奥氏体动态再结晶晶粒超细化及其马氏体相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晶粒细化是提高工程材料尤其是钢铁材料强韧性的重要手段之一,新一代钢铁材料的研究开发是以获得超细晶粒组织为主要方向的。近年来,众多研究者通过强塑性变形的方法制备了亚微米级、纳米级超细晶粒材料,实现了晶粒细化;若能结合相变强化,进一步细化相变后的组织,则能有效地提高钢铁材料的性能。研究强塑性变形奥氏体晶粒超细化及其马氏体相变行为,不仅能够完善极端条件下的塑性变形理论和马氏体相变理论,而且对新一代钢铁材料的研究和开发也具有很强的理论指导意义。
     本文首先采用多轴锻造的方法对Fe-32%Ni合金奥氏体进行了强塑性变形,实现了晶粒细化并获得了亚微米级超细晶粒组织;然后将强变形超细晶粒Fe-32%Ni合金奥氏体在液氮中进行深冷处理,使之发生马氏体相变。采用光学显微镜(Optical microscopy, OM)、扫描电镜(Scaning electron microscopy, SEM)、透射电镜(Transmission electron microscopy, TEM)、电子背散射衍射(Electron backscattered diffraction, EBSD)以及X射线衍射(X-ray diffraction, XRD)等微观分析技术探明了多轴锻造强变形过程中的奥氏体晶粒细化机制以及强变形超细晶粒奥氏体的马氏体相变行为。本文的主要结论如下:
     1. Fe-32%Ni合金奥氏体单向压缩变形应力-应变曲线分析表明,Fe-32%Ni合金奥氏体压缩变形应力-应变曲线主要有两种类型:一种是高温变形时的动态再结晶型,即在变形初期,随着形变量的增加,流变应力逐渐增大,产生明显的加工硬化,继续塑性变形,加工硬化率逐渐减小,应力在达到峰值后迅速降低,直到稳态变形阶段,流变应力基本保持稳定;另一种为低温变形时的动态回复型,即随着形变量的增加,流变应力逐渐增大,产生明显的加工硬化,当应变达到一定值后,应力保持稳态。
     2.在500℃、应变速率10-2s-1的形变条件下对Fe-32%Ni合金奥氏体进行了多轴锻造塑性变形。结果表明:当累积应变量达到6.0时,原始奥氏体晶粒从200μm左右细化到了1μm左右,当累积应变量达到10.5时,平均晶粒尺寸达到700nm左右;多轴锻造强变形晶粒细化在变形初期较为明显,当累积应变量达到一定值后,组织趋于稳定,晶粒尺寸不再明显减小;EBSD分析表明,变形初期在晶粒内部形成了大量的小角度晶界,随着变形的不断进行,小角度晶界比例不断减少,大角度晶界比例不断增加,最终大角度晶界比例趋于稳定。Fe-32%Ni合金奥氏体低温( < 0.5Tm )多轴锻造强变形的晶粒细化过程为:原始奥氏体晶粒在受到某个方向压缩变形后,在晶粒内部沿一定方向产生形变带,这些形变带将晶粒分割成取向具有一定差异的亚晶,当再受到下一道次压缩变形,且变形方向发生改变时又将沿另外某个方向形成一定的形变带,此时不同方向的形变带将互相交叉,将晶粒进一步分割细化,如此反复,经过多道次多方向的变形后,形变带将变得非常复杂,它们之间相互交割,将奥氏体晶粒有效地分割细化成多个小亚晶,继而随着后续变形,这些亚晶逐渐倾转,取向发生改变,亚晶界通过位错的合并、重排逐渐大角化,最终形成相互独立的超细晶粒,这一过程称之为连续动态再结晶,又由于该过程发生的温度比较低,又称为低温连读动态在结晶。
     3.在800℃、应变速率10-2s-1的变形条件下对Fe-32%Ni合金奥氏体进行了多轴锻造塑性变形。结果表明:随着变形的进行,晶粒首先被拉长,晶界变得凸凹不平,应变量达到0.5时,能够在形变晶粒晶界处观察到动态再结晶小核心,此后进一步变形,细小的动态再结晶晶粒增多,逐步取代原来粗大的形变晶粒,当形变量达到1.5时,细小的动态再结晶晶粒已基本上取代了粗大的形变晶粒,动态再结晶组织也趋向一定的动态平衡。Fe-32%Ni合金奥氏体高温(>0.5Tm)多轴锻造强变形的晶粒细化过程为:随着变形的进行,位错首先产生滑移运动,在奥氏体原始晶界处不断形成塞积,原始晶界产生弯曲,位错的塞积导致晶界处产生畸变,当形变量达到一定程度时,在畸变程度较高的位置形成新的无畸变晶核,随着变形的进行,这些小晶核不断长大吞噬形变晶粒,最终完全取代形变晶粒,从而在材料内部形成新的等轴晶粒,这个过程通常称为不连续动态再结晶。
     4.不同变形条件下多轴锻造Fe-32%Ni合金奥氏体组织演变研究结果表明:温度对于强变形晶粒细化效果有着明显的影响,通过低温强变形获得的晶粒要比高温强变形获得的小得多,其根本原因是晶粒细化机制的不同:在0.5Tm以下温度多轴锻造塑性变形时发生连续动态再结晶,在0.5Tm以上温度多轴锻造塑性变形时发生不连续动态再结晶。低温变形时,当累积应变量较小时,变形速率对晶粒细化效果影响明显,当累积应变量达到一定值后,应变速率对晶粒细化影响不再明显;高温变形时,应变速率较大时,晶粒尺寸较小。要通过强变形实现晶粒超细化应该尽可能的降低形变温度,增加形变速率。
     5.多轴锻造Fe-32%Ni合金奥氏体的马氏体相变开始温度(Ms点)、马氏体转变量的研究结果表明,随着累积应变量的增大,Ms点逐渐降低,液氮温度下的马氏体生成量逐渐减少,最终均趋于恒定。原因是随着多轴锻造变形的进行,奥氏体的细晶强化以及形变位错的引入导致的母相加工硬化抑制了马氏体的形核和生长;奥氏体的晶粒细化效果随着形变量的增加逐渐减弱,使得Ms点和马氏体生成量趋于稳定。
     6.低温多轴锻造强变形Fe-32%Ni合金奥氏体的马氏体微观结构观察表明:低温强变形奥氏体相变后的马氏体片变得不再完整,部分马氏体片边缘变得弯曲,甚至有些马氏体发生了中脊断裂现象;此时马氏体片的亚结构观察表明,部分马氏体片中部以孪晶为主,边缘则是复杂的位错网络,有些马氏体片的亚结构转变为高密度位错。原因是强变形奥氏体相变的发生是基于已经畸变了的母相晶面和晶向,孪晶的发展必然是弯折或者折断的,同时母相中大量缺陷的存在大大破坏了其结构的均匀性,而且强变形奥氏体晶粒晶界不规则,使得马氏体和奥氏体界面在向母相的推进中变得断续而不完整。Fe-32%Ni合金奥氏体在发生相变时,首先以孪晶来协调应变,由于原始组织细化大大提高了母相强度,加大了相变切变阻力,母相的塑性协调难度增加,孪晶形成后在生长的同时,在基体中产生了大量的位错,就形成了以孪晶为中脊,高密度位错为边缘的马氏体片;其次,强变形奥氏体母相中大量位错的引入,很大程度上破坏了母相晶格原子排列的空间规律性,尤其在几个先形成马氏体片包围的母相区域畸变程度变得更大,在强变形奥氏体部分基体内形成更高密度的位错,导致在随后的马氏体相变中,以变体间形成共格或半共格界面为必要条件的孪生切变难以发生,此时,奥氏体只能通过位错滑移提供塑性协调而生成马氏体片,此时的马氏体片是以高密度位错为亚结构的。
     7.高温多轴锻造Fe-32%Ni合金奥氏体的马氏体微观结构观察表明:马氏体片中脊出现了折断现象,片状马氏体的亚结构主要是孪晶,但孪晶仅仅存在于马氏体片的中部,马氏体片边缘则为复杂的位错网络。这种特殊组织的出现是与高温变形不连续动态再结晶奥氏体不均匀的微观结构有关的:细小的动态再结晶晶核和加工硬化了的具有高密度位错的动态再结晶晶粒都将阻碍马氏体的形核;但是位错密度呈梯度分布的动态再结晶晶粒的晶界附近少量的位错将有利于马氏体形核,晶粒内部较高密度的位错阻断了马氏体片的连续长大,导致了马氏体片的边缘弯曲、中脊折断。
Grain refinement is one of the important means to improve the strength and toughness of the engineering materials, especially the iron and steel materials. The research and development objective of the new generation iron and steel materials is to obtain ultra-fine grained microstructure. Recently, many researchers have fabricated the ultra-fine grained materials in sub-micrometer or nanometer range by severe plastic deformation. The mechanical properties of iron and steel materials can be effectively improved if the microstructure could be further refined through phase transformation. Studies on the austenite grain refinement by severe plastic deformation and its martensitic transformation behavior will not only fulfill the theory of plastic deformation and martensitic transformation under uttermost conditions, but also have great instructional sense on the research and development of new generation iron and steel materials.
     In the present dissertation, the Fe-32%Ni alloy was firstly severe plastic deformed by multi-axial forging; then the severe plastic deformed Fe-32%Ni alloy austenite was quenched liquid nitrogen to make martensitic transformation take place. The austenite grain refinement mechanism and its martensitic transformation behavior were investigated by a series of micro-analysis techniques such as optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM),electron backscattered diffraction (EBSD) and X-ray diffraction (XRD) etc. The main conclusions of the present dissertation are as followings:
     1. The stress-strain curves analysis of Fe-32%Ni alloy during single compression shows that there are two categories of stress-strain curves in Fe-32%Ni alloy during deformation. One category is named dynamic recrystallization: the flow stress curve exhibits a single peak stress followed by work softening and then a steady state. The other category is called dynamic recovery: the flow stress increases to a single peak with work hardening and then showed a steady-state-like one during further deformation.
     2. The Fe-32%Ni alloy was severe plastic deformed by multi-axial forging at the temperature of 500℃and strain rate of 10-2s-1. The results indicated that the austenite grains were refined from 200μm to about 1μm when the cumulative strain amounted to 6.0 and decreased to about 700nm when the cumulative strain reached 10.5. The grain refinement phenomenon was obvious at the initial stage of deformation, and the grain size did not decrease when the strain accumulated to some certain amount. Large amounts of low angle boundaries were formed at the initial deformation, and the proportion of low angle boundaries decreased with strain while the high one increased. The volume fraction of high angle boundaries reached a steady proportion eventually. It is concluded that the grain refinement process in Fe-32%Ni alloy multi-axially forged below the temperature of 0.5Tm is as the following: the deformation bands will be formed when the original austenite grains are compressed in some certain direction, and these deformation bands divide the original grains into subgrians with different orientations; then the deformation bands in another direction will be formed when the sample is deformed by next pass compression with strain path changed, in which way the grains will be further divided into small subgrians. The deformation bands would become complicated and intersected with each other after repeated multi-axial forging, and the original grains would be divided into large amounts of subgrians. The misorientations of subgrain boundaries increase by usual intrinsic slip and the absorption of accomodated dislocations at subgrains boundaries and subgrians rotation, in which way the new ultra-fine grains are formed homogeneously. The grain refinement mechanism is classified as continuous dynamic recrystallization (CDRX).
     3. The Fe-32%Ni alloy was severe plastic deformed by multi-axial forging at the temperature of 800℃and strain rate of 10-2s-1. The results indicated that the original austenite grians were enlongated with grains boundaries curved at initial deformation, and the nucleation of dynamic recrystallization could be found near the original grain boundaries when the strain was 0.5. The dynamic recrystallized grains increased and gradually replaced the original deformed grains with deformation until the microstructure became stable when the strain accumulated to about 1.5. The grain refinement process is that the dislocations slip and accumulate near the original grain boundaries and make them curved; then the new grains that are almost defect-free are formed by nucleating at the bulged boundaries, and they grow and consume the deformed microstructure until the material is completely recrystallized. The process is classified as discontinuous dynamic recrystallization (DDRX).
     4. The studies on the microstructure evolution in Fe-32%Ni alloy during multi-axial forging under different deformation conditions indicated that the temperature obviously affected the grain refinement. The grains obtained by low-temperature deformation were much smaller than those obtained through high-temperature deformation because that the continuous dynamic recrystallization (CDRX) tooke place when the Fe-32%Ni alloy was multi-axially forged below the temperature of 0.5Tm, while the discontinuous dynamic recrystallization (DDRX) happened when the Fe-32%Ni alloy austenite was multi-axially forged over the temperature of 0.5Tm. The studies about strain rates effect on the grain refinement indicated that the grain refinement difference was obvious when the cumulative strain was small while the effect was not obvious when the cumulative strain was large when the Fe-32%Ni alloy deformed at low temperatures. The grains were relatively small when the Fe-32%Ni alloy was multi-axially forged at high temperature with high strain rate. The ultra-fine grained Fe-32%Ni alloy only could be obtained by multi-axial forging at low temperatures and high strain rates.
     5. The studies on the martensite starting temperature (Ms) and the translated martensite volume fraction of severe plastic deormed Fe-32%Ni alloy indicated that the Ms temperature and the volume fraction of martensite under liquid nitrogen temperature decreased with increasing cumulative strain and reached a stble value eventually. The reason is that the parent austenite phase was work-hardened by the grain refinement and the introduction of deformation dislocations. The grain refinement effect decreased with deformation resulted in the stable Ms temperature and the martentie volume fraction.
     6. The martensite microstructure observation of the severe plastic deformed Fe-32%Ni alloy austenite by multi-axial forging at low temperature indicated that the martensite plates were not integral and its rims were crooked, especially the mid-ribs of some martensite plates were broken. The martensite substructure observation indicated that the main sub-structure of martensite plates were not twins but it just distributed in the moderate of the plates and there were complexed dislocation nets near the plate border. It was also found that the substructure of some martensite plates were high density dislocations. The martensitic transformation took place on the distorted parent phase, therefore the twins was necessary to be crooked; the high density defects and the curved grain boundaries in the severe plastic deformed austenite resulted in the complicated martensite plates morphology. The twins were firstly formed to overcome the strain of martensitic transformation, then large amounts of dislocations emerged when the twins grew after formation for the high strength of the parent phase based on the refinement of the original microstructure. Therefore the martensite plates with twins in the moderate and high density dislocations near the plates’border were formed. Secondly, the introduction of high density dislocation in the parent phase resulted in the severe lattice distortion in austenite, especially in the area circled by the martensite plates formed during initial phase transformation. The twins were difficult to be formed under which kind of condition, and the martensite plates must be formed by dislocation sliding, then the high density dislocations became the substructure of the martensite plates.
     7. The martensite microstructure observation of high-temperature deformed Fe-32%Ni alloy indicated that the martensite morphology was characterized by crooked midribs and serrated rims, and the main sub-structure of martensite plates was twins but just it distributed in the moderate of the plates and there were complexed dislocation nets near the plates border. The special martensite microstructure was related to the characteristic discontinuous dynamic recrystallization austenite microstructure: the fine grains with low density dislocation and the work-hardened grains with high dislocation density will hinder the martensitic nucleation for the excessive work hardening of the parent-martix, while for the grains with gradient dislocation density, the low dislocation density near the grain boundaries contributed to the martensitic nucleation but the high density dislocation inside the grains will hinder the martensite continuous growth, therefore, the crooked midrib and serrated rim of the martensite plates emerged.
引文
[1]陈鼎,黎文献,日本的超级钢材材料计划,中国锰业,2000,18 (1), 46-48
    [2]胡胜亮,李运刚,田薇,新一代钢铁材料的研发,河北理工学院学报,2005, 27(1), 18-22
    [3]I.P. Pinheiro, R. Barbosa and P.R. Cetlin, The revelance of dynamic recrystallization in the hot deformation of IF steel at high strain rates, Mater. Sci. Eng. A, 2007, 457(1-2), 90-93
    [4]J.F.C. Lins, H.R.Z. Sandim, H.-J. Kestenbach, D. Raabe, K.S. Vecchio, A microstructural investigation of adiabatic shear bands in an interstitial free steel, Mater. Sci. Eng. A, 2007, 457(1-2), 205-218
    [5]Jing-Yuan Li, Sumio Sugiyama and Jun Yanagimoto, Microstructural evolution and flow stress of semi-solid type 304 stainless steel, J. Mater. Proc. Tech, 2005, 161(3), 396-406
    [6]N. Fujita, T. Narushima, Y. Iguchi, Austenitic grain refinement in as cast HSLA steels by dynamic recrystallization, Mater. Sci. Forum, 2003, 426-432(2), 1095-1100
    [7]Y.Y. Tse, G.L. Liu, B.J. Duggan,Deformation banding and nucleation of recrystallisation in IF steel, Scri. Mater,1999 42(1), 25-30
    [8]B. Eghbali, A. Abdollah-zadeh, strain-induced transformation in a low carbon microalloyed steel during hot compression test, Scri. Mater, 2006, 54(6), 1205-1209
    [9]A. Kojima, Y.Watanabe, Y. Terada, Ferrite grain refinement by large reduction per pass in non-recrystallization temperature region of austenite, ISIJ International, 1996, 36(5), 603-610
    [10]H. Tamehiro, N. Yamada, H. Matsuda, Effect of the thermo-mechanical control process on the properties of high strength low alloy steel,Transactions of the Iron and Steel Institute of Japan, 1985, 25, 54-61
    [11]A. Matsuzaki, Y. Saito, O. Watanabe, Improvement of mechanical properties of modified 9Cr-1Mo steel by thermomechanical control process, New Alloys for Pressure Vessels and Piping, 1990, 201, 89-95
    [12]M.C. Zhao, K. Yang, Y. Shan, Continuous cooling transformation of undeformed low carbon pipeline steels, Mater. Sci. and Eng. A ,2002, 335(1-2), 126-136
    [13]Y. Iwahashi, Z. Horira, M. Nemoto, T.G. Langdon,Influence of channel angle on the development of ultrafine grains in equal channel angrlar processing, Acta Mater, 1998, 46 (5) 1589-1599
    [14]Y. Lwahashi, Z. Horita, M. Nemoto, The process of grain refinement in equal-channel angular processing, Acta Mater, 1998, 46 (9), 3317-3325
    [15]K. Matsubara, Y. Miyahara, Z. Horita, T.G. Langdon, Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP, Acta Mater., 2003, 51(11) 3073-3084
    [16]S.R. Agnew, J.A. Horton, T.M. Lillo, T.W. Brown, Enchaned ducitity in a strong textured magenisum produced by equal channel angular processing, Scrip. Mater, 2004, 50 (3), 377-381
    [17]M.T. Pérez-Prado, A.A. Gimazov, O.A. Ruano, M.E. Kassner, A.P. Zhilyaev, Bulk nanocrystalline ω-Zr by high pressure torsion, Scri. Mater, 2008, 58(3), 219-222
    [18]Yu. Ivanisenko, R.K. Wunderrlich, R.Z. Valiev, H.J. Fecht, Annealing behavior of nanostructured carbon steel produced by severe plastic deformation, Scrip. Mater, 2003, 49 (10), 947-952
    [19]R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, The effect of annealing on tensile deformation behavior of nanostructured SPD titanium, Scri. Mater, 2003, 49 (7), 669-674
    [20]M. Richert, Q. Liu, N. Hansen, Microstructural evolution over a large strain range in a aluminium deformed by cyclic-extrusion-compression, Mater. Sci. Eng. A, 1999, 260 (1-2), 275-283
    [21]董成瑞,任海鹏,金同哲,微合金非调质钢,北京,冶金工业出版社,2000
    [22]Choo W Y, Proc of inter sym on high performance steels for structural application, Cleverland, USA,1995, 117-121
    [23]翁宇庆,董翰,新一代超细晶粒钢及其力学性能特征,新一代钢铁材料重大基础研究论文集(上册),北京,北京科技大学,2000
    [24]雍岐龙,马鸣图, 微合金钢-物理和力学冶金,北京,机械工业出版社,1989,12
    [25]张羊换,佟庆安,刘永铨,〔V,Nb〕C溶解规律及其对奥氏体晶粒粗化的影响,东北工学院学报,1992, 13(3), 253-258
    [26]K. Tiitto, G. Fitzsimons, A. J. DeArdo, The effect of dynamic precipitation and recrystallization on the hot follow behavior of Nb-V microalloyed steel, Acta Metall, 1983, 31(8), 1159-1168
    [27]刘强, 谢建新, 铌对20MnSi钢奥氏体化和静态再结晶的影响,轧钢, 2002, 19(6), 17-19
    [28]S.K. Mishra, S. Das, S. Ranganathan. Precipitation in high strength low alloy (HSLA) steel: a TEM study, Mater. Sci. Eng. A, 2002, 323(1-2), 285-292
    [29]J. Kliber, I. Schindler, Recrystallization/precipitation behaviour in microalloyed steels, J. Mater. Proce. Tech, 1996, 60(1-4), 597-602
    [30]R.T.J. Whillock,R.A. Buckley, C.M. Sellars, The influence of thermomechanical processing on recrystallisation and precipitation in austenitic alloys with particular reference to the effects of deformation and ageing conditions, Mater. Sci. Eng. A, 2000, 276(1-2), 124-132
    [31]K.J. Lee, Recrystallization and precipitation interaction in Nb-containing steels, Scri. Mater, 1990, 40(7), 837-843
    [32]梅本実,田村今男,変態速度式から導かれる結晶粒径,日本金属学会報, 1985, 24(4), 262-269
    [33]西沢泰二,単相鋼と二相鋼における結晶粒成長(結晶粒成長)(<特集>再結晶?粒成長)鉄と鋼, 1984, 70(15), 1984-1992
    [34]Stephen Liu and Fang-Chun Liao, Precipitate stability in the heat affected zone of nitrogen-enhanced high strength low alloy steels, Mater. Sci. Eng. A, 1998, 244(2), 273-283
    [35]T.Nishizawa,I.Ohnuma, K.Ishida, Examination of the Zener Relationship between Grain Size and Particle Dispersion, Mater. Trans.JIM, 1997, 38, 950-956
    [36]牧正志, 鉄鋼の組織制御の現状と将来の展望, 鉄と鋼, 1995, 81, N547-N555
    [37]Maxznori, 低碳钢的高温变形和形变热处理,高洁净度超细微合金化高强高韧钢论文集,北京,钢铁研究总院,1998, 180-185
    [38]S. A. Moir, K. Eckler and D. M. Herlach, Evolution of microstructures resulting from dendrite growth in undercooled Fe-Ni-Cr melts, Acta Mater, 46(11), 4029-4036
    [39]Kakeshita T, Magnetic field-induced martensitic trans-formations in a few ferrous alloys, Journal of Magetium and Magnetic Materials, 1990, 29(12), 34-36
    [40]Feng Guanghong, Zhou Shaoxiong, Yang Gang, Effect of stable magnetic field on grain refinement of low carbon Mn-Nb steel, Journal of Iron and Steel Research , 2000, 12(4), 27-30
    [41]周雄龙,向开发1μm级超细晶粒钢的挑战,高洁净度超细微合金化高强高韧钢论文集,北京,钢铁研究总院, 1999, 19-28
    [42]杨钢,冯光宏,稳恒磁场对低碳锰铌钢γ→α相变的影响,钢铁研究学报, 2000, 12(5), 31-35
    [43]冯光宏,谢建新,磁场处理对微合金钢相变的影响,北京科技大学学报, 2001, 23(3), 94-96
    [44]M. Umemoto, Z.G. Liu, X.J. Hao, Formation for nanocrystaline ferrite through rolling and ball milling, Trans. Tech. Publications, Materials science and forum, 2001, 360-361, 167-174
    [45]M. Umemoto, Z.G. Liu, K. Masuyama, Nanostructured Fe-C alloys produced by ball milling, Scri. Mater, 2001, 44(8-9), 1741-1745
    [46]牧正志,细化钢铁材料晶粒原理与方法,热处理,2006, 21 (1), 1-14
    [47]K. Lu, Interfacial structural characteristics and grain size limits in nanocrystalline materials crystallization from amorphous solids, Physical Review B, 1995, 51(1), 18-27
    [48]Akishisa Inone,Akira Murakami,Tao Zhang, Thermal stability and magnetic properties of bulk amorphous Fe-Al-Ga-PCB-Si alloys, Mater. Trans. JIM, 1997, 38(2), 89-196
    [49]Akishisa Inoue,Hisat Koshiba,Tao Zhang, Thermal and magneticproperties of Fe50Co7Ni7Zr10- xNbxB20 amorphous alloys with wide supercooled liquid range, Mater.Trans. JIM,1997, 38(3), 577-582
    [50]Akishisa Inoue, Zhang T, Zhang W, Takeuchi A, Bulk Nd-Fe-Al amorphous alloys with hard magnetic properties, Mater.Trans. JIM,1996 ,37(2), 99-108
    [51]Peker A,Johnson W L, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett, 1993, 63(17), 2342-2344
    [52]Akishisa Inoue,Takahiro Aoki, Hisamichi Kimura, Mater. Trans. JIM,1997, 38(2), 175-178
    [53]何国,陈国良,大块玻璃合金射流成形方法的研究,材料科学与工艺, 1998, 6(1), 105-108
    [54]W.J. Botta, D. Nergri, A.R. Yavari, Crystallization of Fe-based amorpjous alloys, Journal of Non-crystalline Solids, 1999, 247(7), 19-25
    [55]Valiev R Z,Korasilnikov N A, Plastic deformationof alloys with submicro-grained structure, Mater. Sci. Eng. A, 1991, 137(1-2), 35-40
    [56]Nikolay A. Krasilnikov, A. Sharafutdiniv, High strength and ductility of nanostructured Al-based alloy, Parepared by high pressure technique, Mater. Sci. Eng. A, 2007, 463(1-2), 74-77
    [57]R Z,Valiev R Z, Krasilnikov N A, Formation of submicrometre-grained structure in magnesium alloy due to high plastic strains, J. Mater. Sci. Lett, 1990, 9(12), 1445-1447
    [58]Valiev R Z,Koznikov A V,Mulyukov R R, Structure and properties of ultrafined materials produced by severe plastic deformation, Mater. Sci. Eng. A, 1993, 168(2), 141-148
    [59]M. Umemoto, Nanocrystallization of Steels by Severe Plastic Deformation, Mater. Trans., 2003, 44(10), 1900-1911
    [60]Y. Kimura, S.Takaki, Microstructural changes during annealing of work hardened mechanically milled metallic powders,Trans. JIM, 1995, 36(2), 289-296
    [61]Mahnoosh Shaarbaf, Mohammad Reza Toroghinejad, Nano-grained copper strip produced by accumulative roll bonding process, Mater. Sci. Eng. A, 2008, 473(1-2), 28-33
    [62]K.T. Park, Y. S. Kim, J.G. Lee etc., Thermal Stability and Mechanical Properties of Ultrafine Grained Low Carbon Steel, Mater. Sci. Eng. A, 2000, 293(1-2), 165-172
    [63]R.Z. Valiev, YU. V. Ivanisenko, E.F. Rauch, Structure and. deformation behaviour of Armco Iron subjected to severe plastic deformation, Acta Mater, 1996, 44(12), 4705-4712
    [64]A. Belyakov, T. Sakai, H. Miura, Fine-grained structure formation in austenitic stainless steel under multiple deformation at 0.5 Tm, Mater. Trans. JIM, 2000, 41(2)), 476-484
    [65]Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, investigation of microstructural evolution during equal-channel angular pressing, Acta Mater, 1997, 45 (11), 4733-4741
    [66]I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, P.D. Hodgson, Enhanced tensile ductility of an ultrafine grained aluminium alloy, Scri. Mater, 2008, 58(3), 163-166
    [67]I. Mazurina, T. Sakai, H. Miura, O. Sitdikov,R. Kaibyshev, Grain refinement in aluminium alloy 2219 during ECAP at 250℃, Mater. Sci. Eng. A, 2008, 473(1-2), 297-305
    [68]Mabuchi M, Iwasaki H, Yanase K, Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE, Scri. Mater, 1997, 36(6), 681-686
    [69]Suh J Y, Kim a H S, Park J W, Finite element analysisof material flow in equal-channel angular pressing, Scri. Mater, 2001, 44(4), 677-681
    [70]Huang W H, Chang L, Kao P W, Effect of die on the deformation texture of copper processed by equal channel angular extrusion, Mater. Sci. Eng. A, 2001, 307(1-2), 113-118
    [71]DeLo D P, Semiatin S L, Hot working of Ti-6Al-4V via equal channel angular extrusion, Metall. Mater. Trans. A, 1999, 30(9), 2473-2474
    [72]A. Belyakov, T. Sakai, H. Miura, K, Tsuzakai, Grain refinement in copper under large strain deformation, Phi. Mag. A, 2001, 81(11), 2629-2643
    [73]D.H. Shin, B.C.Kim, K.T.Park, Microstructural Evolution in commercial low carbon steel by equal channel angular pressing, Acta Mater, 2000, 48(9), 2247-2255
    [74]T. Hebesberger, H.P. Stüwe, A. Vorhauer, Strusture of Cu deformed by high pressure torsion, Acta Mater, 2005, 53 (2), 393-402
    [75]Alexandrov I V, Valiev R Z, X-ray ananlysis of bulk nanostructured metals, Mater. Sci. Forum, 2000, 321-324, 577-582
    [76]Jiang H, Zhu Y T, Butt D P, Microstructural evolution,microhardness and thermal stability of HPT-processed Cu, Mater. Sci. Eng. A, 2000, 290(1-2), 128-138
    [77]Yuichiro Kusadome, Kazutaka Ikeda, Yuko Nakamori, Shinichi Orimo, Zenji Horita, hydrogen storage capability of MgNi2 processed by high pressure torsion, Scri. Mater, 2007, 57(8), 751-753
    [78]Islamgaliev R K, Valiev R Z, Mishra R S, Enhanced superplastic properties in bulk metastable nanostructured alloys, Mater. Sci. Eng. A, 2001, 304-306(1-2), 206-210
    [79]Valiev R Z, Mukherjee A K, Nanostructures and unique properties in intermetallics subjected to severe plastic deformation, Scri. Mater, 2001, 44(8-9), 1747-1750
    [80]Y. Saito, N. Tsuji, H. Utsunomiya, Ultra-fine grained bulk Aluminium produced by accumulative roll bonding process, Scri. Mater, 1998, 39(9), 1221-1227
    [81]N. Tsuji, Y. Saito, H. Utsunomiya, Ultra-fine grained bulk steel produced by accumulative roll bonding process, Scri. Mater, 1999, 40(7), 795-800
    [82]Tsuji N, Shiotuki K, Saito Y, Superplasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding, Mater. Trans. JIM, 1999, 40(8), 765-777
    [83]Lee S H, Sakai T, Saito Y, Strengthening of shear rolled Aluminum based MMC by the ARB process, Mater. Trans. JIM, 1999, 40(12), 1422-1428
    [84]S.H. Lee, Y. Satio, T.Sakai, H.Utsunomiya, Microstructures and mechanical properties of 6061 alumium alloy processed by accumualtive roll bonding, Mater. Sci. Eng. A, 2002, 325(1-2), 228-235
    [85]辻伸泰,上路林太郎,南埜宜俊,CAMP-ISIJ, 2001, (14), 492-496
    [86]Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Novel ultra-high straining process for bulk materials: development of the accumulative roll-bonding process, Acta Mater, 1999, 47(2), 579-583
    [87]N. Kamikawa, T. Sakai, N. Tsuji, Effect of redundant shear strain on microtexture and texture evolution during accumulative roll bonding in ultralow carbon IF steel, Acta Mater, 2007, 55(17), 5873-5888
    [88]Q. Guo, H.G. Yan, Z.H. Chen, H. Zhang, Grain refinement in as cast in AZ80 Mg alloy under large strain deformation, Mater. Charac, 2007, 58(2), 162-167
    [89]Galeev RM, Valiahmetov OR, Salishchev GA, Thermodynamic properties of liquid binary Al–Cr(Ni) Alloys Russian Metally, 1990, 4(1), 97-99
    [90]Salishchev GA, Valiakhmetov OR, Galeyev RM, Formation of submicrocrystalline structure in the titanium aalloy VT8 and influence on mechanical properties, J. Mater. Sci, 1993, 28(11), 2898-2902
    [91]Salishchev GA, Valiahmetov OR, Galeev RM, Malysheva SP, Submicrocrystalline structure formation in titanium under plastic deformation and its influence on mechanical properties, Russian Metally, 1996, 31(4), 86-91
    [92]Kaibyshev O, Grain refinement in commercial alloys due to high plastic deformations and phase transformations, J. Mater. Proc. Tech, 2001, 117(3), 300-306
    [93]R. Kaibyshev, O. Sitdikov, A. Goloborodko, T. Sakai, Grain refinement in as cast 7475 aluminium alloy under hot deformation, Mater. Sci. Eng. A, 2003, 344(1-2), 348-356
    [94]O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, Y. Kimura, K. Tsuzaki, Grain refinement in a commercial Al-Mg-Sc alloy under hot ECAP conditions, Mater. Sci. Eng. A, 2007, 444(1-2), 18-30
    [95]A. Belyakov, R. Kaibyshev, Structural changes of ferteric stainless steel during severe plastic deformation, Nanostructured Materials, 1995, 6(5-8), 893-896
    [96]Wayne C. Chen, David E. Ferguson, Hugo S. Ferguson, Dvelopment of ultra-fine grain steels using the MAXSTRAIN deformation simulator, 42nd Mechanical working and steel processing conference proceedings, Toronto Ontario, Canada, 2000, 22-25
    [97]B. Q. Han, S. Yue, Processing of ultrafine ferrite steels, J. Mater. Proc. Tech, 2003, 136(1-3), 100-104
    [98]Balakrishna Cherukuri, Teodora S. Nedkova, Raghavan Srinivasan, a comprision of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forging and accumulative roll bonding, Mater. Sci. Eng. A, 2005, 410-411, 394-397
    [99]G. Angella, B.P. Wynne, W.M. Rainforth, J.H. Beynon, Strength of AlSI 316L in torsion at high temperature, Mater. Sci. Eng. A, 2008, 472(1-2), 257-267
    [100]R. Bengochea, Microstructural evolution during the austenite to ferrite transformation from deformed austenite, Metall. Trans. A, 1998, 29(2), 417-426
    [101]张红梅,刘相华,王国栋,低碳贝氏体钢形变奥氏体的连续冷却相变研究,金属热处理学报, 2000, 21(4), 35-40
    [102]C.K. YAO, Z. XU, Influence of flow stress of ausformed austenite on strength of ausformed martensite, Mater. Chem. Phy, 1986, 15(11), 75-87
    [103]C. Hayzelden, B. Cantor, The martensite transformation in Fe-Ni-C Alloys, Acta Metall, 1986, 4(22), 233-242
    [104]K. Tsuzakai, S. Fukasaku, Y. Tomota, T. Maki, Effect of prior of austenite on the gamma-epsilon martensitic transformation in Fe-Mn alloys, Mater. Trans. JIM, 1991, 32(3), 222-228
    [105]Kimoto K, Nnishida I, An electron diffraction study on the crystal structure of a new modification of chromium, J. Phys. Soc. Jpn, 1967, 22(3), 744-756
    [106]CG Granqvist, RA Buhrman, Ultrafine metal particles, J. Appl. Phys., 1976, 47(5), 2200-2219
    [107]O. Kitakami, T. Sakurai, Y. Miyashita, Fine metallic particles for magnetic domain observations, Jpn. J. Appl. Phys, 1996, 35 (1), 1724-1728
    [108]Y. Fukano, Particles of γ-iron quenched at room temperature, Jpn. J. Appl. Phys. Lette, 1974, 13(6), 1001-1002
    [109]PEA Turchi, M. Sluiter, FJ Pinski, Ferromagnetism versus antiferro magnetism in FCC Iron, Phys. Rev. Lett, 1986, 56(19), 2096-2099
    [110]I. Takahashi, M. Shimizu, Volume dependence of the magnetic behavior in fcc iron, Journal of Magnetism and Magnetic Materials, 1990, 90(4), 725-726
    [111]Haneda K, Zhou ZX, Morrish AH, Low-temperature stable nanometer-size fcc-Fe particles with no magnetic ordering, Phys. Rev. B, 1992, 46(21), 13832-13837
    [112]L. Del Bianco, A. Hernando, E. Navarro, E. Bonetti, Magnetic behavior of nanocrystalline Fe, J. Mag. Magne. Mater, 1998, 177-181(2), 939-940
    [113]H.J. Fecht,Intrinsic instability and entropy stabilization of grain boundary, Phys. Rev. Lett, 1990, 65, 610-613
    [114]HJ Fetch,Thermodynamic properties and stability of grain boundaries in metals based on the universal equation on state at negative pressure,Acta Metall. Mater,1990, 38, 1927-1932
    [115]M.Wagner, Structure and thermodynamic properties of nanocrystalline metals, Phys. Rev. B, 1992, 45, 635-639
    [116]Q. Meng, N. Zhou, Y. Rong , Size effect on the Fe nanocrystalline phase transformation, Acta Mater, 2002, 50(18), 4563-4570
    [117]孟庆平,戎咏华,徐祖耀,金属纳米晶的稳定性,中国科学E辑, 2002, 32(4), 457-464
    [118]R.W. Cech, D. Turnbull, Heterogeneous nucleation of the martensitic transformation, Trans. AIME, 1956, 206,124-132
    [119]Kajiwara S, Ohno S, Honma K, Martensitic transformations in ultra-fine particles of metals and alloys, Phil. Mag. A, 1991, 63(4), 625-644
    [120]Y H Zhou, M.Harmelin, J.Bigot, Martensitic transformation in ultrafine Fe---Ni powders,Mater. Sci. Eng. A, 1990, 124(2), 241-249
    [121]C. Kuhrt, L. Schultz, Phase formation and martensitic transformation in mechanically alloyed nanocrystalline Fe-Ni, Journal of Applied Physics, 1993,73(4), 1975-1980
    [122]Kajiwara S, Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys, Mater. Sci. Eng. A, 1999, 262 (1-2), 273-275
    [123]Rong Y, Meng Q, Hsu T Y (Xu Zuyao), In: Hanada S, Zhong Z, Nam S W, Wright R N eds., The 4th Pacific Rim Int Conf on Advanced Materials and Processing(PRICM4), The Japan Institute of Metals, 2001, 147-150
    [124]Yoshikazu Matsumura, H. Yada, Hiroshi Tada, Evolution of ultrafine-gained ferrite in hot successive deformation, Transactions ISIJ, 1987, 27, 493-497
    [125]J.H. Beynon, R. Gloss, P.D. Hodgson, The production of ultraifne equilaxed ferrite in a low carbon microalloyed steel by thermomechanical treatment, Mater. Sci. Forum, 1992, 16, 37-42
    [126]R. Priestner, P.D. Hodgson, Ferrite grain coarsening transformation of thermomechanical processed C-Mn-Nb austenite, Mat. Sci. Tech, 1992, 8(10), 849-854
    [127]B. Mintz,S. Yue, J.J. Jonas, Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting, Int. Mater. Rev, 1991, 36(5), 187-217
    [128]B. Mintz, Abu-Shosha R,Shaker M, Influence of deformation induced ferrite, grain boundary sliding, and dynamic recyrstallisation on hot ductility of 0.1-0.75% carbon steels, Mater. Sci. Tech, 1993, 9(10), 907-914
    [129]N. J. Wittridge, J. J. Jonas, the austenite-to-martensite transformation in Fe-30%Ni after deformation by simple shear, Acta Mater,2000, 48(10), 2737-2749
    [130]徐祖耀,全国相变与凝固学术会议特邀报告,热处理, 2002, 17(1), 1-13
    [131]徐祖耀,材料热处理的进展和展望, 材料热处理学报, 2003, 24 (1), 1-13
    [132]白玉光,王安川,陈见,微合金元素铌对钢动态再结晶的影响,钢铁, 1991, 26(11), 52-55
    [133]徐洲,Fe-32Ni合金高温变形与再结晶行为, 金属热处理, 1999, 6(6), 3-6
    [134]F. John Humphreys, Philip Prangnell, Ronald Priestner, Fine-grained alloys by thermomechanical processing, Current Opinion in Solid State and Materials Science, 2001, 5(1), 15-21
    [135]C. García-Mateo, B. López, J. M. Rodriguez-Ibabe, Static recrystallization kinetics in warm worked vanadium microalloyed steels, Mater. Sci. Eng. A, 2001, 303(1-2), 216-225
    [136]小林千紘, 楊続躍,三浦博己,酒井拓, 銅の195Kにおける大ひずみ多軸加工後の微細粒組織の生成, 日本金属学会第133回講演大会講演概要集, 2003, 598
    [137]金泉林,一个新的动态再结晶过程的分析模型, 塑性工程学报, 1994, 1(1), 3-13
    [138]R. Kapoor, J.K. Chakravartty, Deformation behavior of an ultrafine grained Al-Mg alloy produced by equal-channel angular pressing, Acta Mater, 2007, 55(16), 5408-5418
    [139]A. Belyakov, H. Miura and T. Sakai, Dynamic recrystallizaiton under warm deformation of a 304 type austenitic stainless steel, Mater. Sci.Eng. A 1998, 255(1-2), 139-147
    [140]李维卷,杜林秀,张红梅,刘相华,王国栋, 应变诱发铁素体相变对低碳钢晶粒细化的影响,钢铁研究学报, 2000, 12(5), 36-39
    [141]杨王玥,胡安民,齐俊杰,孙祖庆, 低碳钢形变强化相变的组织细化, 材料研究学报, 2001, 15(2), 171-178
    [142]杨平,傅云义,崔凤娥,Q235碳素钢应变强化相变的基本特点及影响因素, 金属学报, 2001, 37(6), 592-600
    [143]姚忠凯,高守义,徐洲,低温形变淬火对马氏体形态的影响, 哈尔滨工业大学学报, 1983,增刊, 24-30
    [144]徐洲,酒井拓,姚忠凯,奥氏体动态再结晶组织对马氏体相变的影响, 材料科学与工艺, 1997, 5(2), 124-128
    [145]赵新清,铁基合金中马氏体均匀形核热力学探讨, 材料工程, 1999,11 (11), 3-5
    [146]郑茂盛,赵更申,周根树,颗粒尺度对纳米材料相变的影响, 稀有金属材料与工程, 1996, 25(1), 10-12
    [147]朱丽慧,马学鸣,Fe-Ni系纳米材料马氏体相变的研究进展, 机械工程材料, 2002, 26(12), 1-5
    [148]徐祖耀,金学军,纳米材料的马氏体相变, 热处理, 1998, 52(4), 1-5
    [1]姚少宁,周汉义, 应用微机测定形状记忆合金的相变点, 计量技术, 2002, (4), 19-22
    [2]Field, D. P. and Adams, B. L., Heterogeneity of Intergranular Damage in Copper Crept in Plane-Strain Tension, Metallurgical Transactions A, 1992, 23, 2515-2526
    [3]Field, D. P, Adams, B.L, Interface Cavitation Damage in Polycrystalline Copper, Acta Metallurgica et Materialia, 1992, 40, 1145-1157
    [4]Field, D. P. and Adams, B. L, Measurement of Interface Damage Heterogeneity, Textures and Microstructures, 1993, 20, 217-230
    [5]Field, D. P., Weiland, H., and Kunze, K, Intergranular Cracking in Aluminum Alloys, Canadian Metallurgical Quarterly, Toronto, 1994, Aug
    [6]Gandin, Ch-A., Rappaz, M., West, D, Grain Texture Evolution during the Columnar Growth of Dendritic Alloys, Metallurgical and Materials Transactions A, 1995, 26, 1543-1551
    [7]Wardle, S. T., Lin, L. S., Cetel, A, Orientation Imaging Microscopy: Monitoring Residual Stress Profiles in Single Crystals using an Image-Quality Parameter, IQ”, Proceedings of the 52nd Microscopy Society of America Meetings, eds. Bailey, G. W A. J. Garratt-Reed, San Francisco Press, San Francisco, 1994, 680
    [8]Wright, S. I, Cotton, J. D, Microtextural Characterization of a Beryllium Weldment, Textures and Microstructures, 1995, 23, 7-19
    [9]Wright, S. I., Gray III, G. T, Rollett, A. D, Textural and Microstructural Gradient Effects on the Mechanical Behavior of a Tantalum Plate, Metallurgical and Material Transactions A, 1994, 25, 1025-1031
    [10]Wright, S.I., Adams, B.L, Kunze, K, Application of a New Automatic Lattice Orientation Measurement Technique to Polycrystalline Aluminum, Materials Science and Engineering A, 1993, 160, 229-240
    [11]Geier S, Sch reck M, Microsturucture study of a degraded pseudomorphic separate confinement heterostructure blue-green laser diode, Appl. Phys. Lett,1994, 65,1769-1781
    [12]陈家光,李忠,电子背散射衍射在材料科学研究中的应用,理化检验-物理分册, 2000, 36(2), 71-74
    [13]F.J. Humphreys, P.S. Bate, Measuring the alinment of low angle boundaries formed during deformation, Acta Mater, 2006, 54(3), 817-829
    [14]H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some alumimium alloys-the deformed state, Acta mater, 2004, 52(11), 3239-3250
    [15]Humphreys F.J, Grain and subgrain characterization by electron backscatter diffraction, J. Mater. Sci, 2001, 36, 3833-3854
    [16]Hurley PJ, Prangnell PB, Bowen JR, recrystallization of a cold worked material, Phi. Trans. R. Soc. Lond. A, 1999, 357, 1663-1681
    [17]Wright, S.I., Adams, B.L,Kunze, K, Orientation Imaging: The Emergence of a New Microscopy, Metallurgical. Transactions A, 1993, 24(4), 819-831
    [18]林栋梁,晶体缺陷,上海,上海交通大学出版社,1996
    [19]Alam, M. N., Blackman, M, Pashley, D. W, High-angle Kikuchi Patterns, Proceedings of the Royal Society of London A, 1953, 221, 224-242
    [20]Baba-Kishi, K, Dingley, D. J, Backscatter Kikuchi Diffraction in the SEM for Identification of Crystallographic Point Groups, Scanning, 1989, 11, 305-312
    [21]Dingley D. J, Randle, V, Microtexture Determination by Electron Backscatter Diffraction”, Journal of Materials Science, 1992, 27, 4545-4566
    [22]Dingley, D. J., Baba-Kishi, K, Randle, V., Atlas of Backscattering Kikuchi Diffraction Patterns, Institute of Physics: London, 1994
    [23]Dingley, D. J, Baba-Kishi, K, Use of Electron Backscatter Diffraction Patterns for Determination of Crystal Symmetry Elements, Scanning Electron Microscopy, II, 1986, 383-391
    [24]Dingley, D. J, A Comparison of Diffraction Techniques for the SEM”, Scanning Electron Microscopy, IV, 1981, 273-286
    [25]Dingley, D. J, Diffraction from Sub-micron Particles using Electron Backscatter Diffraction, Scanning Electron Microscopy II, 1984, 569-575
    [26]Dingley, D. J, On-line Micro Texture Determination”, Proceedings of the Eight International Conference on Textures of Materials (ICOTOM-8), eds. Kallend, J. S. and Gottstein, G., The Metallurgical Society: Warrendale, PA, 1987, 189-195
    [27]Dingley, D. J., Gravestock, N, Rothstein, H, Texture Determination in Deformed Rocks using EBSPs, Institute of Physics Conference Series EMAG 87, 1987, 139-142
    [28]Dingley, D. J., Longdon, M., Wienbren, J, Aldernan, J, On-line Analysis of Electron Backscatter Diffraction Patterns, Texture Analysis of Polysilicon, Scanning Electron Microscopy, 1987, 1-2,451-456
    [29]Field, D. P, Quantification of Partially Recrystallized Polycrystals using Electron Back-Scatter Diffraction, Journal of Materials Science and Engineering A, 1994, 190, 241-246
    [1]P.B. Prangnell, J.R. Bowen, P.J. Apps, Ultra-fine grain structures in aluminiumalloys by severe deformation processing, Mater. Sci. Eng. A, 2004, 375-377, 178-185
    [2]R.Z. Valev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci, 2000, 45, 103-189
    [3]C. Xu, M. Furukawa, Z. Horita, severe plastic deformation as a processing tool for developing superplastic metals, J. Alloy. Compd, 2004, 378 (1-2), 27-34
    [4]Y. Lwahashi, Z. Horita, M. Nemoto, the process of grain refinement in equal-channel processing, Acta Mater, 1998, 46 (9), 3317-3331
    [5]S. Ferrasse, V.M. Segal, K.T. Hartwig, Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion, Metall. Mater. Trans. A, 1997, 28 (4), 1047-1057
    [6]V.M. Segal, Materials processing by simple shear, Mater. Sci. Eng. A, 1995, 197 (2), 157-164
    [7]T. Hebesberger, H.P. Stüwe, A. Vorhauer, structure of Cu deformed by high pressure torsion, Acta Mater, 2005, 53(2), 393-402
    [8]A. Vorhauer, T. Hebesberger, R. Pippan, disteriontions as function of distance: a new procedure to analyse local orientation data, Acta Mater, 2003, 5 (3), 677-686
    [9]Y. Kimura, S. Takaki, mechanically milled metallic powders, Mater. Trans. JIM, 1995, 36, 289-296
    [10]C. Y. Barlow, P. Nielsen, N. Hansen, multilayer roll bonded aluminium foil: processing, microstructure and flow stress, Acta Mater, 2004, 52(13), 3967-3972
    [11]Tsuji N, ultra-fine grained steels, Tetsu-to-Hagane, 2002, 88(7), 359-369
    [12]Q.D. Wang, Y.J. Chen, J.B. Lin, L.J. Zhang, C.Q. Zhai, Microstructures and properties of magnesium alloy processed by a new severe plastic deformation method, Mater. Lett, 2007, 61(23-24), 4599-4602
    [13]A. Mishra, B.K. Kad, F. Gregori , M.A. Meyers, Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis, Acta Mater, 2007, 55(1), 13-28
    [14]Saito Y, Tsuji N, Utsunomiya H and Sakai T, novel ultra-high straining process for bulk materials-development of the accumulative roll bonding (ARB) process, Acta Mater, 1999, 47(2), 579-583
    [15]Kitahara H, Tsuji N and Minamino Y, International Conference on Martensitic Transformations, Shanghai, China, Shanghai Jiao Tong University, May, 2005,
    [16]Shin D H, Kim W G, Park K -T, Lee C S and Kim N J, International Conference on Martensitic Transformations, Shanghai, China, Shanghai Jiao Tong University, May, 2005
    [17]Shin D H, Ueji R, Minamino.Y and Saito.Y, a new and simple process to obtain nano-structured low carbon steel with superior property, Scripta Mater, 2002, 46(4), 305-310
    [18]Baojun Han, Zhou Xu,Microstructural evolution of Fe-32%Ni alloy during large strain multi-axial forging, Mater. Sci. Eng. A, 2007, 447(1-2), 119-124
    [19]Belyakov A, Sakai T, Miura H, Tsuzaki K, Grain refinement in copper under large strain deformation, Phi. Mag. A, 2001, 81(11), 2629-2643
    [20]Belyakov A, Sakai T, Miura H and Kaibyshev R, substructures and internal stresses developed under warm deformation of austenitic stainless steel, Scri. mater, 2000, 42(4), 319-325
    [21]Belyakov A, Kaibyshev R, Structural changes of ferritic stainless steel during severe plastic deformation. Nanostr. Mater, 1995, 6, 893-896
    [22]G. Azevedo, R. Barbosa, E.V. Pereloma, D.B. Santos, Development of an ultrafine grained ferrite in a low C-Mn and Nb-Ti microalloyed steels after warm torsion and intercritical annealing, Mater. Sci. Eng. A, 2005, 402(1-2), 98-108
    [23]任海鹏,王建军,王凯,刘春明, 35MnVN非调质钢高温形变再结晶行为, 材料与冶金学报, 2002, 1(2), 132-135
    [24]Z. Xu, T. Sakai, Kinetics of recovery and recrystallization in dynamically recrystallized austenite, Mater. Trans. JIM, 1991, 32(22), 174-180
    [25]徐洲, Fe-32Ni合金高温变形与再结晶行为, 金属热处理, 1999, 6(6), 3-5
    [26]姚忠凯, 雷廷权,徐洲,12CrNi3A钢和18Ni马氏体时效钢的热变形与再结晶规律的研究,金属热处理学报,1983, 4(1), 51-53
    [27]酒井拓,动的再结晶とその关连现象に关する研究の进展,铁と钢, 1995, 81(1), 1-8
    [28]W. Blum, H.J. McQueen, Dynamics of recovery and recrystallization, Mater. Sci. Forum, 1996, 217-222, 31-42
    [29]Dariusz Kuc, Grzegorz Niewielski, Jan Cwajna, Influence of deformation parameters and initial grain size on the microstructures of austenitic steels after hot working processes, Mater. Charac, 2006, 56(4-5), 318-324
    [30]S.V.S. Narayana Murty, Shiro Torizuka, Kotobu Nagai, Takayoshi Kitai, Yasuo Kogo, Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel, Scri. Mater, 2005, 53(6), 763-768
    [31]徐洲,姚忠凯,金属材料的高温变形与再结晶, 兵器材料科学与工程, 1986, (2), 35-46
    [32]张羊换,王福成,微合金化钢的动态再结晶及其显微组织的研究, 包头钢铁学院学报, 1998, 17(3), 217-220 [33Jajal Biglou, John G. Lenard, A study of dynamic recrystallization during hot rolling of microalloyed steels, CIRP Annals - Manufacturing Technology, 1996, 45(1), 227-230
    [34]A. M. Elwazri, P. Wanjara, S. Yue, Dynamic recrystallization of an austenite in microalloyed high carbon steels, Mater. Sci. Eng. A, 2003, 339(1-2), 209-215
    [35]姚忠凯,18Ni马氏体时效钢奥氏体再结晶与热形变参数间的关系, 钢铁, 1985, 6, 33-38
    [36]Guangmin Luo, Jiansheng Wu, Junfei Fan, Haisheng Shi, Yijian Lin, Jingguo Zhang, Deformation behavior of an ultra-high carbon steel (UHCS-3.0Si) at elevated temperature, Mater. Sci. Eng. A, 2004, 379(1-2), 302-307
    [37]A. Belyakov, Y. Kimura, K. Tsuzaki, Microstructure evolution in dual-phase stainless steel during severe deformation, Acta Mater, 2006, 54 (9), 2521-2532
    [38]A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, Grain refinement under multiple warm deformation in 304 type austenitic stainless steel, ISIJ Inter, 1999, 39(6), 592-599
    [39]Y. Saito, N. Tsuji, H. Utsunomiya, Ultra-fine grained bulk Aluminium produced by accumulative roll bonding process, Scri. Mater, 1998, 39(9), 1221-1227
    [40]N. Tsuji, Y. Saito, H. Utsunomiya, Ultra-fine grained bulk steel produced by accumulative roll bonding process, Scri. Mater, 1999, 40(7), 795-800
    [41]Geier S, Sch reck M, Microsturucture study of a degraded pseudomorphic separate confinement heterostructure blue-green laser diode, Appl. Phys. Lett,1994, 65,1769-1781
    [42]陈家光,李忠,电子背散射衍射在材料科学研究中的应用,理化检验-物理分册, 2000, 36(2), 71-74
    [43]F.J. Humphreys, P.S. Bate, Measuring the alinment of low angle boundaries formed during deformation, Acta Mater, 2006, 54(3), 817-829
    [44]H. Jazaeri, F.J. Humphreys, The transition from discontinuous to continuous recrystallization in some alumimium alloys-the deformed state, Acta mater, 2004, 52(11), 3239-3250
    [45]Humphreys F.J, Grain and subgrain characterization by electron backscatter diffraction, J. Mater. Sci, 2001, 36, 3833-3854
    [46]Hurley PJ, Prangnell PB, Bowen JR, recrystallization of a cold worked material, Phi. Trans. R. Soc. Lond. A, 1999, 357, 1663-1681
    [47]Wright, S.I., Adams, B.L,Kunze, K, Orientation Imaging: The Emergence of a New Microscopy, Metallurgical. Transactions A, 1993, 24(4), 819-831
    [48]林栋梁,晶体缺陷,上海,上海交通大学出版社,1996
    [49]Belyakov A, K. Tsuzaki, H. Miura, T. Sakai, eccect of initial microstructures on the grain refinement in a stainless steel by large strain deformation, Acta Mater, 2003, 51(3), 847-861
    [50]S.M. Lim, M. El Wahabi, C. Desrayaud,F. Montheillet, Microstructural refinement of an Fe-C alloy within the ferritic range via two different strain path, Mater. Sci. Eng. A, 2007, 460-461, 532-541
    [51]Weiguo Wang, Hong Guo, Effectsof the thermo-mechanical iterations on the grain boundary character distribution of Pb-Ca-Sn-Al alloy, Mater. Sci. Eng. A (2006), doi:10.1016/J.msea.2006.09.034
    [52]B. Eghbali, A. Abdollah-Zadeh, H. Beladi, P.D. Hodgson, Characterization on ferrite microstructure evolution during large strain warm torsion testing of plain low carbon steel, Mater. Sci. Eng. A, 2006, 435-436(1-2), 499-503
    [53]A. Abdollah-Zadeh, B. Eghbali, Mechanism of ferrite grain refinement during warm deformation of a low carbon Nb-microalloyed steel, Mater. Sci. Eng. A, 2007, 457(1-2), 219-225
    [54]T. Sakai, M. Ohashi, Dislocation substructures developed during dynamic recrystallization in polycrystalline nickel, Mater. Sci. Tech, 1990, 6, 1251-1257
    [55]D. Ponge, G. Gottstein, necklace formation during dynamic recrystallization: mechanism and impact on flow behavior, Acta Mater, 1998, 46 (1), 69-80
    [56]A.M. Wusatowska-Sarnek, H. Miura, T. Sakai, nucleation and microtexture development under dynamic recrystallization of copper, Mater. Sci. Eng. A, 2002, 323(1-2), 177-186
    [57]S.Yu. Mironov, G.A. Salishchev, M.M. Myshlyaev, R. Pippan, Evolution of misorientation distribution during warm ‘abc’ forging of commercial-purity titanium, Mater. Sci. Eng. A, 2006, 418(1-2), 257-267
    [58]S.H. Lee, Y. Saito, N. Tsuji, T. Sakai, H. Utsunomiya, Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding, Mater. Sci. Eng. A, 2002, 325(1-2), 228-235
    [59]J. Huang, Z. Xu, Evolution mechanism of grain refinement based on dynamic recrystallization in multiaxially forged austenite, Mater. Lett, 2006, 60(15), 1854-1858
    [60]N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater, 2002, 50(18), 4603-4616
    [1]N. Tsuji, Y. Saito, H. Utsunomiyaetc, Ultra-fine grained bulk steel produced by accumulative roll-bonding process, Scripta Mater, 1999, 40(7), 795-800
    [2]K. T. Park, Y. S. Kim, J.G. Lee etc, Thermal Stability and Mechanical Properties of Ultrafine Grained Low Carbon Steel, Mater. Sci. Eng. A, 2000, 293(1-2), 165-172
    [3]R.Z. Valiev, YU. V. Ivanisenko, E.F. Rauch etc, Structure and. deformation behaviour of Armco Iron subjected to severe plastic deformation, Acta Mater, 1996, 44(12), 4705-4712
    [4]A. Belyakov, T. Sakai, H. Miura, Fine-grained structure formation in austenitic stainless steel under multiple deformation at 0.5Tm, Mater. Trans. JIM, 2000, 41, 476-484
    [5]A. Kundu, R. Kapoor, R. Tewari, J.K. Chakravartty, Severe plastic deformation of copper using multiple compression in a channel die, Scri. Mater, 2008, 58(3), 235-238
    [6]H. Jazaeri, F.J. Humphreys, the transition from discontinuous to continuous dynamic recrystallization in some aluminium- the deformed state, Acta Mater, 2004, 52(11), 3239-3250
    [7]Belyakov A, Sakai T, Miura H and Kaibyshev R, substructures and internal stresses developed under warm deformation of austenitic stainless steel, Scr. Mater., 2000, 42(4), 319-325
    [8]V.M. Segal, deformation mode and plastic flow in ultrafine grained metals, Mater. Sci. Eng. A, 2005, 406(1-2), 205-216
    [9]D.A. Hughes, N. Hansen, high angle boundaries formed by grain subdivision mechanisms, Acta Mater, 1997, 45(9), 3871-3886
    [10]T.R. MacNalley, D.L. Swisher, M.T. Perez-Prado, deformation bands and the formation of grian boundaries in a superplastic aluminium alloy, Metall. Mater. Trans. A, 2002, 33, 279-290
    [11]P.C. Wu, C.P. Chang, P.W. Kao, the distribution of dislocation walls in the early processing stage of equal channel angular extrusion, Mater. Sci. Eng. A, 2004, 374 (1-2), 196-203
    [12]J. Huang, Z. Xu, Evolution mechanism of grain refinement based on dynamic recrystallization in multiaxially forged austenite, Mater. Lett, 2006, 60(15), 1854-1858
    [13]V.V. Rybin, Large Plastic Strains and Fracure of Metals, Metallurgy, Moscow, 1986
    [14]S.Yu. Mironov, G.A. Salishchev, M.M. Myshlyaev, R. Pippan, Evolution of misorientation distribution during warm ‘abc’ forging of commercial-purity titanium, Mater. Sci. Eng. A, 2006, 418(1-2), 257-267
    [15]D.H. Shin, B.C. Kim, Y.S. Kim, K.T. Park, Microstructural evolution in a commercial low carbon steel by equal channel angular pressing, Acta. Mater, 2000, 48(9), 2247-2255
    [16]F.J. Humphreys, P.S. Bate, Measuring the alinment of low angle boundaries formed during deformation, Acta Mater, 2006, 54(3), 817-829
    [17]张智民,李硕本,渗碳20CrMnTi温变形超细晶粒形成机制, 塑性工程学报, 2002, 6, 32-35
    [18]X. Huang, N. Hansen, Flow stress and microstructures of fine grained copper, Mater. Sci. Eng. A, 387-389, 186-190
    [19]Jiang Li Ning, Da Ming Jiang, Xi Gang Fan, Zhong Hong Lai, Qing Chang Meng, Dian Liang Wang, Mechanical properties and microstructures of Al-Mg-Mn-Zr alloy processed by equal channel angular pressing, at elevated temperature, Mater. Charac, 2008, 59(3), 306-311
    [20]A. Gholinia, F.J. Humphreys, P.B. Prangnell, production of ultra-fine grain microstructures in Al-Mg alloy by conventional rolling, Acta Mater, 2002, 50(18), 4461-4476
    [21]A. Belyakov, H. Miura and T. Sakai, Dynamic recrystallizaiton under warm deformation of a 304 type austenitic stainless steel, Mater. Sci. Eng. A 1998, 255(1-2), 139-147
    [22]Sakai. T, Miura H, Microstructural evolution during dynamic recrystallization in bicrystals and polycrystalline materials, proceedings of the international symposium on hot workability of steels and other materials, Canada, 1996, 161-172
    [23]Driver J H, Theyssier M C, Electron backscattered diffraction microtexture studies on hot deformed aluminum crystals, Mater. Sci. Tech, 1996, 12, 851-862
    [24]Huang X, Hansen N, Grain orientation dependence of microstructure in aluminum deformed in tension, Scripta Mater, 1997, 37(1), 1-7
    [25]Lehockey E M , Palumbo G, Lin P, Grain Boundary Structure Effects on Cold Work Embrittlement of Microalloyed Steels, Scri. Mater,1998, 39 (3), 353-358
    [26]Watanabe T, Tsurekawa S, The Control of Brittlenessand Development of Desirable Mechanical Properties in Polycrystalline Systems by Grain Boundary Engineering, Acta Mater, 1999, 47(15), 4171-4185
    [27]Geier S, Sch reck M. et al, Microsturucture study of a degraded pseudomorphic separate confinement heterostructure blue-green laser diode Appl. Phys. Lett,1994, 65, 1769-1781
    [28]陈家光,李忠, 电子背散射衍射在材料科学研究中的应用,理化检验-物理分册,2000, 36(2), 71-74
    [29]Rengang Zhang, Viola L. Acoff, Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils, Mater. Sci. Eng. A, 2007, 463(1-2), 67-73
    [30]Y. Saito, N. Tsuji, H. Utsnomiya, ultra-fine grainedaluminium produced by accumulative roll-bonding (ARB) process, Scrip. Mater, 1998, 39 (9), 1221-1227
    [31]M.T. Pérez-Prado, J.A. del Valle, O.A. Ruano, grain refinement of Mg-Al-Zn alloy via accumulative roll bonding, Scrip. Mater, 2004, 51(11), 1093-1097
    [32]N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu, M. Kiritani, microstructural change of ultrafine-grained aluminium during high-speed plastic deformation, Mater. Sci. Eng. A, 2003, 350(1-2), 108-116
    [33]N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater, 2002, 50(18), 4603-4616
    [34]R. Z. Valiev, Ultrafine-grained materials processed by severe plastic deformation, Ann. Chim, Fr. 1996, 369
    [35]A. Belyakov, R. Kaibyshev, T. Sakai, in interface Science and Materials Interconnection (iib’96, JIMIS-8), Japan Institute of Metals 1996, 495
    [36]A. Belyakov, W. Cao, H. Miura, R. Kaibyshev, ISIJ Int, 1999, 39, 593-599
    [37]R. K. Islamgaliev, N. F. Yunusova, I. N. Sabirov, A. V. Sergueeva, R. Z. Valiev, Deformation behavior of nanostructured aluminium alloy processed by severe plastic deformation, Mater. Sci. Eng. A, 2001, 319-321, 877-881
    [38]H. Mughrabi, dislocation walls and cell structures and long-range internal stresses in deformed metal crystals, Acta Metall, 1983, 31(99), 1367-1379
    [39]A .Belyakov,T. Sakai,H. Miura,K.T suzaki, grain refinement in copper under large strain deformation, Phil. Mag. A, 2001, 81(11), 2629-2643
    [40]D.H. Shin,1. Kim,J. Kim,K.T. Park, grain refinement under mechanism under equal channel angular pressing of a low carbon steel, Acta Mater, 2001, 49(7), 1285-1292
    [41]C.P. Chang, P.L. Sun, P.W. Kao, deformation induced grain boundaries in a commercially pure aluminium, Acta Mater, 2000, 48(13), 3377-3385
    [42]Iwahashi Y, Horita Z, Nemoto M, et al, The process of grain refinement in equal-channel angular pressing, Acta Mater,1998, 46(9), 3317-3331
    [43]A.P. Zhilyaev,S. Lee, G. V. Nurislamova, R.Z.Valiev,T .G Langdon, microhardness and microstructural evolution in pure nickel during high-pressure torision, Scri. Mater, 2001, 44(12), 2753-2758
    [44]B. Bay,N. Hansen, D.A. Hughes, D. Kuhlmann-wilsdorf, evolution of f.c.c deformation structures in polyslip, Acta Metall, 1992, 40(2), 205-219
    [45]J. Juul, N.Hansen, Flow stress anisotropy in aluminium, Acta Metall Mater, 1990, 38, 1369-1380
    [46]N. Hansen, B. Bay, Initial stage of recrystallization in aluminium containing both large and small particles, Acta Metall, 1981, 29(1), 65-77
    [47]N. Hansen, The effect of grain size and strain on the tensile flow stress of aluminium at room temperature, Acta Mater, 1977, 25(8), 863-869
    [48]T. Leffers, V. S. Ananthan, H. Christoffersen, microshear bands and clustered microbands in rolled copper, Mater. Sci. Eng. A, 2001, 319-321, 148-151
    [49]W. Pantleon, N. Hansen, Dislocation boundaries-the distribution function of disorientation angles, Acta Mater, 2001, 49(8), 1479-1493
    [50]N. Hansen, X. Huang, R. Ueji, N. Tsuji, Structure and strength after large stain deformation, Mater. Sci. Eng. A, 2004, 387-389, 191-194
    [51]H.T. Fecht, Nanophase materials by mechanical attrition: synthesis and characterization. In: Hadjipan G.C, Siegel R.W. ed, Nanophase Materials, Kluwer Academic Publishers, Netherland,1994, 125
    [52]B. Eghbali, EBSD study on the formation of fine ferrite grains in plain carbon steel during warm defroamtion, Mater. Lett, 2007, 61(18), 4006-4010
    [53]Baojun Han, Zhou Xu. Microstructural evolution of Fe-32%Ni alloy during large strain multi-axial forging. Mater. Sci. Eng. A, 2007, 447(1-2), 119-124
    [54]韩宝军,徐洲, Fe-32%Ni合金低温强变形过程的奥氏体晶粒细化, 上海金属,2006, 28(2), 26-30
    [55]D. Ponge, G.. Gottstein, necklace formation during dynamic recrystallization: mechanism and impact on flow behavior, Acta Mater, 1998, 46 (1), 69-80
    [56]A.M. Wusatowska-Sarnek, H. Miura, T. Sakai, nucleation and microtexture development under dynamic recrystallization of copper, Mater. Sci. Eng. A, 2002, 323(1-2), 177-186
    [57]徐洲, Fe-32Ni合金高温变形与再结晶行为, 金属热处理, 1999, 6(6), 3-6
    [58]Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, An investigation of microstructural evolution during equal-channel angular pressing, Acta Mater, 1997, 45(11), 4733-4741
    [59]F.J. Humphreys, P.B. Prangnell, J.R. Bowen, A. Gholinia, C. Harris. Developing stable fine-grain microstructure by large strain deformation, Phil. Trans. R. Soc. Lond, 1999, 357, 1663-1681
    [60]T. Sakai, M. Ohashi, K. Chiba, J. J. Jonas, Recovery and recrystallization of polycrystalline nickel after hot rolling, Acta Metall, 1988, 36(7), 1781-1787
    [61]T. Sakai, J. J. Jonas, Overview no.35 dynamic recrystallization: Mechanical and microstructural considerations, Acta Metall, 1984, 32(2), 189-209
    [62]T. Sakai, M. G. Akben, J. J. Jonas, Dynamic recrystallization during the transient deformation of vanadium microalloyed steel, Acta Metall, 1983, 31(4), 631-641
    [63]H. Miura, T. Sakai, R. Mogawa, G. Gottstein, Nucleation of dynamic recrystallization at grain boundaries in copper bicrystals, Scri. Mater, 2004, 51(7), 671-675
    [64]徐洲,酒井 拓,日本金属学会志,1989, 53, 1161
    [65]徐洲,酒井 拓, 鉄と鋼,1991, 77, 462
    [66]徐洲,酒井 拓,日本金属学会志,1991, 55, 1182
    [67]Jr. Siciliano, H.P. Stuwe, A.F. Padilha, Competition between recovery and recrystallization. Mater. Sci. Eng. A, 2002, 333(1-2), 361-367
    [68]R.L. Bodnar, Recovery and recrystallization in hot rolled steels - a symposium review, Iron & Steelmaker (I&SM), 1996, 23(55), 59-62
    [69]T.Sakai, dynamic recrystallization microstructures under hot working conditions, Journal of Materials Processing Technology, 1995, 53(1-2), 349-361
    [70]M.Niikura, M.Fujioka and Y.Adachi etc, New concepts for ultra refinement of grain size in Super Metal Project, J. Mater. Proce. Tech, 2001, 117(3), 341-346
    [71]U. Andrade, M.A. Meyers, K.S. Vecchio, A.H. Chokshi, Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper, Acta Metallurgica et Materialia, 1994, 42(8), 3183-3195
    [72]J.C. Tan and M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Mater. Sci. Eng. A, 2003, 339(1-2), 124-132
    [73]J.Y. An, S.M. Han, Y.K won, Y.C. Yoo, Continuous dynamic recrystallization of AISI 430 ferritic stainless steel by hot torsion deformation, Mater. Sci. Forum, 2005, 475-479, 145-148
    [74]T. Sakai, M. Ohashi, Dislocation Substructures Developed During Dynamic Recrystallization in Polycrystalline Nickel, Mater. Sci. Tech, 1990, 6, 1251-1257
    [75]Xu-yue YANG, H. Miura, T. Sakai, Recrystallization behavior of fine grained magneisum alloy after hot deformation, Transactions of Nonferrous Metals Society of China, 2007, 17(6), 1139-1142
    [76]N.Tsuji, Y.Matsubara, Y.Saito, dynamic recrystallization of ferrite in interstitial free steel, Scr. Mater, 1997, 37(4), 477-484
    [77]H. Yagi, N.Tsuji, Y. Saito, dynamic recrystallization in 18%Cr ferritic steel, Tetsu-To-Hagane, 2000, 86(5), 349-356
    [78]徐洲,孟繁盛,门学勇,傅家骐,姚忠凯,钢铁, 1984, 19(91), 50-53
    [1]Y.Y. Tse, G.L. Liu, B.J. Duggan, Deformation banding and nucleation of recrystallization in IF steel, Scripta Materialia, 1999, 42(1), 25-30
    [2]Y.Z. Zheng, A.J. DeArdo, R.M.Fix, G.Fitzsimons, Achieving grain refinement through recrystallization controlled rolling and controlled cooling in V-Ti-N microalloyed steels, HSLA steels, technology applications;Philadelphia, Pa,USA: ASM, 1984, 3-6 Oct, 85-94
    [3]A.Kojima, Y.Watanabe, Y.Terada, A.Yoshie, H.Tamehiro, Ferrite grain refinement by large reduction per pass in non-recrystallization temperature region of austenite, ISIJ International, 1996, 36(5), 603-610
    [4]H. Tamehiro, N. Yamada, H. Matsuda, Effect of the thermo-mechanical control process on the properties of high-strength low alloy steel, Transactions of the Iron and Steel Institute of Japan, 1985, 25(1), 54-61
    [5]A. Matsuzaki, Y. Saito, O. Watanabe, C. Shiga, Effect of Thermal-Mechanical control process on mechanical properties of modified 9Cr-1Mo steel, J. Iron Steel Inst. Jpn, 1990, 76(7), 1108-1115
    [6]M.C. Zhao, K. Yang, Y. Shan, The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel, Mater. Sci. Eng. A, 2002, 335(1-2), 14-20
    [7]Cech R.E, Turnbull, Heterogeneous nucleation of the martensite transformation, Journal of Metals Transactions AIME, 1956, 8 (2), 124-132
    [8]Zhou Ying-hui, Harmelin Mireille, Bigot Jean, Martensitic transformation in ultrafine Fe-Ni powders, Mater. Sci. Eng. A, 1990, 124 (2), 241-249
    [9]Bando Y, Characteristics of phase transformation in metallic fine particles (Martensitic transformation of Fe-Ni alloys and ordering of CuAu and Cu3Au alloys), Transactions of the Japan Institute of Metals, 1964, 5(3), 135-141
    [10]Krauss W, Pabi S K, Gleiter H, On the mechanism of martensite nucleation, Acta Metallurgica Materialia, 1989, 37 (1), 25-30
    [11]Cohen M, Martensitic nucleation revisited, Transactions of the Japan Institute of Materials, 1992, 33(3), 178-183
    [12]Kajiwara S, Ohno S, Honma K, Martensitic transformation on ultrafine particles of metals and alloys, Philosophical Magazine A, 1991, 63(4), 625- 644
    [13]赵新清,铁基合金中马氏体均匀形核热力学探讨,材料工程,1991, 11(11), 3-5
    [14] Li X. G, Chiha A, Takahashi S, Preparation and magnetic properties of ultrafine particles of Fe-Ni alloys, Journal of Magnetism and Magnetic Materials, 1997, 170(3), 339-345
    [15]Dong X. L, Zhang Z. D, Zhao X .G. et al, The preparation and characterization of ultrafine Fe-Ni particles, Journal of Materials Research, 1999, 14(2), 338-345
    [16]Tadaki Tsugio , Murai Yasuyuki , Koreeda Atsuo, et al, Structure and phase transformation of nanoscale particles of Fe-Ni alloys, Mater. Sci. Eng. A, 1996, 217-218, 235-238
    [17]Asaka Koji, Hirotsu Yoshihiko, Tadaki Tsugio, Martensitictransformation in nanometer sized particles of Fe-Ni alloys, .Mater. Sci. Eng. A, 1999, 273-2275, 262-265
    [18]Baldokhin Yu. V, Tcherdyntsev V.V, Kaloshkin S. D., et al, Transformation and fine magnetic structure of mechanically alloyed Fe-Ni alloys, Journal of Magnetism and Magnetic Materials, 1999, 203(3), 313-315
    [19]Kuhrt C, Schultz L, Formation and magnetic properties ofnanocrystalline mechanically alloyed Fe-Co and Fe-Ni, Journal of Applied Physics, 1993, 73(10), 6588-6590
    [20]Pekala M, Oleszak P, Jartych E, et al, Structure and magneticstudy of mechanically alloyed Fe-Ni, Nanostructured Materials, 1999,11 (6), 789-796
    [21]Jartych Elzbieta , Zurawicz Jan K, Oleszak Dariusz , et al, X-ray diffraction , magnetization and Mossbauer studies of nanocrystalline Fe-Ni alloys prepared by low and high energy ball milling, Journal of Magnetism and Magnetic Materials, 2000, 208(2), 221-230
    [22]Baojun Han, Zhou Xu, Martensitic transformation behavior of large strain deformed Fe–32% Ni alloy. Mater. Sci. Eng. A, 2006, 31(1-2), 109-113
    [23]韩宝军,徐洲,低温强变形奥氏体的马氏体相变, 钢铁研究学报,2007, 9(5), 80-83
    [24]Baojun han, Zhou Xu, martensite microstructure transformed from ultra-fine grained Fe-32%Ni alloy austenite, Mater. Sci. Eng. A, (2007),doi:10.1016/j.msea.2007.09.056
    [25]陈景榕,李承基,金属和合金中的固态相变,北京,冶金工业出版社,1997
    [26]徐洲,赵连城,金属固态相变原理,北京,科学出版社, 2004, 14-15
    [27]邓永瑞,固态相变, 北京,冶金工业出版社,1996
    [28]徐洲,姚寿山,材料加工原理,北京,科学出版社,2003
    [29]W.D. Nix, B. lshner, in: Tnternational Conference on Strength of Metals and Alloys (ICSMA 5), Pergamon Press, Oxford, 1980, 1503
    [30]H. Mughrabi, dislocation wall and cell structures and long-range stresses in deformed metal crystals, Acta Metall, 1983, 31(99), 1367-1379
    [31]A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, Substructures and internal stresses developed under warm severe plastic deformation of austenitic stainless steel, Scri. Mater, 2000, 42(4), 319-325
    [32]T.Y. Hsu, Proc ICOMAT-86, Key note lecture, Japan Inst. Metals, 1987, 245
    [33]T.Y. Hsu, An approximate approach for the calculation of Ms in iron-base alloys, J. Mater. Sci, 1985, 20, 23-31
    [34]P.J. Brofman, G.S. Ansell, on the effect of fine grain size on the Ms temperature in Fe-27Ni-0.025C alloys, Metall.Trans A,1983, 14(9), 1929-1931
    [35]J. Wu, B.H, Jiang, T.Y.Hsu, Acta Matall,1988, 36, 1521-1526
    [36]潘牧,徐祖耀, Fe-Mn-C合金奥氏体强化对马氏体相变的影响, 金属学报, 1989, 25(6), 389-393
    [37]C. Hayzelden, B. Cantor, The Martensite Transformation in Fe-Ni-C Alloys, Acta Metall, 1986, 34(2), 233-242
    [38]宋晓燕,谷南驹,母相预变形对马氏体相变及其形态的影响,河北冶金, 1996, 92(2), 38-44
    [39]胡光立,谢希文,钢的热处理,西安,西北工业大学出版社,1993
    [40]Jie Huang, Zhou Xu, Effecl of dynamically austensite on the martensite start temperature of martensitic transformation. Mater. Sci. Eng. A, 2006, 438-440(1-2), 254-257
    [41]Zhou Xu, Jie Huang, Martensitic transformation behavior of hot-deformed Fe-32%Ni alloy, Mater. Sci. Eng. A, 2006, 438-440(1-2), 258-261
    [42]姚忠凯,高守义,徐洲,低温形变淬火对马氏体形态的影响, 哈尔滨工业大学学报,1983, 增刊, 24-30
    [43]徐洲,酒井 拓,姚忠凯,奥氏体动态再结晶组织对马氏体相变的影响, 材料科学与工艺, 1997, 5(2), 124-128
    [44]L.E. Kozlova, A.N. Titenko, Stress-induced martensitic transformation in polycrystal aged Cu-Al-Mn alloys, Mater. Scu. Eng. A, 2006, 438-440, 738-742
    [45]S.A. Egorov, M.E. Evard, N.N. Resnina, A.E. Volkov, Influence of stress on the temperature of characteristics of martensitic transformation and on strain variation in Ti-Ni shape memory alloys, Mater. Sci. Eng. A, 2007, 462(1-2), 325-328
    [46]王晓东, 董允,林晓娉,谷南驹,预变形对FeNiC合金马氏体相变形态的影响, 材料科学与工艺,2005, 13(4), 390-393
    [47]T.Sakai, M.Ohashi, K.Chiba J.J. Jonas, Recovery and Recrystallization of Polycrystalline Nickel After Hot Working, Acta Metall, 1988, 36(7), 1781-1791
    [48]T. Sakai, J. J. Jonas, Overview no.35 dynamic recrystallization: Mechanical and microstructural considerations, Acta Metall, 1984, 32(2), 189-209
    [49]T. Sakai, M. G. Akben, J. J. Jonas, Dynamic recrystallization during the transient deformation of vanadium microalloyed steel, Acta Metall, 1983, 31(4), 631-641
    [50]T. Sakai, M. Ohashi, Dislocation Substructures Developed During Dynamic Recrystallization in Polycrystalline Nickel, Mater. Sci. Tech, 1990, 6, 1251-1257
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.