离理论及技术.杭州:浙江大学出版社,1999
    [198] 冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉.北京:中国电力出版社,2003
    [199] Zhen Shu Liu. Advanced experimental analysis of the reaction of Ca(OH)_2 with HCl and SO_2 during the spray dry scrubbing process. Fuel, 2005, Vol.84: 5~11
    [200] Norbert AdolphLange. Handbook of Chemistry. Handbook Publishers, Inc.,, 1979
    [201] 国家环境保护总局,空气和废气监测分析方法编委会.空气和废气监测分析方法.北 京:中国环境科学出版社,2003
    [202] 曾凡刚.荡涤环境监测.北京:化学工业出版社,2003
    [203] 林朝扶.烟气氯化氢分析中的干扰因素及消除.电力环境保护,2001,Vol.2:53~54
    [204] 国家安全生产监督管理局,公安部,国家环境保护总局等.剧毒化学品目录.2003
    [205] 陈惠珠,彭谦.离子色谱法测定车间空气中氯化氢.现代科学技术,2003,Vol.1:67~68
    [206] 杨美玲.烟气中氯化氢气体测定方法的研究——氯离子选择电极法.卫生研究,1989,Vol.18(3):49~53
    [207] 谢声洛.离子选择电极分析技术.北京:化学工业出版社,1985
    [208] 韩德刚,高执棣.化学热力学.北京:高等教育出版社,1997
    [209] Akio S., Takehiko M.. New HC1 removal process for MSW incineration. Proceedings of 1998 National Conference, Thirteenth Biennial Conference, Philadelphia, 1998, 5: 283~293
    [210] 张子慧.热工测量与自动控制.北京:中国建筑工业出版社,1996
    [211] 西安热工研究所,东北电力局技术改进局.燃煤锅炉燃烧调整试验方法.北京:水利电力出版社,1974
    [212] 梅红生,陈德珍,林瑜.旋风除尘器高温净化垃圾焚烧烟气的实验研究.中国工程热物理年会2004年燃烧学学术会议,044098
    [213] (苏)布路西洛夫斯基.石灰的制造.北京:重工业出版社,1956
    [214] Patankar,S.V.,郭宽良译.传热和流体流动的数值计算方法.北京:科学技术出版社,1984
    [215] 岑可法等.燃烧流体力学.北京:水利电力出版社,1991
    [216] 范维澄,万跃鹏.流动及燃烧的模型与计算.合肥:中国科学技术大学出版社,1992
    [217] 周力行.湍流气粒两相流动和燃烧的理论与数值模拟.北京:科学出版社,1994
    [218] D. Simonin and P. L. Vidlet, the Modeling of the Turbulent Recirculating High Temperature Flows Loaded with Particles, Plasme Jets, 1990
    [219] Fluent Inc., Fluent 6.0 User's Guide Documents, 2001
    [220] 王应时、范维澄、周力行等.燃烧过程数值模拟.北京:科学出版社,1986
    [221] R. D. Pickens. Add-on control techniques for nitrogen oxide emissions during municipal waste combustion. Journal of Hazardous Materials, 1996, Vol.47: 195-204
    [222] Bruce W. Lani, T. J. F., James Murphy, et al. A review of DOE/NETL's advanced NO_x control technology R&D program for coal-fired power plants. 2005
    [223] R. K. Srivastava, W. Jozewicz. Menu of NO_x emission control options for coal-fired electric utility boilers. In 96th Annual Conference & Exhibition of Air & Waste Management Association. 2003, San Diego, CA
    [224] R. K. Srivastava, D. Grano, S. Khan, et al. Controlling NOx emission from industrial sources. Environmental progress, 2005, Vol.24 (2): 181~197
    [225] D. C. Mussatti, R. K. Srivastava, Paula M. Hemmer, et al. NO_x controls—selective non-catalytic reduction. EPA/452/B-02-001, 2000
    [226] Institute of Clean Air Companies, (ICAC). Proceeding from ICAC Forum: Cutting NO_x Emissions. March, 2000
    [227] Committee of the Institute of Clean Air Companies, Inc. White Paper, Selective Non-Catalytic Reduction (SNCR) for Controlling NO_x Emissions. SNCR. October, 1997
    [228] M. Oliva, M. U. Alzueta, A. Millera, et al. Theoretical study of the influence of mixing in SNCR process. Chemical Engineering Scinece, 2000, Vol.55: 5321-5332
    [229] B. Ljungdahi, J. Larfeldt. Optimized NH_3 in CFB boilers. Powder Technology, 2001, Vol.120: 55~62
    [230] E. C. Zabetta, K Savihailju. Reduction NO_x Emissions using fuel staging, air staging, and selective non-catalytic reduction in synergy. Ind. Eng. Chem. Res., 2005, Vol.44: 4552~4561
    [231] J. Furrer a., H. Deuber, H. Hunsinger et al. Balance of NH_3 and behavior of polychlorinated dioxins and furans in the course of the selective non-catalytic reduction of nitric oxide at the TAMARA waste incineration plant. Waste Management, 1998, Vol.18: 417-422
    [232] M. Radojevic. Reduction of nitrogen oxides in flue gases. Environmental Pollution, 1998, Vol.102(S1): 685~689
    [233] M. U. Alzueta, A. Millera, M. Oliva, et al. Interactions between nitric oxide and urea under flow reactor condition. Energy & Fuel, 1998, Vol, 12: 1001~1007
    [234] R. K. Lyon. Method of the Reduction of the Concentration of NO in Combustion Effluents Using Ammonia. U. S. Patent 3, 900, 554, 1975
    [235] Selective non-catalytic reduction for NO_x control on coal-fired boilers. Draft Report. prepared for the U. S Environmental Protection Agency by The Cadmus Group. Inc.. Bechtel Power Corporation. and Science Applications International Corporation. May 1998
    [236] Northeast States for Coordinated Air Use Management (NESCAUM). Status report on NO_x control technoiogies and cost effectiveness for utility, boilers. June 1998
    [237] J. K Arand, L. J. Muzio, J. G. Sotter. Urea Reduction of NO_x in Combustion Effluents. U. S. PatentNo. 4,208,386, 1982
    [238] R. Rota, D. Antos, E. F. Zanoelo, et al. Experimental and modeling analysis of the NO_xOUTprocess. Chemical Engineering Scinece, 2002, Vol.57: 27~38
    [239] Koebel M., Elsener M., Nitrogen removal from waste gases by selective non-catalytic reduction processes (SNCR), ammonia or urea as reducing agent?. Chemical Engineering and Technology, 1992, Vol. 64: 934~947
    [240] M. J φdal, C. Nielsen, T. Hulgard, et al. Pilot-scale experiments with ammonia and urea as reductants in selective non-catalytic reduction of nitric oxide. Twenty-third Symposium (International)on Combustion, Orleans, France, 1990, 237~243
    [241] Itaya, Y., Deguchi, S., Takei, M., et al. NO reduction behavior by urea solution injection in the tubuklar reactor. Fouth International Conference for Technologies and Combustion foraClean Environment, Lisbon, 1997, Vol. Ⅱ., 7~12
    [242] Aoki. H., Fujiwara, T., Momzumi, Y., et al. Measurement of urea thermal decomposition reaction rate for NO selective non-catalytic reduction. Fifth international conference on technologies and combustion for a clean environment, Lisbon, 1999, Vol. Ⅰ., 115~118
    [243] J. A. Caton, Z. Xia. The selective non-catalytic removal (SNCR) of nitric oxides from engine exhaust streams: comparison of three processes. Journal of Engineering for Gas Turbine and Power, June, 2003, 1~8
    [244] R. A. Perry, D. L. Siebers. Rapid reduction of nitrogen oxides in exhaust gas streams. Nature, 1986, Vol. 324: 657~658
    [245] M. Streichsbier, R. W. Dibble, R. A. Perry. Non catalytic NOx removal from gas turbine exhaust with cyanuric acid in a recirculating reactor. Chemical Engineering and Technology, 2003, 1~25
    [246] T. Hunt, G. Schott. Selective non-catalytic operating experience using both urea and ammonia. In: Proceedings of the 1993 joint symposium on stationary combustion NO_x control, MitamiBeach, FL, USA, 1993, 24-27May
    [247] 钟秦.选择性非催化还原法脱除NO_x的研究.南京理工大学学报,2000,Vol.24(5):441~444
    [248] Berg M.. NO_x reduction by urea injection in a coal fired utility boiler. In: Proceedings of the 1993 joint symposium on stationary combustion NOx control, Mitami Beach, FL, USA, 1993, 24~27 May
    [249] L. J. Muzio. The effect of residence time on SNCR processes. In: Proceedings of the 1993 joint symposium on stationary combustion NO_x control, Mitami Beach, FL, USA, 1993, 24~27 May
    [250] φstberg M., Dam-Johansen K.. The droplet diffusion model. An empirical model for micro mixing in reacting gas phase systems. Chemical Engineering Science, 1995, Vol.50: 2061~2067
    [251] M. Fstberg, Dam-Johansen K., J. E. Johnsson. Influence oflnixing on the SNCR process. Chemical Engineering Science, 1997, Vol.52: 2511~2525
    [252] M. J. Rini, J. A. Nicholson, M. B. Cohen. Evaluating the SNCR process for Tangentially-Fired Boilers. Presented at the 1993 Joint Symposium on Stationary Combustion NO_x Control, Bal Harbor, Florida, 1993, 24~27May
    [253] R. K. Lyon. The NH_3—NO—O_2 reaction. Int. J. Chem. Kinet., 1976, Vol.8, 315
    [254] F. Kasuya, P. Glarborg, J. S. Johnsson, et al. The thermal DeNO_x process: influence of partial pressures and temperature. Chem. Eng. Sci., 1995, Vol.50 (9): 1455~1466
    [255] J. Suhhnann, G. Rotzoll. Experimental characterization of the influence of CO on the high-temperature reduction of NO by NH_3. Fuel, 1993, Vol. 72: 175~179
    [256] J. A. Caton, J. K. Narney Ⅱ, C. Cariappa, et al. The selective non-catalytic reduction of nitric oxide using ammonia at up to 15% oxygen, Canadian Journal of Chemical Engineering,, 1995, Vol.73 (3): 345~350
    [257] J. A. Caton, D. L. Siebers. Comparison of nitric oxide removal by cyanuric acid and by ammonia. Combustion Science and Technology, 1989, Vol.65: 277~293
    [258] R. K. Lyon, J. E. Hardy. Discovery and development of the thermal DeNOx process. Industrial and Engineering Chemistry Fundamentals, 1986, Vol.25, 19~24
    [259] B. Leckner, M. Karlsson, K. Dam-Johansen, et al. Influence of additives on selective non-catalytic reduction of NO with NH_3 in circulating fluidized bed boilers. Industrial and Engineering Chemistry Research, 1991, Vol.30, 2396~2404
    [260] W. Duo, K. Dam-Johansen, K. K. φstergaard. Widening the temperature range of the thermal DeNOx process. An experimental investigation. Proceedings of the 23rd International Symposium on Combustion, 1990, Pittsburgh, PA: The Combustion Institute. pp. 297~303
    [261] S. L. Chen, R. K. Lyon, W. R. Seeker. Advanced Non-Catalytic Post Combustion NO_x Control. Environmental Progress, 1991, Vol.10 (3), 182~185
    [262] V. M. Zamansky, P. M. Maly, J. A Cole. Method for reducing NO_x in combustion flue gas using metal-containing additives. U. S. Patent 387631, 1999
    [263] V. M. Zamansky, P. M Maley, L. Ho, et al. Promotion of selective non-Catalytic reduction of NO by sodium carbonate. Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1998.
    [264] A. N. Hayhurst, A. D. Lawrence. The reduction of the nitrogen oxides NO and N_2O to molecular nitrogen in the presence of iron, its oxides, and carbon monoxide in a hot fluidized bed. Combustion and Flame, 1997, Vol.10: 351-365.
    [265] V. M. Zamansky, L. Ho, R M. Maly, et al, Reburning promoted by nitrogen and sodium containing compounds. Presented at the 26th International Symposium on Combustion, Jul. 28-Aug. 2, 1996, Naples, Italy.
    [266] V. M. Zamansky, V. V. Lissianski. Reaction of Sodium Species in the promoted SNCR Process. Combustion and Flame, 1999, Vol.117: 821~831
    [267] R. Rota. Influence of oxygenated additives on the NO~OUT process efficiency. Fuel, 2003, Vol.82: 765~770
    [268] P. Glarborg, K. Dam-Johansen., J. A. Miller, et al. Modeling the Thermal DeNO_X process in flow reactors. Surface effects and nitrous oxide formation. Int. J. chem. Kin, 1994, Vol.26, 421~436
    [269] L. Ho, S. L. Chen, W. R. Seeker. et al. Methods for controlling N_2O emissions and for the reduection of NO_x emissions in combustion systems while controlling N_2O emissions. U. S. Patent 5270025(1993)
    [270] 汪多仁.水合肼的开发与应用.现代农药,2002,Vol.2,39~41
    [271] 游贤德.水合肼生产技术进展.江苏化工,2001,Vol.29(3),22~24
    [272] Hydrazine Sulfate 99+%, ACS Reagent CAS Number: 10034-93-2
    [273] A. Braun, C. Bu, U. Renz. Emission of NO and N_2O from a 4MW fluidized bed combustor with NO reduction. Montreal, The 11th Int. Conference on Fluidized Bed Combustion, ASME, 1991, 709~717
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.